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Abstract. At SAC 2016, Espitau et al. presented a loop-abort fault attack against
lattice-based signature schemes following the Fiat–Shamir with aborts paradigm.
Their attack recovered the signing key by injecting faults in the sampling of the
commitment vector (also called masking vector) y, leaving its coefficients at their
initial zero value. As possible countermeasures, they proposed to carry out the
sampling of the coefficients of y in shuffled order, or to ensure that the masking
polynomials in y are not of low degree. In this paper, we show that both of these
countermeasures are insufficient. We demonstrate a new loop-abort fault injection
attack against Fiat–Shamir with aborts lattice-based signatures that can recover
the secret key from faulty signatures even when the proposed countermeasures are
implemented. The key idea of our attack is that faulted signatures give rise to a noisy
linear system of equations, which can be solved using integer linear programming.
We present an integer linear program that recovers the secret key efficiently in
practice, and validate the efficacy of our attack by conducting a practical end-to-end
attack against a shuffled version of the Dilithium reference implementation, mounted
on an ARM Cortex M4. We achieve a full (equivalent) key recovery in under 3
minutes total execution time (including signature generation), using only 5 faulted
signatures. In addition, we conduct extensive theoretical simulations of the attack
against Dilithium. We find that our method can achieve key recovery in under 5
minutes given a (sufficiently large) set of signatures where just one of the coefficients
of y is zeroed out (or left at its initial value of zero). Furthermore, we find that
our attack works against all security levels of Dilithium. Our attack shows that
protecting Fiat–Shamir with aborts lattice-based signatures against fault injection
attacks cannot be achieved using the simple countermeasures proposed by Espitau et
al. and likely requires significantly more expensive countermeasures.
Keywords: Fault analysis · Fiat–Shamir with aborts · Dilithium · Side-channel
attacks · Integer linear programming

1 Introduction
The potential advent of large-scale quantum computers in the near future threatens to
undermine the security of currently deployed public-key cryptography [Mos18], as Shor’s
algorithm would render public-key cryptography based on the hardness of integer factoring
or discrete logarithms insecure.
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Recent advances in quantum computing [Int19, DCG21, Rig21, AAB+19, Mos18, Gri19]
point to the urgency of designing and implementing quantum-resistant cryptographic
schemes that are suitable for real-world deployment, whether in terms of security, perfor-
mance or practicality of implementation. This is being addressed by the ongoing NIST-led
process to evaluate and standardize post-quantum primitives for public-key encryption, key
encapsulation, and signatures [Cen20]. Schemes submitted to the NIST call for proposals
have been subject to heavy scrutiny from the research community, and various proposed
candidates were eliminated because they were found to be insecure. In practice, however,
the extensive study of the theoretical security of proposed schemes alone is insufficient.
In order to maintain the intended security guarantees of quantum-secure algorithms, it is
crucial to ensure proper implementation and device behavior during their execution, as any
shortcomings in these areas can leave the cryptographic schemes vulnerable to side-channel
attacks. A case in point is the security of implementations against fault-injection attacks,
which pose a significant security threat to schemes meant for real-world deployment. The
foreseeable use cases for post-quantum secure signature schemes as well as key encapsula-
tion mechanisms include signing banking transactions with a credit card or a hardware
wallet and providing identification in IoT devices or vehicular networks. These use cases
entail executing the cryptographic schemes on microcontrollers and smart cards, which are
particularly susceptible to fault attacks.

Fault attacks induce an error during the execution of a cryptographic algorithm which
can lead to unexpected behavior. Based on subsequent mathematical analysis of the faulty
output, e.g., the signature, the adversary is able to recover the secret key. Hence, the security
of the system is compromised. For post-quantum secure signature schemes, fault attacks
have successfully been used to recover a secret key [RJH+19, AKKM22, Del21, GKPM18].

At SAC 2016, Espitau et al. presented a powerful type of fault-attacks against lattice-
based Fiat–Shamir with aborts signature schemes [EFGT16]. Fiat–Shamir with aborts
signatures rely on a commitment value y, sampled during signature generation, to hide
information about the secret key. This commitment value is a polynomial or a vector of
polynomials, whose coefficients are sampled sequentially in a loop. Using a fault to abort
the sampling loop early on causes the commitment polynomial(s) to be of low degree, as
most of its coefficients will be set to zero (in some implementations, this could also be a
different fixed, known value, and that case easily reduces to the case of low degree). As
a result, the faulty signature leaks information, allowing the secret key to be recovered
efficiently via (low dimensional) lattice reduction algorithms. The same type of attack can
also be mounted through “zeroing faults”, where the attacker sets a BRAM memory cell to
its initial state, causing the commitment polynomial to be altered and the corresponding
signature to leak information.

To mitigate loop-abort faults from enabling an attacker to recover the secret key,
Espitau et al. suggest two cryptographic countermeasures: first, to shuffle the order in
which the coefficients are generated (which ensures, with good probability, that generated
polynomials are no longer of low degree, thwarting the attack); second, to check after
sampling that the generated polynomials are of high degree (preventing the lattice reduction
technique directly) and rejecting otherwise.

Contributions In this work, we show that neither the shuffling countermeasure nor the
rejection of low-degree polynomials suffices to prevent loop abort or zeroing fault attacks.
Our key idea is to formulate integer linear programs (ILPs) that can efficiently recover the
secret signing key from a limited number of faulty signatures even in the presence of the
aforementioned countermeasures presented in [EFGT16]. We verify that this integer linear
program is efficiently solvable in practice (heuristically, because its rational relaxation
often already provides a near-optimal solution), and thus allows us to circumvent the
countermeasures easily.
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We validate the effectiveness of our attack against Dilithium, one of the post-quantum
signature schemes that NIST has selected for standardization, and an example of a
Fiat–Shamir with aborts lattice-based signature scheme. We show — through exten-
sive simulations — that as little as one single skipped coefficient is sufficient to recover
Dilithium’s secret key in under 5 minutes, given sufficiently many faulty signatures. More-
over, we demonstrate that our attack works against all security levels of Dilithium (and
it would apply similarly to any other Fiat–Shamir with aborts lattice-based scheme, like
BLISS or qTESLA).

We also present an end-to-end proof of concept attack against a shuffled Dilithium
implementation mounted on an ARM Cortex M4, recovering the key using only 5 faulted
signatures. The total execution time of our attack, including both the time for signature
generation as well as the time required for key recovery, is under 4 minutes.

The rest of the paper is structured as follows. After reviewing related work in Section 2
and giving the necessary background (Section 3), we explain the attack presented by
Espitau et al. in Section 4. We describe the high-level idea and the ILP formulation
in Section 5 and show concrete attacks against Dilithium in Section 5.3. We present
theoretical simulations of the attack in Section 6 and discuss the practical end-to-end
attack in Section 7.

We also examine the required countermeasures to avoid our attack in Section 8. We
conclude the paper and explore its implications in Section 9.

2 Related Work
Loop-abort fault attacks were introduced by Page and Vercauteren [PV06] to subvert
pairing-based cryptography and have also been used to attack pairing-based cryptography
in practice [BDSG+14]. They have since been successfully utilized to attack post-quantum
cryptography schemes as well. Gelin and Wesolowski demonstrate that one can attack
supersingular isogeny cryptosystems by exploiting the iterative structure of the secret
isogeny computation. The attacker can mount a loop-abort attack on the loop that
computes a party’s isogeny, and use the resulting information leak to recover the victim’s
secret key [GW17]. Additionally, the multivariate family of post-quantum cryptographic
schemes has also been subjected to loop-abort attacks. Hashimoto et al. [HTS11] have
presented general fault attacks on multivariate schemes. In these attacks, by deliberately
aborting the random sampling process of sensitive vectors (called vinegar values), the
authors were able to partially recover the secret key. Consequently, Aulbach et al. further
demonstrated the practicality of this attack by applying it to the multivariate scheme
Rainbow [AKKM22].

Multiple fault injection attacks against unprotected implementations of lattice-based
cryptography have been demonstrated. For instance, McCarthy et al. introduced loop
abort attacks on FALCON, utilizing the aborting recursion or zeroing (BEARZ) technique
to target the FALCON sampler. This attack exploited faults within the FALCON signature
scheme to gain access to private key information [MHS+19]. Furthermore, Dilithium and
qTESLA are also vulnerable to differential fault attacks [BP18]. In those attacks, the
attacker causes the signer to sign the same message twice and injects a fault to perturb
the generation of the challenge vector in one of the two executions, whereas the other
execution completes correctly. This causes a nonce reuse scenario, in which the same
commitment vector y is used for two different challenge vectors c 6= c′. Doing so allows
an attacker to recover the secret key, given a faulted and a corresponding non-faulted
signature. Being able to cause a device to sign the same message twice is a strong attacker
model; in contrast, our attack does not require any control over the signed messages.

In [BBK16], Bindel et al. provided an extensive overview of fault attacks against
lattice-based signature schemes. One of the attacks considered in the paper zeroes out
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a consecutive block of coefficients of the commitment polynomial y during signature
generation. To recover the secret key, the attack presented in [BBK16] relies on the
attacker’s capability to determine which coefficients were zeroed out through statistical
observations; the paper argues that an attacker can unambiguously determine which of
y’s coefficients were zeroed by observing the corresponding signature output z. This is a
consequence of the distribution of the coefficient of z; in qTESLA (the scheme considered
in that paper), the expected value of a signature coefficient E[zj ] varies significantly if
the corresponding commitment vector coefficient is zero. Thus, the position of the zeroed
coefficients in y could be easily determined by simply observing the corresponding signature
coefficients z. This attack does not work, however, once the coefficients of y are shuffled
because the zeroed coefficients do not appear consecutively anymore. As a result, it is
infeasible to determine, with perfect accuracy, whether a coefficient yj has been zeroed
out solely by observing the corresponding signature output coefficient zj .

A potential power side-channel attack against a shuffled BLISS implementation is
presented in [Pes16]. The authors of [Pes16] show that it is possible to unshuffle the
shuffled coefficients by leveraging statistical observations. The unshuffling relies on a list of
all sampled coefficients, obtained through power side-channel analysis. This information is
not present in the case of a loop-abort fault attack against shuffled sampling. Instead, the
attacker only knows that some coefficients are zero, but does not know anything about the
remaining coefficients.

3 Background
For any integer q, the ring Zq is represented by the set [−q/2, q/2) ∩ Z. For an even
positive integer α, we define r′ = r mod±α to be the unique element r′ in the range
−α2 < r′ ≤ α

2 , such that r′ ≡ r mod α. Analogously, for an odd positive integer α, we
define r′ = r mod±α as −α−1

2 ≤ r′ ≤ α−1
2 , such that r′ ≡ r mod α. For any positive

integer α, we denote by r′ = r mod+α the unique element r′ in the range 0 ≤ r′ < α
such that r′ ≡ r mod α. We denote Zq[X] = (Z/qZ[X]) as the set of polynomials with
integer coefficients modulo q. We define Rq = Zq[X]/(Xn + 1) as the ring of polynomials
with integer coefficients modulo q, reduced by the cyclotomic polynomial Xn + 1. For
any α < q, Rα refers to the set of polynomials with coefficients in [−α/2,+α/2]. For
any integer w ∈ Zq, we define ||w||∞ = |w mod±q|, and for a ring element w ∈ R with
w =

∑n−1
i=0 wiX

i, we define ||w||∞ = max
i
||wi||∞. By vec(v) we denote the function which

maps a ring element v ∈ Rq to the vector obtained by concatenating all of the polynomial’s
coefficients.

Bold lowercase letters represent vectors with coefficients in R or Rq. Bold uppercase
letters are matrices. Vector coefficients and elements in R or Rq are represented by Roman
lowercase letters.

3.1 Lattices
A lattice Λ is a discrete subgroup of Rn. Given m ≤ n linearly independent vectors
b1, ...,bm ∈ Rn, the lattice Λ(b1, ...,bm) is the set of all integer linear combinations of
the bi’s, i.e.,

Λ(b1, ...,bm) =
{

m∑
i=1

xibi
∣∣∣ xi ∈ Z

}
,

where b1, ...,bm form a basis of Λ and m is the rank. This paper considers full-rank
lattices, i.e., with m = n. An integer lattice is a lattice for which the basis vectors are in
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Zn. Usually, we consider elements modulo q, i.e., the basis vectors and coefficients are
taken from Zq.

3.2 Fiat–Shamir With Aborts Scheme
Fiat and Shamir [FS87] introduced a technique to derive a digital signature scheme
from an interactive (potentially zero-knowledge) identification scheme. This technique
is canonically known as the Fiat–Shamir heuristic. In [Lyu09], Lyubashevsky builds on
top of this technique to construct a signature scheme based on lattices. The technique is
coined Fiat–Shamir with aborts. Fiat–Shamir with aborts signature schemes, as originally
described by [Lyu09], base their security on the worst-case hardness of approximating the
shortest vector problem within a factor of O(n2) in lattices corresponding to ideals in the
ring R = Z[X]/(Xn + 1).

Figure 1 describes signing and verification in the Fiat–Shamir with aborts signature
scheme. The scheme requires a family of collision-resistant homomorphic hash functions
H, mapping from D` to R, where D ⊆ R is a restricted domain of R and ` is a positive
integer. Additionally, it makes use of a random oracle H : {0, 1}∗ → Dc, where Dc ⊆ is a
restricted domain of R, corresponding to polynomials with small coefficients.

In summary, the secret key s is a vector of ` polynomials in ring R with small coefficients.
The public key consists of a hash function h drawn from H and the hash of the secret key
S = h(s). To sign a message µ, the signer samples a commitment vector of ` polynomials
y ∈ D`

y (sometimes also referred to as a masking vector), where Dy ⊆ R with restricted
coefficients, and then hashes h(y) and the message µ to a challenge polynomial c ∈ R with
small coefficients, through the random oracle function, i.e., c = H(h(y), µ). The signature
is the tuple (z = sc+ y, c). The process is repeated in case the signature’s coefficients do
not fall in a certain range. To verify a signature z, the verifier ensures that z’s coefficients
fall in the correct range and that c = H(h(z)−Sc, µ). It holds that h(z)−Sc = h(z)−h(s)c
and since h is homomorphic, it holds that h(z) − h(sc) = h(z − sc) = h(y). Thus, an
honest signer can convince the verifier.

3.3 The BLISS Signature Scheme
BLISS can be seen as a ring-based optimization of the earlier lattice-based scheme of
Lyubashevsky [Lyu09], sharing the same “Fiat–Shamir with aborts” structure [Lyu09]. A
simplified description of the signing process is given in Algorithm 1. The public key is an
NTRU-like ratio of the form aq = s2/s1 mod q, and the secret key is composed of the
two small and sparse polynomials s1, s2 ∈ R, where R = Z[X]/(Xn + 1).

To sign a message µ ∈ {0, 1}∗, we first generate commitment vectors y1,y2 ∈ R with
normally distributed coefficients. Then, we compute a hash c of the message µ together
with u = −aqy1 +y2 mod q using a cryptographic hash function H modeled as a random
oracle taking values in the set of elements of R. The signature is the triple (c, z1, z2),
where zi = yi + (−1)bsic mod 2q for some random bit b. A rejection condition ensures
the independence of z and s.

3.4 The Dilithium Signature Scheme
The Dilithium signature scheme is based on the Fiat–Shamir with aborts structure [Lyu09].
Its security is tied to the hardness of the Modular-Learning with Errors and Modular-
Short Integer Solution problems. Accordingly, its operations are carried out over the ring
Rq = Zq[X]/(Xn + 1). Following the notation of the Dilithium specification [BDK+21],
we will use the following notation. We denote by Bτ the ball with the set of elements of R
that have τ coefficients that are either −1 or 1 and the rest are 0. Let Sη denote the set of
all elements w ∈ R such that ‖w‖∞ ≤ η. By S̃η we denote the set {w mod±2η : w ∈ R}.
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Signing Key : s $←− D`
s

Verification Key : h $←− H(R,D, `), S ← h(s)
Random Oracle : H : {0, 1}∗ → Dc

Sign
1 : y $←− D`

y

2 : c← H(h(y), µ)
3 : z← sc+ y

4 : if z /∈ G`, then goto step 1
5 : return (z, c)

Verify
1 : Accept iff z ∈ G` and c = H(h(z)− Sc, µ)

Figure 1: Fiat–Shamir with aborts Signature Scheme. G ⊆ R consists of polynomials
with restricted coefficients. We denote by x $← S that x is assigned an element of a set S,
sampled uniformly at random.

Algorithm 1 BLISS signature generation
Input: A message µ, public key a1, secret key S = (s1, s2)
Output: A signature (z1, z†2, c) ∈ Zn2q × Znp × {0, 1}n of the message µ
1: y1,y2 ← DZn,σ . DZn,σ is the discrete Gaussian distribution over Zn with standard deviation σ.
2: u = ζa1y1 + y2 mod 2q . Where ζ is defined such that ζ · (q − 2) = 1 mod 2q.
3: c = H(bued mod p, m)
4: choose a uniform random bit b
5: z1 = y1 + (−1)bs1c mod 2q
6: z2 = y2 + (−1)bs2c mod 2q
7: rejection sampling: restart to step 2 except with probability based on σ, ‖Sc‖, 〈Sc〉
8: z†2 = (bued − bu− z2ed) mod p
9: return (z1, z†2, c)

In summary, the public key consists of a matrix A ∈ Rk×`q , generated uniformly at
random and a vector t = As1 + s2. The secret key vector s1 ∈ R`q and s2 ∈ Rkq are vectors
of small polynomials, with each coefficient being chosen uniformly at random from a small
range {−η, . . . , η}.

To sign a message µ, the following steps are taken: A commitment vector y ∈ R`q is first
generated by sampling ` ·n uniformly random coefficients from the range {−γ1 + 1, . . . , γ1}.
Next, the message µ together with Ay is hashed to obtain a sparse polynomial c =
H(µ,Ay), a ring element with τ coefficient being −1 or 1, and the rest being zero. Finally,
if a certain rejection condition is met (mostly stating that z has its coefficients in a small
interval) then the signature tuple z = ((cs + y), c) is outputted. Otherwise, the signature
generation is repeated.

A more detailed description of Dilithium’s key generation and signing procedure is
given in Algorithm 2 and Algorithm 3. The key generation includes the sampling of
additional randomness seeds ρ, ρ′,K to be used in the deterministic signing procedure later
on. Dilithium also supports a non-deterministic version, where it samples fresh randomness
for each signature. The key generation and signing procedures additionally make use of the
following functions. An extensible output function H, mapping to the appropriate domain.
The functions ExpandA and ExpandS map a uniform seed {0, 1}256 to a matrix A ∈ Rk×`q

and two vectors (s1, s2) ∈ S`η × Skη , respectively. The function SampleInBall takes as
input a seed ρ and returns a random 256-element array with τ elements being ±1 and
the rest 0. To shrink the output size, the functions HighBitsq(r, α) describes a function
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that returns an r1 such that r = r1 · α + r0 mod q, whereas LowBitsq(r, α) returns r0.
The MakeHintq(z, r, α) procedure produces hints to help guess the shrunk bits of a sum.
The function Power2Roundq(r, d) returns the tuple ((r′ − r0)/2d, r0), where r′ = r mod+q
and r0 = r′ mod ±2d. Lastly, the ExpandMask function maps a seed ρ′ and a nonce κ to
S̃`γ1

, leveraging an Extensible Output Function (XOF) in the process. The function first
seeds the XOF with ρ′ and κ and then converts the resulting byte buffer to a vector of
polynomials S̃lγ1

. The parameters k, `, γ1, γ2, ω, τ, β are dependent on Dilithium’s security
level.

To verify a signature, the verifier first computes w′1 as the high-order bits of Az− ct,
and then accepts if all the coefficients of z are less than γ1 − β and if c matches the hash
of the signed message concatenated with w1.

We stress that, although the private key consists of two secret key vectors s1 and
s2, both Bruinderink and Pessl [GBP18] as well as Ravi et al. [RJH+18] have presented
methods to sign arbitrary messages with knowledge of just s1. Thus, recovering s1 is
sufficient to achieve an (equivalent) key recovery.

Algorithm 2 Dilithium Key generation
1: ζ ← {0, 1}256 . Sample random bytes
2: (ρ, ρ′,K) ∈ {0, 1}256 × {0, 1}512 × {0, 1}256 := H(ζ)
3: (s1, s2) ∈ S`η × Skη := ExpandS(ρ′)
4: A ∈ Rk×lq := ExpandA(ρ)
5: t := As1 + s2
6: (t1, t0) := Power2Roundq(t, d)
7: tr ∈ {0, 1}256 := H(ρ ‖ t1)
8: return (pk := (ρ, t1), sk := (ρ,K, tr, s1, s2, t0))

4 Prior Loop-Abort Faults on Fiat–Shamir with aborts At-
tacks

In [EFGT16], Espitau et al. demonstrate a loop-abort fault attack against Fiat–Shamir
with aborts signature schemes. The attack is presented against BLISS, but a generalization
to Dilithium is straightforward. In this section, we describe the initial attack against
BLISS along with the shuffling countermeasure intended to mitigate loop-abort attacks.

The key idea of Espitau’s attack is to induce a fault in the loop sampling the coefficients
for the commitment vector y1. The coefficients are sampled in a sequential manner, starting
with the coefficient of the lowest degree. A loop-abort yields a commitment polynomial y1
with an unexpectedly low degree. This enables an attacker to recover the secret key from
a faulted signature z1 = y1 + (−1)bs1c in a low-dimensional lattice via standard lattice
reduction techniques [EFGT16].

The secret key can be recovered as follows. Given that the attacker induces a fault
causing the termination of the sampling loop after n′ out of n, (n′ << n) iterations, the
resulting commitment polynomial y1 is of degree at most n′−1. The attacker also observes
the generated signature and obtains the pair (c, z1 = (−1)bs1c + y1). Assuming b = 0
without loss of generality, a crucial insight is that if we assume that c is invertible1, then
the vector z1c

−1 is close to a sublattice of Zn. Consider the equation

z1c
−1 − s1 ≡ c−1y1 ≡

n′−1∑
i=0

y1,ic
−1xi mod q

1with high probability of (1− 1
q

)n
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Algorithm 3 Dilithium Signature generation
Input: A message µ, a secret key (s1, s2)
Output: A signature σ=(z, h, c)
1: A ∈ Rk×`q := ExpandA(ρ)
2: µ ∈ {0, 1}512 := H(tr ‖ M)
3: κ := 0, (z,h) := ⊥
4: ρ′ ∈ {0, 1}512 := H(K ‖ µ) (or ρ′ ← {0, 1}512 for randomized signing)
5: while (z,h) = ⊥ do
6: y ∈ S̃`γ1

:= ExpandMask(ρ′, κ)
7: w := Ay
8: w1 := HighBitsq(w, 2γ2)
9: c̃ ∈ {0, 1}256 := H(µ||w1)
10: c ∈ Bτ := SampleInBall(c̃)
11: z := y + cs1
12: r0 := LowBitsq(w− cs2 , 2γ2)
13: if ‖z‖∞ ≥ γ1 − β or ‖r0‖∞ ≥ γ2 − β then
14: (z,h := ⊥)
15: else
16: h := MakeHintq(−ct0 , w− cs2 + ct0 , 2γ2)
17: if ‖ct0‖ ≥ γ2 or the number of 1’s in h is greater than ω then
18: (z,h) := ⊥
19: end if
20: end if
21: κ := κ+ l
22: end while
23: return σ := (z, h, c)

and note that s1 is small, it thus follows that the vector z1c
−1 is close to the sublattice

L that is spanned by the vectors wi = c−1xi mod q for i = 0, . . . , n′ − 1 and qZn. The
difference between v = z1c

−1 and the closest lattice point to v is exactly s1.

As the dimension of L is still n, this prevents us from directly applying lattice reduction
algorithms. Instead, Espitau et al. propose to project the lattice as well as the target vector
z1c
−1 to a subset of the n dimensions. After projecting z1c

−1 as well as the basis vectors of
the lattice L to a subset of their rows, it still holds that the projected target vector is close
to the projected lattice and the difference is the projected s1. If the projection is chosen
such that the degree is low enough, we can recover a part of s1. By choosing multiple
such projections we can eventually recover the entire secret polynomial and by that the
entire secret key. Additionally, Espitau et al. propose two cryptographic countermeasures
against their loop-abort faults attacks [EFGT16]:

The first proposed countermeasure is to shuffle the sampling order of y1’s coefficients.
Note that the success of the attack by Espitau et al. is contingent on knowing the
location of the zero-coefficients in y1. If the attacker does not know the indices of the
zero coefficients, the lattice reduction technique is not applicable. Thus, by shuffling the
sampled coefficients, Espitau et al. aim to prevent loop-abort fault attacks. The second
countermeasure proposed by Espitau et al. is to only output signatures if the corresponding
commitment is a high degree polynomial. This will thwart the lattice reduction attack, as
this attack relies on a small lattice dimension. In the following sections, we show that the
two countermeasures suggested by Espitau et al. are not sufficient to protect Fiat–Shamir
with aborts implementations against loop-abort or zeroing faults.
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5 Breaking the Shuffling Countermeasure via Integer Lin-
ear Programming

5.1 Main Idea
The primary focus of this paper is to demonstrate a loop-abort fault attack on implemen-
tations of Fiat–Shamir with aborts schemes that employ shuffling or low-degree checking
countermeasures. In explaining the general methodology of our attack, we assume that
the attacked scheme follows the general Fiat–Shamir with aborts structure. Recall that
the commitment vector y and the secret key s are vectors of ` polynomials in Rq, i.e.,
y ∈ R`q, s ∈ R`q, and the signature is computed as (z = sc + y, c), where c ∈ R is a
challenge polynomial with small coefficients [Lyu09]. We assume that the coefficients of
y’s polynomial entries are sampled sequentially. We highlight the change to Section 4,
which focused on BLISS, where the commitment vector y and the secret key s are vectors
of integers.

Our approach is centered on introducing a loop-abort fault during the sampling of the
commitment vector y. As a result, most of the coefficients of the polynomials within the
commitment vector are initialized to a fixed, yet recognizable value. After the shuffling
process, the indices of the zeroed (or fixed) coefficients within the y vector are unknown
to the attacker. However, the attacker can still leverage the fact that a significant portion
of the y’s coefficients are zeroed (or set to a known value). This knowledge can be utilized
in an Integer Linear Program (ILP) to retrieve the secret key s. To this end, we will draw
inspiration from an ILP first presented in [MUTS22]. The ILP formulation has proven
to be efficiently solvable in practice. Indeed, heuristically, the ILP’s relaxation already
provides a near-optimal solution in most cases. Section 6 gives detailed insights into the
ILP’s performance.

Attack Requirements. In summary, our attack has the following requirements. First, the
attacker needs to be able to inject a loop-abort fault or a zeroing fault during Dilithium’s
signature generation. Additionally, the attacker must know the signature outputs, but
does not need control over the signed messages. The attack only requires that at least one
of the coefficients among y’s polynomials is set to zero (or another known constant value).
Importantly, the attacker does not need to know which specific coefficients are zeroed. The
amount of faulted signatures required for key recovery depends on the number of zeroed
coefficients per signature.

5.2 General Methodology
In this section, we describe the loop-abort fault key recovery attack against protected
implementations of Fiat–Shamir with aborts signature schemes. For the purpose of this
exposition, we therefore assume that the targeted implementation shuffles y’s coefficients
across all polynomials. When an attacker introduces a loop-abort fault during the sampling
of y, some coefficients among y’s polynomials will be set to zero. The zeroed coefficients
will have a uniformly random position due to the shuffling. As demonstrated later in this
paper, our approach can be extended to encompass any scenario where the attacker knows
that some (but not necessarily, which) of y’ coefficients are set to a fixed and known value.

We show that by partially faulting the generation of y, the resulting faulty signature
z = cs + y still reveals enough information to recover s, even when the generation of y is
shuffled. Intuitively, this is a consequence of the faulted y being sparse. The key idea is
that a faulted signature z = cs + y with sparse vectors in y gives rise to a noisy equation
system. Solving this equation system for s through an integer linear program reveals the
secret key efficiently in practice, using only a few faulted signatures. We emphasize that
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this is the case even if the attacker does not know the indices of the zeroed coefficients in
y.

In more detail, each equation of our equation system will express one coefficient of
z as a linear dependency of the challenge c and the secret key vector s. For a vector of
polynomials v ∈ R`, let us denote by vi,j the j’th coefficient of the i’th polynomial. Then,
we will express zi,j as

zi,j = (cs)i,j ,

and if the corresponding coefficient yi,j is indeed 0 (e.g., because its sampling was skipped),
then this equation holds true. We will refer to such equations as correct equations. If the
corresponding coefficient is yi,j is not zero, then this equation is incorrect, as it is actually
zi,j = (cs)i,j + yi,j .

Assume now that an attacker managed to abort the sampling of y after the n′-iteration,
with n′ < n

2 . Then, for each polynomial yi, i = 1, . . . , `, it holds that the majority
of its coefficients are set to zero. As a result, the relationship zi,j = (cs)i,j holds for
most of the coefficients, i.e., most of the formulated equations are correct. Therefore,
identifying the correct secret key s from this set of noisy equations amounts to identifying
the secret key s that maximizes the number of fulfilled equations. In SAC’2022, Marzougui
et al. [MUTS22] presented a power side-channel attack against Dilithium, exploiting a
leakage on the commitment vector y’s coefficients to recover the secret key s. To do so,
they also collect the leakages into a noisy equation system; to recover the s from this noisy
equation system, they formulate an ILP to find an s that maximizes the number of fulfilled
equations. We adapt their method to recover s from the faulty signatures.

Before we describe the ILP that we will use to solve for the secret key, we present
an additional observation that allows us to reduce the ILP’s dimension. To this end,
observe that we can split the given problem into ` separate sets of equations, one for each
polynomial in the vector s. Note that

cs =


c · (s)1
c · (s)2

...
c · (s)`

 .

To obtain cs, we multiply c with each polynomial in the vector s independently. Note
that s ∈ R` consists of ` polynomials, each with n coefficients, while c ∈ R is exactly one
polynomial. One coefficient zi,j = yi,j + (cs)i,j is consequently influenced only by the ith
secret key polynomial si. As a result, after faulting multiple signatures, we can create `
independent equation systems (one for each polynomial in s) and solve for each polynomial
of s separately.

We proceed as follows. For each equation system, let L = ((z(1)
i,j = c(1)s∗), . . . , (z(|L|)

i,j =
c(|L|)s∗)) denote the list of collected equations, where by s∗ ∈ Rq we denote the secret
key polynomial we are currently solving for and by zm,ym, cm we denote the signature
output, commitment vector, and challenge polynomial of the signature corresponding to
the m’th collected equation respectively. We derive from the list of collected equations a
vector z∗ ∈ Z|L|, where the m’th entry of z∗ contains the signatures’ coefficients zmi,j and a
matrix C|L|×n, derived from the challenge polynomials c. Specifically, the m’th row of C,
denoted by Cm, is constructed such that the dot product Cmvec(s∗) equals zm.

We are now in a position to formulate the following Integer Linear Program to recover
the secret key polynomial s∗, which we state in Figure 2.
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maximize
|L|∑
m=1

xm

subject to
z∗m −Cmvec(s∗) ≤ K · (1− xm) ∀m ∈ {1, . . . , |L|} (1)
z∗m −Cmvec(s∗) ≥ −K · (1− xm) ∀m ∈ {1, . . . , |L|} (2)
xm ∈ {0, 1} ∀m ∈ {1, . . . , |L|} (3)
s∗j ∈ {−η, . . . , η} ∀j ∈ {1, . . . , n} (4)

Figure 2: The ILP formulation used for recovering a Fiat–Shamir with aborts secret key
polynomial from a noisy equation system.

Constraints (1) and (2) ensure that for xm = 1 we have z∗m −Cmvec(s∗) = 0. This
is canonically known as the big-M method — we choose K as the maximum possible
distance between z∗m and Cmvec(s∗). Constraint (3) ensures that xm will be a binary
decision variable and constraint (4) ensures that each coefficient of the guessed secret key
s∗ is an integer in the appropriate range.

If the loop-abort fault has been introduced sufficiently early and with enough faulted
signatures, this ILP can be solved efficiently in practice. The next section will detail the
application of this attack to Dilithium.

Alternative key recovery method — LWE without modular reductions. The problem
of recovering a secret key polynomial s∗ from a system of linear equations z∗ = Cs∗ + e
can also be viewed as an LWE without modular reduction problem. To see why, note
that it holds that ‖cs∗ + y‖∞ < q, and thus there are no modular reductions involved in
the collected equations. Bootle et al. [BDE+18] show that the ”LWE without modular
reduction“ problem can be solved with least-squares and rounding. They prove that
the solution candidate obtained by least-squares and rounding converges to the correct
solution if the error distribution follows a Gaussian distribution. However, we found that
the least-squares method could not match the ILP-based method’s performance in our
experiments. For various instances, the least-squares method yielded an incorrect solution,
while the ILP-based method was able to recover the correct secret key.

5.3 Attacking the Protected Implementation of Dilithium
To adapt the presented attack to Dilithium, we need to a) specify the appropriate location
for the fault injection and b) adapt our ILP formulation to recover the secret key from the
faulty signatures. Recall that Dilithium, following a lattice-based Fiat–Shamir with aborts
structure, uses a secret key s1 and a commitment vector y, both vectors of polynomials in
the ring Rq = Zq[X]/(Xn + 1). The coefficients of the secret key polynomials are all in the
small range of {−η, . . . ,+η}, while y’s polynomial coefficients are distributed uniformly
in the range of {−γ1 + 1, . . . , γ1}. The signature is then calculated as z = cs1 + y, where
the challenge polynomial c is derived from the message. By employing the ILP, we will
be able to recover the secret key s1. In doing so, we have achieved an (equivalent) key
recovery, as the knowledge of s1 is sufficient to sign arbitrary messages.

Fault Injection Site. To launch the ILP-based key recovery attack against Dilithium, the
attacker needs to interfere with y’s polynomial coefficients, so that an abnormal number
of coefficients in y’s polynomials are set to zero. This can be, again, realized through
a loop-abort fault during the sampling of y’s coefficients. In more detail, during the
Dilithium signing process, the vector y is sampled from an extensible output function
(XOF). The XOF is seeded with an initial randomness seed ρ′ and nonce κ. In Dilithium’s
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deterministic version ρ′ is sampled as from a hash derived from the message and some
randomness generated during key generation, while in the non-deterministic version ρ′ is
sampled from system randomness. In the non-deterministic version, calculating a signature
for the same message twice will therefore lead to different signatures. The XOF’s output is
unpacked into ` polynomials, coefficient-by-coefficient. For each coefficient, the ExpandMask
function converts a fixed number of bytes from the buffer into an integer in the range
{−γ1 + 1, . . . , γ1}. Algorithm 4 lists the pseudocode of this sampling. Algorithm 5 lists
a shuffled version, thwarting the attack by Espitau et al. by shuffling the coefficients
of y uniformly at random across all of y’s coefficients. The non-deterministic version is
specifically designed to complicate fault injection and side-channel attacks. Nevertheless,
our attack can be carried out on both versions of Dilithium, i.e., deterministic and non-
deterministic. The sampling of y serves as a perfect location for the desired loop-abort

Algorithm 4 The ExpandMask Function
1: buf := XOF(ρ′, κ)
2: for i := 0 to ` do
3: for j := 0 to n do
4: yi,j := ConvertBuf(buf) . Convert some bytes of buf to an integer in range

{−γ1 + 1, . . . , γ1}
5: end for
6: end for
7: return y

Algorithm 5 The Shuffled ExpandMask Function
1: y := ExpandMask(ρ′, κ)
2: y := Shuffle(y) . Shuffle all coefficients of y, also across polynomials using

Fisher-Yates shuffle, seeded with randomness ρ′ [Knu97].
3: return y

fault attack. If an attacker causes an early loop-abort of the outer or inner sampling
loop in Line 2 and 3, respectively, then the rest of y’s polynomial coefficients will be set
to a fixed value. Without the shuffling mechanism, such a fault enables an attacker to
launch the lattice-reduction attack. In case the shuffled version of ExpandMask is used,
the coefficients will be shuffled across y uniformly at random. However, the ILP-based
attack presented in this paper can still recover s1.

ILP Key Recovery For Dilithium. An adaption of the ILP described in Section 5 (Fig-
ure 2) to Dilithium is straightforward, and we can again draw from the ILP formulation
presented by Marzougui et al. [MUTS22]. A collection of faulted signatures of the form
z = cs1 + y, where y consists of sparse polynomials, gives rise to a noisy system of linear
equations from which we can recover s1. As described in Figure 2, we derive ` equation sys-
tems from the faulted signatures, each containing equations of the form zi,j = (cs1)i,j +yi,j .
For each equation system, we derive a matrix C ∈ Z|L|×n and a vector z∗ ∈ Z|L| (where L
is the list of equations) and solve for the secret key polynomial s∗ = (s1)i, i = 1, . . . , `.

Before we describe the ILP formulation, we present an additional optimization to
increase the attack’s performance and reduce the number of required signatures. To do so,
let us state two observations about the attack’s correctness and the performance of the
ILP solver. First, to guarantee the correctness of the ILP output, i.e., that the ILP indeed
outputs the correct secret key s1, the majority of the equations needs to be correct. Second,
through empirical observations, we found that the ratio of correct vs. incorrect equations
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also influences an ILP solver’s performance, where more correct equations result in a faster
solving time. We thus employ the following optimization when attacking Dilithium.

To improve the ratio of correct vs. incorrect equations, we make use of the fact that
both c’s as well as s1’s polynomial coefficients are small; thus, cs1’s coefficients must be
small as well. In more detail, it holds that |(cs1)i,j | ≤ β, where β = τ · η. Thus, assuming
that yi,j = 0, it holds that |zi,j | = |yi,j +(cs1)i,j | ≤ β as well. We can therefore dismiss the
possibility that a certain coefficient yi,j = 0 if the corresponding coefficient |zi,j | exceeds
β.

We further observe that each coefficient (cs1)i,j can be approximated by a normal
distribution. Recall that c is a sparse vector with τ coefficients being −1 or 1 and the rest
zero. Therefore, the coefficients of the polynomial cs1 can be modeled as the sum of τ i.i.d.
random variables, each variable being uniformly distributed over the range [−η, . . . , η] ∩ Z.
By a central limit theorem argument, this sum is close to a normal distribution with
mean 0 and variance σ2 = (2·η)2−1

12·τ . If we want to further reduce the number of incorrect
equations at the expense of potentially only a few more signatures, we can therefore dismiss
coefficients for which it holds that |zi,j | > 2 · σ, since most of |(cs1)i,j | coefficients will fall
in that range with high probability.

To reduce the number of incorrect equations, we therefore only insert an equation
zi,j = (cs)i,j into our set of equations if |zi,j | is below or equal a pre-defined threshold. We
recommend setting this threshold to either β (to avoid any missed correct equations) or
2 · σ (to minimize the number of incorrect equations at the expense of more signatures).
Otherwise, if |zi,j | is larger than this threshold, we assume that yi,j 6= 0 and do not add
an equation to our equation system.

We are now in a position to describe an end-to-end loop-abort fault attack against
Dilithium. Figure 3 describes the adapted ILP.

maximize
|L|∑
m=1

xm

subject to
z∗m −Cmvec(s∗) ≤ 2β + γ1 · (1− xm) ∀m ∈ {1, . . . , |L|} (1)
z∗m −Cmvec(s∗) ≥ −(2β + γ1) · (1− xm) ∀m ∈ {1, . . . , |L|} (2)
xm ∈ {0, 1} ∀m ∈ {1, . . . , |L|} (3)
s∗j ∈ {−η, . . . , η} ∀j ∈ {1, . . . , n} (4)

Figure 3: The ILP formulation used for recovering a Dilithium secret key polynomial from
a noisy equation system.

First, the attacker faults multiple signature generations and derives ` noisy equation
systems from the resulting outputs. In doing, so, the attacker filters out potentially
incorrect equations by only dismissing coefficients for which it holds that |zi,j | > 2 · σ.
Next, the attacker solves ` ILPs. The attacker can then verify if a key guess s1 is correct. If
the key is incorrect or the ILP solvers do not terminate within the allotted time, the attacker
can collect more faulted signatures and repeat the attack. We evaluate the performance of
the ILP and the performance in relation to the number of zeroed coefficients in Section 6.

6 Simulation and Evaluation of the Attack
We evaluate the efficacy of our proposed key recovery method through extensive simulations.
The purpose of this theoretical evaluation is to determine the minimum number of faulty
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Algorithm 6 Key Recovery via Integer Linear Programming
Input: A list L of potentially faulty signatures
L = ((z1 = (c1s1) + y,h1, c1), . . . , (z|L| = (c|L|s1) + y,h|L|, c|L|))

Output: The secret key s1
0: L := A list of ` lists, where list Li contains equations for secret key polynomial si
1: for (m, i, j) ∈ ((1 . . . |L|)× (1 . . . `)× (1 . . . n)) do
2: if |zmi,j | ≤ β (or ≤ 2σ) then
3: Add equation zmi,j = cms1 to list Li
4: end if
5: end for
6: for i = 1, . . . , ` do
7: Derive from the equations in Li the vector z∗ ∈ Z|Li| and the matrix C ∈ Z|Li|×n.
8: Solve ILP (as described in Figure 3) to recover the secret key polynomial si from

the equation system z∗ = Cvec(si).
9: end for
10: return The secret key s1

signatures required for successful key recovery. We also evaluate how the number of zeroed
coefficients per signature and the targeted Dilithium security level influence the attack’s
complexity and success.

Evaluation Setup. Algorithm 7 summarizes our evaluation method. The evaluation
assumes that the attacker can fault multiple signatures. For each signature, the attacker
injects a loop-abort fault during sampling of y, zeroing some of y’s coefficients. We assume
that the zeroed coefficients are scattered over all polynomials in y. The attacker then
receives the faulted signature, and knows that some of y’s coefficients have been set to
zero, but does not know which.

The evaluation varies three factors that influence the success rate of our attack. First,
the number of coefficients in the commitment vector y that an attacker can set to zero
within each faulted signature. We denote this number by t. The number of zeroed
coefficients is influenced by the attacker model. An early loop-abort in sampling y will
result in more zeroed coefficients, but it is potentially harder to implement. Faulting
almost all of y’s coefficients could also be prevented by a countermeasure that checks if y
is of abnormally low degree before outputting the signature. Second, we vary the number
of faulted signatures an attacker collects before attempting key recovery. The assumed
attacker continues collecting faulted signatures until they have enough information to
derive at least M correct equations per secret key polynomial. Equivalently, the assumed
attacker attempts key recovery once they have zeroed at least a total of M coefficients per
polynomial in y, aggregated over all signatures. The third factor is the security level of
the attacked Dilithium implementation.

Note that the number of signatures used depends on all three parameters. To evaluate
the minimum number of faulted signatures required for the successful secret key recovery,
we increment the value of M while keeping t and Dilithium’s security level constant. We
then increase M until the ILP can recover the secret key in less than five minutes.

Results. Figure 4 depicts our evaluation results. We executed the simulation on an
Intel(R) Xeon(R) CPU E7-4870 running Ubuntu 20.04, and used the Gurobi solver suite
to solve the ILP instances [Gur23].

For all security levels, the presented method is able to recover the secret key s1 with
enough faulted signatures. Naturally, the number of required faulted signatures decreases
when the number of faulted coefficients per signature increases. The simulations also
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Algorithm 7 Simulation of the key recovery via ILP
Input: An assumed number of zeroed coefficients t per faulted signature and a NIST

security level for Dilithium, defining the parameters k, `, τ, η.
Output: The number of used signatures for successful key recovery, i.e., |L|.
1: M := n− 1
2: repeat
3: L := Empty list which will contain the faulted signatures
4: M := M + 1
5: repeat
6: Generate a faulted signature for a random message and add the signature to L.

We calculate the faulted signature by setting t random coefficients in y to 0 before
computing z = cs1 + y.

7: until We have aggregated at least M zeroed coefficients for each polynomial in y
8: Attempt to recovery the secret key s1 using Algorithm 6 with a time limit of 5

minutes for all ILP solvers.
9: until Recovery Successful
10: return The number of used signatures for successful key recovery, i.e., |L|.

revealed the following insight. Asymptotically, ILPs have exponential complexity, but the
ILP’s rational relaxation often already provides a near-optimal solution. This enables us
to recover the key in practice. An increase in the total number of zeroed coefficients (and,
in turn, correct equations) correlates with a lower run time in practice, as can also be
derived from Figure 4.

The evaluation shows that the ILP method can break two cryptographic countermea-
sures proposed by Espitau et al. First, shuffling the sampling order of y’s coefficients does
not mitigate the ILP attack. This is because the ILP attack does not rely on knowing
which exact coefficients have been set to zero. Rather, it is sufficient to provide it with
equation systems that are derived from signatures where some of the coefficients are set to
zero. Moreover, a countermeasure that ensures that the polynomials in y are not of low
degree also falls short since fixing just one coefficient to zero is sufficient to recover the
secret key, given enough signatures. As a result, more sophisticated, potentially expensive,
countermeasures are needed.

7 End-To-End Attack Proof-of-Concept
In this section, we present an end-to-end proof-of-concept attack on a protected implemen-
tation of Dilithium. We launch a fault-injection attack on a modified Dilithium reference
implementation, as submitted to the NIST call for proposal [BDK+]. We modified the
implementation to additionally implement the shuffling countermeasure. We then exe-
cuted the signing process on an ARM Cortex M4, mounted on a ChipWhisperer target
board [OC14]. We describe our experimental setup, including our workbench, and outline
the details of our attack. We will make the implementation of the attack, along with
the generated faulty signatures and the parameters used for the glitch attack, publicly
available.

7.1 Experimental Workbench
Our fault injection setup comprises an STM32F4 target board with 1 MB of Flash memory
and 192 KB of RAM. The target board is mounted on the ChipWhisperer UFO board with
three 20-pin female headers into which the target board fits. We modified the Dilithium
reference implementation to shuffle y’s coefficients and execute the modified signature
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Figure 4: Minimal amount of faulted signatures required to recover s1 through Algorithm 6
in under 5 minutes, depending on the number zeroed coefficients per signature t and the
NIST security level. The amount of required faulted signatures is calculated as described
in Algorithm 7.

generation on the target board. We configured Dilithium to run at security level 2, as
described in the Dilithium specification [BDK+21]. We collect multiple faulted signatures
and recover the secret key using Algorithm 6. We use the same private key for all signatures,
which we generated offline prior to the experiment and then flashed onto the target board.

Dilithium Modification. The Dilithium reference implementation samples y as described
in Algorithm 4. It first samples a random byte-buffer through an XOF, and then converts
this byte-buffer to y′s coefficients in two nested loops. The outer loop of the sampling
process, displayed in Listing 1, sequentially calls the unpacking function for each polynomial
yi, i ∈ 1, . . . , `. Listing 2 represents the inner loop. It focuses on unpacking a byte buffer
into n = 256 coefficients for a particular polynomial. To shuffle the coefficients, we introduce
the polyvecl_shuffle function, which shuffles all of y’s coefficients after they have been
unpacked. We give our implementation in Listing 3 in the Appendix. The signature
generation code then first samples the coefficients by calling polyvecl_uniform_gamma1
and shuffles them afterwards by calling polyvecl_shuffle.

7.2 Fault Injection Attack
To skip the sampling loop we execute a clock-glitching attack, leveraging the ChipWhisperer.
The ChipWhisperer is used to generate the base clock of the microcontroller, and the
clock frequency was set to 7,327 MHz. When a GPIO pin is activated, the ChipWhisperer
system modifies the clock pulse, causing the executing microcontroller to skip instructions.
The GPIO pin is triggered by the code under test itself. To facilitate this triggering
mechanism, we have included additional instructions within the code. At the beginning
of the polyz_unpack function we added instructions to raise the GPIO pin and added
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Listing 1 The functions that samplee ` polynomials sequentially from a seed.
#define POLY_UNIFORM_GAMMA1_NBLOCKS ((POLYZ_PACKEDBYTES + \

STREAM256_BLOCKBYTES - 1)/STREAM256_BLOCKBYTES)
void polyvecl_uniform_gamma1(polyvecl *v, const uint8_t seed[CRHBYTES],
uint16_t nonce) {

unsigned int i;
for(i = 0; i < L; ++i)

poly_uniform_gamma1(&v->vec[i], seed, L*nonce + i);
}

void poly_uniform_gamma1(poly *a,
const uint8_t seed[CRHBYTES],
uint16_t nonce)

{
uint8_t buf[POLY_UNIFORM_GAMMA1_NBLOCKS*STREAM256_BLOCKBYTES];
stream256_state state;
stream256_init(&state, seed, nonce);
stream256_squeezeblocks(buf, POLY_UNIFORM_GAMMA1_NBLOCKS, &state);
polyz_unpack(a, buf);

}

Listing 2 The polyz_unpack Dilithium level 2 reference implementation including the
triggering code.
void polyz_unpack(poly *r, const uint8_t *a) {
unsigned int i;
trigger_high();

for(i = 0; i < N/4; ++i) {
r->coeffs[4*i+0] = a[9*i+0];
r->coeffs[4*i+0] |= (uint32_t)a[9*i+1] << 8;
r->coeffs[4*i+0] |= (uint32_t)a[9*i+2] << 16;
r->coeffs[4*i+0] &= 0x3FFFF;

r->coeffs[4*i+1] = a[9*i+2] >> 2;
r->coeffs[4*i+1] |= (uint32_t)a[9*i+3] << 6;
r->coeffs[4*i+1] |= (uint32_t)a[9*i+4] << 14;
r->coeffs[4*i+1] &= 0x3FFFF;

r->coeffs[4*i+2] = a[9*i+4] >> 4;
r->coeffs[4*i+2] |= (uint32_t)a[9*i+5] << 4;
r->coeffs[4*i+2] |= (uint32_t)a[9*i+6] << 12;
r->coeffs[4*i+2] &= 0x3FFFF;

r->coeffs[4*i+3] = a[9*i+6] >> 6;
r->coeffs[4*i+3] |= (uint32_t)a[9*i+7] << 2;
r->coeffs[4*i+3] |= (uint32_t)a[9*i+8] << 10;
r->coeffs[4*i+3] &= 0x3FFFF;

r->coeffs[4*i+0] = GAMMA1 - r->coeffs[4*i+0];
r->coeffs[4*i+1] = GAMMA1 - r->coeffs[4*i+1];
r->coeffs[4*i+2] = GAMMA1 - r->coeffs[4*i+2];
r->coeffs[4*i+3] = GAMMA1 - r->coeffs[4*i+3];

}
trigger_low();

}

instructions to lower it again at the end of the polyz_unpack function (see Listing 2).
As a result, the GPIO pin remains high throughout the execution of the coefficient
sampling/unpacking loop.

The clock modification performed by the ChipWhisperer system occurs within a single
clock cycle. The ChipWhisperer modifies this clock as follows. During the targeted clock
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period, the ChipWhisperer lowers the rising clock edge for width percent of a clock period,
after leaving the rising edge unmodified for offset percent of a clock period. The attacker
needs to adjust the parameters width and offset according to their specific objectives.
Figure 5 illustrates the clock modification.

In order to determine the most effective glitching parameters for skipping the sampling
instructions, we swept the parameter search space. This search revealed a width of
1.562500% and an offset of 0.390625% to be optimal for our attack. In order to target
specific iterations of the unpacking loop in the polyz_unpack function, we additionally
utilized the ChipWhisperer’s ext_offset parameter. The ext_offset parameter defines
how many clock cycles the ChipWhisperer should wait before injecting the clock skew
(glitch). We were able to induce a loop-abort after the i-th iteration of the sampling loop
by using an ext_offset of 55 + 62 · (i− 1) with i = 1, 2, . . . , 63.

We only glitched the first execution of the polyz_unpack function. As a result, we
zeroed coefficients only in the first polynomial of y. Due to the shuffling mechanism
however, the zeroed coefficients of the first polynomial y1 are spread across all yi, with
i = 1, . . . , `. This enables us to recover all secret key polynomials of s1.

To test the efficacy of our attack, we conducted the following experiment.

• We repeatedly generate signatures on the ChipWhisperer for randomly generated
messages. During signature generation, we inject a clock-glitching fault if the GPIO
pin of the target board is high. We record the (potentially) faulty signature and
whether the fault was successful or not.

• After each signature, we collect the faulted signatures outputs so far and try to
recover the secret key via Algorithm 6. If the algorithm cannot recover the key in 5
minutes, we generate more faulty signatures and try again.

To simulate different (weaker) attacker capabilities, we conduct multiple experiments,
varying the number of coefficients whose sampling the attacker can skip. We do so by
delaying the point in time at which we introduce a fault. For example, if we want to skip
the sampling of 4 coefficients per signature, we only inject a fault in the last iteration
of the sampling loop in the polyz_unpack function. To target a specific iteration of the
polyz_unpack loop, we time the fault appropriately by adjusting the ext_offset parameter.
Doing so makes the attacker artificially weaker, as a real-world attacker would introduce
the fault as early as possible.

7.3 Experimental Results
We summarize our results in Table 1. For each attack, we record the total execution time,
accounting for both the signature collection as well as the time required to run Algorithm 6.

We were able to skip 252 coefficients per faulted signature, recovering the secret key in
under three minutes, using only 5 faulted signatures, and generating 53 signatures in total.

Clock
70ns 70ns

Trigger

Width

Offset

Figure 5: An illustration of the ChipWhisperer’s clock modification.
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Figure 6: Experimental workbench used for our fault injection attack; it contains an
STM32F4 target board mounted on the UFO board (red), a ChipWhisperer CW308, two
SMA cables, and a USB cable.

If we artificially weaken the attacker (skipping fewer coefficients per signature), the
attacker can still recover s1. The weakest attacker, skipping only one iteration of the
polyz_unpack loop, can recover s1 after generating 3466 signatures, out of which 225 were
faulty. The whole attack can be launched, end-to-end, in under four hours. Notably, for
all equations systems, the key recovery algorithm takes less than one minute, heuristically
indicating that the ILP relaxation already provides the correct secret key.

Table 1: Number of failures and successes when executing the loop abort attack on the
shuffled implementation of Dilithium. The amount of skipped coefficients is always a
multiple of 4 as the Dilithium reference implementation samples 4 coefficients per iteration.
A failure can either be due to the glitch being unreliable or due to a successfully faulted
signature being rejected. The time measurements are given in the hour:minute format.
# Skipped # Faulted # Fault # Executed Total Execution Key Recovery Signature Generation
coefficients Signatures Failures Signatures Time (hh:mm) Time (hh:mm) Time (hh:mm)

4 225 3466 3691 03:14 < 00:01 03:14
8 132 2190 2322 02:02 < 00:01 02:02
12 102 1923 2025 01:46 < 00:01 01:46
16 75 1614 1689 01:29 < 00:01 01:29
20 61 982 1043 00:56 < 00:01 00:56
252 5 48 53 00:03 < 00:01 00:02

8 Discussion
The presented attack is contingent only on the presence of zeroed or fixed value coefficients
in the commitment vector y. This can be achieved through, for example, introducing
a loop-abort fault during the sampling of y’s coefficients. Alternatively, our attack can
also be realized through a zeroing attack, directly targeting memory cells and fixing their
value to zero. Zeroing attacks are typically targeted at hardware implementations. To
execute a zeroing attack on Dilthium, an attacker can, for example, zero the random values
generated by the XOF and stored in BRAM at a specific point in time.

8.1 Applicability to Other Implementations
Our attack generalizes to other implementations and can bypass multiple side-channel and
fault-injection countermeasures, as the required information leak is small. For instance,
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our attack can also subvert the non-deterministic version of Dilithium.
Previous works have focused on optimizing the performance and security of Dilithium

against side-channel attacks [KPR+, ZZW+21, LSG22, ZHL+21, GJCJ22, MGTF19].
However, none have examined the vulnerability of the scheme to fault injection attacks.
Consequently, all of these implementations remain vulnerable to the presented fault
injection attack.

Masked implementations might also still be vulnerable to our loop-abort fault injection
attack, as masking in and of itself is not a sufficient countermeasure against the proposed
loop-abort attack. In masked implementations sensitive information is stored and processed
in different shares, adding resilience against side-channel analysis. For instance, Migliore
et al. [MGTF19] propose a masked implementation of Dilithium that increases resiliency
against (power) side-channel attacks. This implementation, however, still samples the
coefficients of y in a sequential manner. As a result, a loop-abort fault would still result
in y’s coefficients being zero or set to a fixed value, enabling the attacker to recover the
secret key.

8.2 Countermeasures

Our attack appears hard to mitigate using purely cryptographic defenses. Alternatively,
protected implementations can resort to redundant computation or checksumming to
detect fault injection attempts (and abort execution accordingly, withholding the signature
output).

A promising method to detect fault injection attempts relies on Concurrent Error
Detection (CED) schemes. In CED schemes, we execute both the target algorithm a
and a designated predictor a′. The result of the real algorithm (a) and the predictor
(a′) are checked in another module (c) to detect possible errors before transmitting the
output [YW06, AMR+20]. This countermeasure poses an effective defense against fault-
injection attacks [AMR+20]. However, designing a well-performing predictor (a′) for
Dilithium can be challenging and expensive.

To implement CED for Dilithium, one could execute the signature generation for the
same message twice and compare the results. However, this method is not applicable to
the non-deterministic version of Dilithium. Additionally, it adds a considerable overhead,
making this countermeasure detrimental to performance. Instead, a protected implementa-
tion could focus on only re-executing the unpacking process and comparing the unpacked
coefficients.

One could also implement a loop iteration counter within the nested unpacking loops
and compare the expected value with the actual value after the loops have been executed.
A similar way to detect skipped sampling instructions is by counting the cycles during
program execution to effectively identify any injected faults. We can track the number
of cycles taken for the unpacking routine to track whether a fault is injected during the
unpacking of the vector y. For valid signatures that are not targeted by our fault injection
attack, the cycle count should remain consistent with the expected number of cycles.
However, both these countermeasures do not protect against zeroing faults that directly
target the memory.

To specifically defend the implementation against zeroing attacks, one can store the
binary inverse and the original value of the vector y redundantly and compare both values
after unpacking to verify data integrity. Another approach is to calculate the checksum of
the randomness buffer acquired through the XOF and store this checksum together with
the buffer. When the randomness buffer is read, its checksum should also be verified to
detect any potential attack where the random values stored in memory are set to zero.
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9 Conclusion
Our paper presents a powerful key recovery fault injection attack against Fiat–Shamir
lattice-based signatures, which defeats several countermeasures proposed in previous work
and appears hard to thwart using purely cryptographic defenses. We validated our attack
experimentally in a practical end-to-end demonstration against a protected ARM Cortex
M4 implementation of NIST selected scheme Dilithium, recovering the full key from just a
handful of faulty signatures.

Our analysis of the attack highlights a number of strengths of our approach:

• First, our attack bypasses the two cryptographic fault-injection countermeasures
proposed by Espitau et al. [EFGT16], namely shuffling the order in which the
coefficients of the commitment vector y are sampled, as well as rejecting low-degree
polynomials. Moreover, since our attack successfully breaks the scheme given faulty
signatures with as little as a single zeroed coefficient, it seems difficult to protect
against using any sort of variant of these approaches.

• Second, our attack breaks not only the deterministic version of Dilithium but also the
non-deterministic variant, which is specifically designed to provide greater protection
against side-channel [SBB+18] and fault-injection attacks [PSS+18]. Unlike our
attack, differential fault attacks cannot be launched against the non-deterministic
variant, as they require two signatures on the same message with the same challenge.

• Third, our attack easily extends to cases where the coefficients of an uninitialized
polynomial y are not zero, but rather are fixed to some other known constant.

Taken together, our results underscore the importance of conducting additional in-
vestigations and devising robust defenses against loop-abort attacks on Fiat–Shamir
lattice-based signature schemes.
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Appendix

Listing 3 The polyvecl_shuffle function which shuffles the coefficients in y using Fisher
Yates shuffle [Knu97]. The function rej_uint16 samples from randomness buf, requesting
more randomness from the XOF if required.
void polyvecl_shuffle(polyvecl *v, const uint8_t seed[CRHBYTES],
uint16_t nonce) {

unsigned int current_poly_index, current_coeff_index, i = 0;
uint8_t random_poly_index, random_coeff_index;
uint16_t random_flattened_index;
int32_t tmp_random, tmp_current;
uint8_t buf[STREAM256_BLOCKBYTES];
stream256_state state;
stream256_init(&state, seed, nonce);
stream256_squeezeblocks(buf, 1, &state);
for(current_poly_index = ell; current_poly_index-- > 0; ) {
//ell - 1,..., 0

for(current_coeff_index = N; current_coeff_index-- > 0; ) {
//N - 1,..., 0

// rej_uint16 samples a random number between 0 and current_poly_index * N
// + current_coeff_index.
random_flattened_index = rej_uint16(buf, &i, &state,

current_poly_index * N +
current_coeff_index);

random_poly_index = random_flattened_index / N;
random_coeff_index = random_flattened_index % N;
// swap
tmp_random = v->vec[random_poly_index].coeffs[random_coeff_index];
tmp_current = v->vec[current_poly_index].coeffs[current_coeff_index];
v->vec[random_poly_index].coeffs[random_coeff_index] = tmp_current;
v->vec[current_poly_index].coeffs[current_coeff_index] = tmp_random;

}
}

}
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