
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2023, No. 4, pp. 262–286. DOI:10.46586/tches.v2023.i4.262-286

From MLWE to RLWE: A Differential Fault
Attack on Randomized & Deterministic Dilithium

Mohamed ElGhamrawy1,2, Melissa Azouaoui1, Olivier Bronchain3,
Joost Renes4, Tobias Schneider5, Markus Schönauer5, Okan Seker1

and Christine van Vredendaal4

1 NXP Semiconductors, Hamburg, Germany mohamed.elghamrawy@nxp.com
2 Hamburg University of Applied Sciences, Hamburg, Germany

3 NXP Semiconductors, Leuven, Belgium
4 NXP Semiconductors, Eindhoven, the Netherlands

5 NXP Semiconductors, Gratkorn, Austria

Abstract. The post-quantum digital signature scheme CRYSTALS-Dilithium has
been recently selected by the NIST for standardization. Implementing CRYSTALS-
Dilithium, and other post-quantum cryptography schemes, on embedded devices
raises a new set of challenges, including ones related to performance in terms of speed
and memory requirements, but also related to side-channel and fault injection attacks
security. In this work, we investigated the latter and describe a differential fault attack
on the randomized and deterministic versions of CRYSTALS-Dilithium. Notably, the
attack requires a few instructions skips and is able to reduce the MLWE problem that
Dilithium is based on to a smaller RLWE problem which can be practically solved
with lattice reduction techniques. Accordingly, we demonstrated key recoveries using
hints extracted on the secret keys from the same faulted signatures using the LWE
with side-information framework introduced by Dachman-Soled et al. at CRYPTO’20.
As a final contribution, we proposed algorithmic countermeasures against this attack
and in particular showed that the second one can be parameterized to only induce a
negligible overhead over the signature generation.
Keywords: Post-Quantum Cryptography · Differential Fault Attacks · Dilithium ·
Lattice Reduction

1 Introduction
Current digital security infrastructures heavily rely on secure and efficient cryptographic
primitives, including digital signatures which are based on asymmetric/public-key cryptog-
raphy. However, schemes based on classic public-key cryptography, like RSA and ECC,
are at risk of being broken once a relevant quantum computer is realized. This threat has
accelerated the research into Post-Quantum Cryptography (PQC) schemes: cryptographic
algorithms which are still secure even against an adversary with access to a quantum
computer. After a few years since the call for proposals for new public-key cryptography
standards by the National Institute of Standards and Technology (NIST) [Nat], on July
5th, 2022, the NIST has selected two primary algorithms to standardize: CRYSTALS-
Kyber for key establishment and CRYSTALS-Dilithium for digital signatures. In addition,
the signature schemes FALCON and SPHINCS+ will also be standardized. Notably,
CRYSTALS-Dilithium [DKL+21] (which we refer to as Dilithium for conciseness in the
rest of this paper) is recommended for embedded use cases due to its relative efficiency
compared to other PQC schemes.

Licensed under Creative Commons License CC-BY 4.0.
Received: 2023-04-15 Accepted: 2023-06-15 Published: 2023-08-31

https://doi.org/10.46586/tches.v2023.i4.262-286
mailto:mohamed.elghamrawy@nxp.com
http://creativecommons.org/licenses/by/4.0/

ElGhamrawy et al. 263

In the embedded context implementing PQC schemes raises a few challenges, including
ones related to large keys, signatures or ciphertexts, memory usage and notably resistance
to implementation attacks, which include both side-channel attacks and Fault Attacks
(FA). Dilithium has received relatively significant attention when it comes to FA compared
to other PQC digital signature schemes. Precisely, safe error [BMR21], zeroing/skip-
ping [PV06, EFGT16] and nonce reuse attacks [RRB+19] have been applied to Dilithium’s
embedded implementations. Recently, a new kind of attack, so-called signature correction,
has been introduced by Islam et al. [IMS+22] and applied to Dilithium. However, so
far and up to our knowledge, Differential Fault Attacks (DFA) have been limited to the
deterministic version of Dilithium [BP18]. We refer to the work of Ravi et al. [RCDB22]
for a detailed survey of both side-channel and fault attacks on lattice-based PQC schemes.

Similarly to classic public-key cryptography schemes, implementation attacks on lattice-
based PQC schemes can be enhanced with lattice reduction attacks. At CRYPTO 2020,
Dachman-Soled et al. [DDGR20] proposed a framework for the cryptanalysis of lattice-
based schemes with side-information. This side-information is also referred to as hints
and corresponds to information that an adversary can extract about secret keys after a
side-channel or fault attack. Dachman-Soled et al. additionally provided a Sage toolkit for
both estimating the difficulty of and performing lattice cryptanalysis with hints.

Contributions. In this work, we extend the previous state of the art and fill the gap by
introducing a new DFA targeting MLWE schemes, which applies to both the randomized
and deterministic versions of Dilithium. This attack exploits the MLWE structure of
Dilithium and the way the masking or randomness vector y is sampled. Our main
contributions are the following:

• First, we describe the attack by highlighting in Subsection 3.1 the location of
the instruction to skip. We then explain its impact on the security of Dilithium
in Subsection 3.2. Considering the abort property of Dilithium, we describe attack
strategies for the randomized and deterministic versions. We estimated that on
average 11.3, 18.8 and 22.2 fault injections are needed for levels II, III and V,
respectively, in the randomized case. In the deterministic case, less fault injections
are required: on average 7.3, 13 and 15.8 for levels II, III and V, respectively. With
the collected faulty signatures, we are able to reduce the security of Dilithium from
its standard MLWE problem to a much simpler RLWE one. Accordingly, we show
in Section 4 that this RLWE problem can be practically solved with lattice reduction.

• We then demonstrate in Subsection 5.1 how the same faulty signatures can be used to
extract hints (as defined in [DDGR20]) about Dilithium’s secret key. We then use this
same framework to integrate these hints into a lattice reduction attack to significantly
improve its efficiency. Our results are shown in Subsection 5.2 and Subsection 5.3.
One interesting conclusion is that Dilithium level V seems to be the most vulnerable
to the attack. Eventually, key recoveries using lattice reduction take on average a
few hours to recover the full secret key on our particular setup.

• Finally, in Section 6 we propose algorithmic countermeasures to prevent the attack
presented in this work. We also analyze their performance impact and notably show
that the main countermeasure we suggest only incurs a negligible overhead compared
to the already costly signature generation. This comes at the trade-off of marginally
reducing the fault detection probability for variations of our attack.

264 From MLWE to RLWE: A DFA on Randomized & Deterministic Dilithium

2 Background
2.1 Polynomial ring notations
All ring arithmetic operations in the paper are over the polynomial ring R = Zq[X]/(Xn+1).
We denote a polynomial with regular lower-case letters, e.g., p ∈ R, a vector of polynomials
with bold lower-case letters, e.g., a ∈ Rk and a matrix of polynomials with bold upper-case
letters, e.g., A ∈ Rk×k. In addition, we denote the i-th coefficient of p as p[i], the i-th
coefficient of the j-th polynomial in a as a[j,i], and the i-th coefficient of the (k, j)-th
polynomial in A as A[k,j,i]. In cases where the lowest index is omitted, we are referring to
the complete j-th and (k, j)-th polynomial of a and A, respectively.

For z, α ∈ Z we write z mod±α to mean the unique integer z′ in]−α2 ,
α
2] with

z ≡ z′ mod α if α is even (resp., odd). The notation z mod±α implies that all the
coefficients in z are given mod±α. With this, the following norms on Zq, R and Rk are
defined:

‖z‖∞ = |z mod±q| ‖p‖∞ = max
i
‖p[i]‖∞ ‖w‖∞ = max

i
‖w[i]‖∞

with z ∈ Zq and p ∈ R. We use the notation x ← χ whenever we assign a uniformly
random element of a set χ to a variable x. The symbol || is used for the concatenation of
two bit strings or two vectors/matrices.

2.2 Learning with errors
Learning with Errors (LWE) was first introduced by Regev [Reg05] and later expanded
to polynomial rings by Lyubashevsky, Peikert and Regev [LPR10] to Ring Learning with
Errors (RLWE). A Module Learning with Errors (MLWE) problem is obtained by setting
the polynomial ring dimension of the RLWE problem to a dimension greater than one,
thereby relying on multiple polynomial ring elements in the same instance. RLWE instances
can be expressed in LWE form by representing the polynomial ring multiplication as a
matrix vector product as recalled in [LZS+21, section 2]. In the following, we focus on the
Search (as opposed to Decision) variants of these problems.

Search LWE problem. Let A ∈ Zm×nq and χe be a fixed distribution over Z. The problem
of recovering a secret s ∈ Znq given samples of the form: (A, t = A · s + e) with e← χme
is known as the Search-LWE problem.

Methods of solving Search-LWE. There exists two main methods to solve a Search-
LWE instance by lattice reduction: the primal-uSVP attack and dual attack [AGVW17].
The primal attack uses either Kannan’s embedding [Kan87] or the Bai-Galbraith embed-
ding [BG14] to construct an integer embedding lattice to solve the unique Shortest Vector
Problem (uSVP). Using Kannan’s embedding, recovering s and e given t = A · s + e
where t, e ∈ Zmq and s ∈ Znq is as difficult as recovering the unique shortest non-zero vector
v ∈ Zm+n+1 from the embedding lattice Λ in Equation 1 with embedding parameter c
and ‖v‖ ≈ σ

√
n+m [ADPS16].

Λ =

qIm 0 0
AT −In 0
t 0 c

 (1)

On the other hand, the dual attack solves Decision-LWE via reduction to the Short
Integer Solution (SIS) problem, which in turn is reduced to finding short vectors in a
lattice embedding [Ajt99].

ElGhamrawy et al. 265

There exists two main sets of algorithms for finding short vectors in lattices: enu-
meration and sieving. Enumeration algorithms perform an (exhaustive) search for an
integer linear combination of the basis vectors, with well-known examples being LLL
(Lenstra–Lenstra–Lovász) [LLL82] and BKZ (Block Korkine-Zolotarev) [Kor77, Sch87].
LLL can only find an approximation of shortest vector in polynomial time, and as such, is
most commonly used as a pre-processing step in other lattice reduction algorithms. The
BKZ-β algorithm repeatedly calls an enumeration SVP oracle for finding shortest vectors
in dimension or block size β. The dimension of the underlying SVP Oracle, β, is the
most widely used measure for cryptographic security of lattice-based cryptography as the
time complexity of the BKZ algorithm is exponential in β. First introduced in [AKS01],
lattice sieving algorithms find the shortest vector in a lattice by repeatedly computing
linear combinations of vectors with the aim of producing shorter vectors. Whereas other
algorithms require polynomial memory, lattice sieving algorithms have non-polynomial
space complexity and typically require large magnitudes of memory.

The remainder of this work centers on utilizing the BKZ algorithm, which has been
enhanced through the inclusion of extreme pruning techniques as outlined in [CN11] and
commonly referred to as BKZ 2.0. Multiple open-source implementations of the BKZ
algorithm exist, most notably FPLLL [dt21] (which is used in [DDGR20]) and NTL [Sho21].

2.3 CRYSTALS-Dilithium
Dilithium is a digital signature scheme based on the MLWE and MSIS (Module Short
Integer Solution) problems [DKL+21]. Table 1 provides the Dilithium parameters for
different NIST security levels1.

Table 1: Dilithium parameters.
NIST Security level II III V

q (modulus) 223 − 213 + 1 223 − 213 + 1 223 − 213 + 1
d (number of dropped bits from t) 13 13 13

τ (# of ± 1’s in c) 39 49 60
γ1 (y coefficient range) 217 219 219

γ2 (low order rounding range) (q-1)/88 (q-1)/32 (q-1)/32
(k, `) (dimensions of A) (4,4) (6,5) (8,7)
η (secret key range) 2 4 2

β (= τ · η) 78 196 120
ω (max. # 1’s in h) 80 55 75

average number of signing iterations 4.25 5.1 3.85

Signature generation. We describe the signature generation in Algorithm 1. For more
details, e.g., regarding key generation or signature verification, we refer to [DKL+21]. First,
the messageM is hashed into a bit string µ. For deterministic signing, µ is hashed together
with K to produce a seed ρ′. For the randomized version ρ′ is generated randomly. This
seed and a rejection counter κ (initially set to 0) are inputs to ExpandMask to sample the
secret polynomial y. Then, w = Ay is decomposed into w1 and w0. The challenge c̃ is the
hash of µ‖w1. Next, c̃ is converted into a polynomial c that contains exactly τ coefficients
set to ±1 and the others set to zero. The vectors z and r̃ are then computed from c, y
and w0. For both security and correctness, two checks are performed:

‖z‖∞ < γ1 − β, ‖r̃‖∞ < γ2 − β,
1Throughout this paper, when referring to Dilithium, we refer to version 3.1 of Dilithium released on

08/02/2021 for round 3 of the NIST PQC competition.

266 From MLWE to RLWE: A DFA on Randomized & Deterministic Dilithium

If any of the two checks do not pass, κ is incremented and the process starts over (from
sampling a new y). Otherwise, a hint h is computed, which is needed in the verification
to account for the public key compression. Two more checks are performed on ct0 and
h. Again, if these checks do not pass the signature is rejected, κ is incremented and the
process starts over. Otherwise, the signature σ = (c̃, z,h) is returned.

Algorithm 1 Sign(sk,M).
1: A = ExpandA(ρ)
2: µ = H(tr‖M) . µ ∈ {0, 1}512

3: κ = 0, (z,h) = ⊥
4: ρ′ = H(K‖µ) (or ρ′ $← {0, 1}512 for randomized signing) . ρ′ ∈ {0, 1}512

5: while (z,h) = ⊥ do
6: y = ExpandMask(ρ′, κ) . y ∈ S̃`γ1
7: w = Ay
8: (w0,w1) = Decompose(w, 2γ2)
9: c̃ = H(µ‖w1) . c̃ ∈ {0, 1}256

10: c = SampleInBall(c̃) . c ∈ Bτ
11: z = y + cs1
12: r̃ = w0 − cs2
13: if ‖z‖∞ ≥ γ1 − β or ‖r̃‖∞ ≥ γ2 − β then (z,h) = ⊥
14: else
15: h = MakeHint(r̃, c, t0,w1, γ2)
16: if ‖ct0‖∞ ≥ γ2 or the # of 1’s in h is greater than ω then (z,h) = ⊥
17: κ = κ+ l

18: return σ = (c̃, z,h)

2.4 Fault injection attacks on Dilithium
Fault attacks against the signature generation of Dilithium have been the subject of
several works in the literature with the majority exploiting the computation of the
signature z = y + cs1. The ability to potentially establish a linear relation between
the long-term secret key component s1 and public values, z and c has made this step a
promising attack vector for a variety of adversaries [BBK16, BP18, RJH+19, IMS+22]. In
addition, it has been shown that recovering s1 is sufficient to achieve existential forgery
for Dilithium [BBK16, RJH+19].

In the following, we provide a short survey of fault attacks on Dilithium’s signature
generation algorithm and distinguish between the ones that only apply to the deterministic
variant and the ones that apply to both deterministic and randomized Dilithium.

Deterministic and randomized Dilithium. Bettale et al. [BMR21] investigate the
application of safe error attacks to PQC schemes. In the Dilithium case, the main targets
are the secret vectors s1 and s2, since they have small coefficient values (∈ {−η, . . . , η}).
The main objective of the attack is to fault each of the coefficients of s1 or s2 to zero and
find faulted signatures which do not differ from unfaulted signatures, i.e., the secret key
coefficient is indeed zero. However, knowing the zero coefficients in the secrets does not
allow for straightforward key recovery but rather reduces the complexity of the underlying
MLWE problem. Loop abort faults were first proposed by Page and Vercauteren [PV06].
Their use against lattice-based cryptosystems was first documented in [EFGT16] in an
attack to target the sampling of y (ExpandMask), to generate masks of low degree by
skipping the sampling of some coefficients in y. The non-sampled coefficients of y are then
assumed to be zero and, with enough (faulty) signatures, a solvable system of equations
between z and cs1 can be established. The so-called nonce reuse attacks target sampling

ElGhamrawy et al. 267

in a variety of lattice-based schemes and have been demonstrated in [RRB+19]. This
previous work applies to the Dilithium key generation and the main idea is to output faulty
keys by not incrementing the nonce used to generate the secret key vectors s1 and s2,
thus outputting weak keys. Islam et al. [IMS+22] propose a fault injection attack against
both variants of Dilithium. The main idea behind this attack is that a single bit flip in
the secret polynomials will result in (a limited number of) specific fault patterns in the
faulty signature. These patterns can be recovered by exhaustively correcting the faulty
signature and testing with the public key if it verifies. The number of recovered secret key
bits depends on the number of injected bit flips and the distribution of the key coefficients.

Deterministic Dilithium only. The deterministic variant is naturally more vulnerable to
DFA than the randomized one. The first DFA against the signing procedure of deterministic
Dilithium was demonstrated by Bruinderink and Pessl [BP18], who showed that 65% of
the execution of a deterministic Dilithium signature is vulnerable. Their work requires that
an attacker can sign the same message M multiple times using the deterministic variant of
Dilithium; first, to obtain a proper signature σ = (c, z,h) without any fault injected and
then to produce a faulted signature σ′ to obtain a faulty z′ and c′. Using z, c, z′, c′, the
attacker can recover s1 by computing s1 = ∆c−1∆z where ∆c = c− c′ and ∆z = z− z′.
However, the faulted z′ and c′ must come from the same signing attempt (the same value
of the counter κ) as the proper σ for the masks y to be equal. Naturally, this attack or
more generally standard DFA does not apply to randomized Dilithium since an adversary
cannot observe or fault two signatures for the same message with the same value of y.

3 Attack description & practical consideration

At a high level, the attack proposed in this work leverages the possibility for an adversary
to force (part of) polynomials in the vector of polynomials y to be equal during signature
generation, i.e., y[i] = y[j] for i 6= j. From the observation of this faulty signature z, the
adversary can compute the difference between signature polynomials ∆z = z[i] − z[j] =
c(s1[i]− s1[j]) for i 6= j. With `− 1 such independent differences the underlying lattice
problem of Dilithium is weakened, leading to possible key recovery. Namely, we demonstrate
how the resulting faults can be used to perform a lattice attack. We first perform concrete
attacks against the version of Dilithium considered in proofs (with t being public). In such
a case, we are able to recover keys from all Dilithium parameter sets. Then, we discuss
the applicability to concrete instantiations of Dilithium where only t1 (the upper bits of
t) is public. In such a case, the inserted faults lead to a significant drop in estimated
security for all the parameter sets, but we report successful key recovery only against level
V parameter set due to limitations in available computing resources.

In the rest of this section, we first describe how an instruction skip can be leveraged
to insert such faults in Dilithium implementations. We also provide the number of faults
needed when considering realistic adversarial capabilities, namely one instruction skip
per signature. Especially, we discuss the applicability to randomized and deterministic
versions of Dilithium. Second, we put forward how the attack turns Dilithium’s MLWE
problem into a RLWE one. In Section 4, we discuss the resulting estimated security and
concrete attack results (when t is public) when the plain RLWE problem needs to be
solved with Dilithium MLWE parameters. In Section 5, we put forward how partial secret
key enumeration can be performed prior to the lattice reduction attack and then used into
a lattice reduction framework, further reducing the attack runtime.

268 From MLWE to RLWE: A DFA on Randomized & Deterministic Dilithium

1 void polyvecl_uniform_gamma1 (po l yve c l ∗y , const uint8_t rhoprime [CRHBYTES
] , uint16_t kappa) {

2 unsigned i n t i ;
3 f o r (i = 0 ; i < L ; ++i)
4 poly_uniform_gamma1(&y−>vec [i] , seed , L∗kappa + i) ;
5 }

(a) C source code

1 push { r 3 , r 4 , r 5 , r 6 , r 7 , l r }
2 mov r 5 , r 0
3 mov r 6 , r 1
4 uxth r 4 , r 2
5 add.w r 7 , r 0 ,#0x1000
6 loop :
7 mov r 2 , r 4
8 mov r 0 , r 5
9 mov r 1 , r 6

10 add.w r 5 , r 5 ,#0x400
11 bl pqcrystals_dilithium2_ref_poly_uniform_gamma1
12 adds r4, #0x1
13 cmp r 5 , r 7
14 uxth r 4 , r 4
15 bne loop
16 pop { r 3 , r 4 , r 5 , r 6 , r 7 , pc }

(b) Disassembled binary

Figure 1: Reference software for y sampling. (a) C source code. (b) Dis-
assembled source code compiled with arm-none-eabi-gcc v10.3.1 with the fol-
lowing compiler flags: -mcpu=cortex-m4 -mfloat-abi=hard -mfpu=fpv4-sp-d16 -O3
-fomit-frame-pointer. Red corresponds to the targeted counter increment.

3.1 Vulnerability description
Weakness identification. As mentioned above, the goal of the adversary is to force (part
of) polynomials in the vector y to be equal and build equations of the form ∆z = z[i]−z[j] for
i 6= j. Hence, a natural sweet spot for such a fault is the generation of these polynomials.
Indeed, each polynomial y[i] in y is derived from the ExpandMask function such that
y[i] ← ExpandMask(ρ′, κ∗ `+ i) where κ is the rejection counter. The ExpandMask function
referred to as polyvecl_uniform_gamma1 in the reference implementation2 is reported
in Figure 1. This function generates all the ` polynomials of the vector y by repeatedly
calling the function poly_uniform_gamma1 with the same seed ρ′ but incrementing the
nonce with κ ∗ `+ i. Our new attack is based on skipping the instruction highlighted in red
in the two listings. That is, by skipping the increment of the nonce in line 12 in Figure 1b,
an attacker can force the reuse of the same nonce for the generation of two consecutive
polynomials in y. For instance, skipping the increment instruction during the first iteration
of the loop enables to force y[0] = y[1]. Eventually, we note that repeating this fault can
lead to forcing equivalence of two polynomials in y for multiple independent signatures
which can be exploited as detailed in Subsection 3.2. We do not report experiments
for injecting such a fault, however it has been shown in recent literature that the single
instruction skip fault model is highly plausible to implement in practice with high precision
and reproducibility [DRPR19, MDP+20, BFP19].

Next, we analyze aspects of the attack and strategies that affect the number of fault
injections needed. Based on these previous aspects, we then provide the total number of
instruction skips required.

2https://github.com/pq-crystals/dilithium/blob/master/ref/polyvec.c

https://github.com/pq-crystals/dilithium/blob/master/ref/polyvec.c

ElGhamrawy et al. 269

Identifying successful fault injection. The attack relies on collecting `− 1 correct and
independent equations of the form z[i]− z[j] = c(s1[i]− s1[j]) for i 6= j from the returned
signatures. We notice that an attacker can easily detect whether they have successfully
injected a fault in the last signing attempt by observing the difference z[0] − z[1]. If indeed,
y[0] = y[1] then z[0] − z[1] = c(s1[0] − s1[1]) and we know from the distribution of the
challenge polynomial and the secret vector that c(s1[0] − s1[1]) ∈ [−2τη, 2τη]. It is very
unlikely with overwhelming probability that all coefficients of z[0] − z[1] are in that small
interval.3 Fault attacks usually identify correctly inserted faults by comparing valid with
(possibly) faulty signatures. Hence, the randomized version of Dilithium does not enable
such fault identification by the adversary, However, we put forward that the previously
described property enables an adversary to identify successful fault injection for both
deterministic and randomized versions of Dilithium for arbitrary messages.

The attack requires faulty outputs, however the Dilithium signature generation usually
involves a few attempts. Every time a signature is rejected, the counter κ is incremented
and a new signature is generated. Accordingly, an attacker has no knowledge of the final
signing iteration in order to inject a fault in its execution. The same holds even for faulty
deterministic signatures, since the fault affects y and hence z,w, c and r̃, which then
affect the rejection likelihood. Next, we discuss attack strategies for randomized and
deterministic signing to deal with Dilithium’s abort property and estimate the number of
faults needed for the attack.

Attack strategy for randomized signatures. Recall that an attacker can identify
successful fault injections by analyzing the returned signatures, as described previously. If
it is not possible for an attacker to target the last iteration because of randomized signing
or the fact that the fault changes the rejection behavior, they can target the first one.
Based on Dilithium’s aborts probability, the first iteration is the most likely to return a
signature and succeeds with probabilities p ≈ 0.23, p ≈ 0.20 and p ≈ 0.26 for levels II, III
and V. Interestingly, the fault described earlier decreases the probability that a signature
is rejected. We estimated by sampling a large number of signatures the probability of
accepting a signature at a faulted first iteration and found that this probability increases to
p ≈ 0.26, p ≈ 0.21 and p ≈ 0.27 for levels II, III and V, respectively.4 By targeting only the
first iteration and taking into account the impact of the fault on the rejection probability,
an attacker requires on average 1/p fault injections to acquire one faulty signature. This
has been confirmed by sampling a large numbers of signatures and corresponds to ≈ 3.8,
4.7 and 3.7 fault injections for levels II, III and V. Eventually, to acquire the `− 1 faulty
signatures needed to carry out the rest of the attack, on average 11.3, 18.8 and 22.2 fault
injections are needed for levels II, III and V, respectively.

Improved attack strategy for deterministic signatures. In the deterministic case, an
attacker can determine the expected final signing iteration since signing the same message
multiple times always results in the same signature and the same number of iterations. For
the randomized case, we proposed to always target the first iteration since it maximizes
the probability of accepting a signature. For the deterministic case, this probability is
maximized by faulting the final iteration. However, this probability is not 1, since faulting
the generation of y also affects w, c and r̃. Hence, the fault could lead to a signature being
rejected despite being previously accepted when no fault was injected. We estimated by
sampling that the probability of accepting a signature after the fault at the previously
determined accepted iteration is p ≈ 0.4, p ≈ 0.31 and p ≈ 0.38 for levels II, III and V,

3This occurs with probability (2τη+1
2γ1

)n assuming the coefficients of z are uniform and independent.
4This probability can also be approximated by using Equation 5 from [DKL+21], by applying the new

effective `, which is the number of distinct polynomials in y after the fault. This however does not take
into account the rejection probability on ct0 or h.

270 From MLWE to RLWE: A DFA on Randomized & Deterministic Dilithium

respectively. These probabilities are naturally higher than the ones determined previously
for the randomized case when always targeting the first signing iteration. Accordingly, in
the deterministic case an attacker requires on average 2.4, 3.2 and 2.6 fault injections for
levels II, III and V to acquire one faulty signature. We estimated that on average 7.3, 13
and 15.8 fault injections are needed for levels II, III and V, respectively. In addition, as
opposed to the randomized case, valid signatures are needed to determine the expected
final signing attempt.

Overview of number of fault injections required. In the following, we provide an
overview of the number of fault injections required for the attack when skipping one
instruction per signature. The attack can also be carried out with ` − 1 faults in a
single signature, however this can be quite challenging in practice. Recall that the attack
requires `− 1 independent equations of the form ∆z = c(s1[i] − s1[j]) for i 6= j. Collecting
these equations requires skipping one instruction in the last signing iteration for ` − 1
signatures. We have estimated for both deterministic and randomized Dilithium, following
the previously described strategies, the number of fault injections needed for an attacker
to acquire such `− 1 faulty signatures. The results are shown in Figure 2 where the x-axis
corresponds to the total number of fault injections and the y-axis to the probability of
acquiring nσ faulty signatures such that nσ ≥ `− 1. To illustrate how to interpret this
figure, we provide a few examples. For instance, for randomized Dilithium II, with 10 fault
injections, an attacker acquires the `− 1 required faulty signatures with probability 0.5.
Eventually and for all security levels, with approximately 40 fault injections for randomized
Dilithium and approximately 25 fault injections for deterministic Dilithium, the attacker
will most likely succeed in acquiring the `− 1 faulty signatures.

0 5 10 15 20 25 30 35 40

0

0.5

1

of inserted faults

P
r[
n
σ
≥
`
−

1]

Level II

Level III

Level V

Figure 2: Probability that the number of released faulted signatures nσ is at least `− 1
after inserting a single instruction skip per independent execution of Sign(sk,M), hence
enabling full secret key recovery. Continuous lines stand for randomized Dilithium. Dashed
lines stand for deterministic Dilithium.

3.2 From MLWE to RLWE
For simplicity, in the rest of this work, we assume that an adversary was able to inject
(`− 1) instruction skips during the final signing iteration such that all the polynomials of
y are equal, i.e., ∀i ∈ {0, 1, . . . , `− 1},y[i] = y. Accordingly, such a faulty signature is of
the form: 

z[0]
z[1]
...

z[`−1]

 =


y
y
...
y

+ c ·


s1[0]
s1[1]
...

s1[`−1]

 (2)

ElGhamrawy et al. 271

From this, we express the `− 1 differences with the first polynomial in s1 and the following
ones as: 

s1[0] − s1[1]
s1[0] − s1[2]

...
s1[0] − s1[`−1]

 =


c−1(z[0] − z[1])
c−1(z[0] − z[2])

...
c−1(z[0] − z[`−1])

 =


λ[0]
λ[1]
...

λ[`−2]

 = λ (3)

where the vector of polynomials λ is constructed from the faulty signatures. Indeed,
the challenge polynomial c is most likely invertible thanks to the Dilithium polynomial
ring5 and is part of the signature. Concretely, Equation 3 illustrates that recovering one
polynomial of s1 enables the recovery of the full secret vector s1. Indeed, this linear system
has `− 1 independent equations with ` unknowns. Similar equations can be derived from
multiple faulty signatures by simply taking into account the different zs and cs. Which
pairwise differences of the polynomials of s1 an attacker gets do not matter, as long as
they obtain `− 1 independent ones, which is the case when skipping the increment in the
ExpandMask function as detailed in the previous section.

Next, we put forward how one secret polynomial can be recovered by the adversary.
For simplicity, we only describe the methodology for s1[0]. The same strategy can be used
to recover any s1[i] and from Equation 3 recovering all the remaining (`− 1) polynomials
of s1. Concretely, we observe that the MLWE instance of Dilithium t = A · s1 + s2 can be
expressed by exploiting the linear system of equations in Equation 3 as:

t[0]
t[1]
...

t[k−1]

 = A ·


s1[0]

s1[0] + λ[0]
...

s1[0] + λ[`−2]

+


s2[0]
s2[1]
...

s2[k−1]

 = A ·


s1[0]
s1[0]
...

s1[0]

+ A ·


0

λ[0]
...

λ[`−2]

+


s2[0]
s2[1]
...

s2[k−1]

 (4)

Expanding the matrix multiplication, the previous equality is equivalent to:


t[0]
t[1]
...

t[k−1]

−

∑`−1

j=1 A[0,j] · λ[j−1]∑`−1
j=1 A[1,j] · λ[j−1]

...∑`−1
j=1 A[k−1,j] · λ[j−1]

 =


∑`−1

j=0 A[0,j] · s1[0]∑`−1
j=0 A[1,j] · s1[0]

...∑`−1
j=0 A[k−1,j] · s1[0]

+


s2[0]
s2[1]
...

s2[k−1]

 (5)

where each of the rows is a RLWE problem. For instance, the first row is:

t[0] −
`−1∑
j=1

A[0,j] · λ[j−1] =
`−1∑
j=0

A[0,j] · s1[0] + s2[0] (6)

where the left part of the equation is known to the adversary thanks to the standard
Dilithium MLWE instance and public key (giving t and A) and the λ from the faulty
signatures. The right part of the equation depends on two single secret polynomials s1[0]
and s2[0]. Therefore, our attack reduces the Dilithium MLWE instance of dimension
(k, `) to a (1, 1) instance (hence a RLWE instance) using the same polynomial ring with
dimension n = 256. Hence, the resulting RLWE has a reduced security compared to the
original MLWE problem. In Section 4.1, we explore the feasibility of recovering the full
key by solving this reduced complexity RLWE problem through lattice reduction.

5If c is not invertible, then the equations can be expressed as a matrix vector product thanks to the
polynomial ring structure or the attack can simply be repeated for another signature until c is invertible.

272 From MLWE to RLWE: A DFA on Randomized & Deterministic Dilithium

A note on key compression. Above, we described how the attack decreases the security
of Dilithium’s underlying MLWE problem. This attack assumes that Dilithium’s public
key contains t = A · s1 + s2, as considered in the security proofs. However, to reduce the
public key size, the complete t is decomposed into a high part t1 which is part of public
key and a low part t0 which is part of the secret key with the relation t = t1 · 2d + t0. In
previous attacks, since the knowledge of t0 is typically required to recover the secret vector
s2, it has been shown that recovering s1 only is sufficient to achieve existential forgery for
Dilithium [BBK16, RJH+19]. In our attack, the knowledge of t0 is not required for the
MLWE to RLWE reduction part of our attack as t0 can be embedded into the additive
noise vector (moving t0 to the right part of Equation 6). However, it has an impact on
the resulting security of the RLWE problem making it harder to solve. As it is unclear if
t0 must be considered secret or public (it has been hinted that t0 can be recovered from
enough signatures in [Lyu22, RJH+18, RRB+19]), we take a worst-case approach for the
rest of this work. If not specified in the following sections, the full t is assumed to be
public. In Subsection 5.3, we derive the impact of fully secret t0 on the complexity of
the (reduced) RLWE instance. We hope that this approach gives a complete view to the
reader about the applicability of the attack to Dilithium.

Eventually, once the missing polynomial s1[0] is obtained thanks to a lattice reduction
attack, the complete s1 can be recovered thanks to the linear system of equations. The
secret polynomial s2 can be obtained thanks to Equation 5 when t is known. In such a
case, the relations put forward in Appendix A can also be used. If only t1 is known, the
adversary can leverage the results from [BBK16, RJH+19] to forge valid signatures.

4 Impact on estimated security & key recovery
In the previous section, we showed that faulty signatures enable to reduce the MLWE
instance of Dilithium to a RLWE one. In the following, we evaluate the complexity
of solving the RLWE problem in Equation 5 using a lattice reduction. Concretely, we
first estimate the security parameter β with various tools from the literature, both for
MLWE and RLWE. This enables to quantify the security reduction. Second, we solve
concrete RLWE instances and report the runtime. The results presented in this section
are summarized in Table 2. Later in Section 5, we will highlight how side-information can
be used to decrease even more the security of the RLWE instance [DDGR20].

In the following, we denote by pre-attack the unfaulted case, i.e., the standard hardness
of Dilithium’s MLWE problem. Accordingly, post-attack stands for the case where the
adversary inserted the required faults resulting in an easier RLWE problem. In both cases,
t is considered public.

4.1 Post-attack hardness estimates
In order to estimate the hardness of MLWE and RLWE instances, we use the estimator
in [DDGR20]. This estimator has been selected as it allows easily integrating side-
information (see Section 5), perform attacks and estimate the BKZ β. In addition, it was
observed by the authors to be accurate for small dimension lattices which is the case in our
scenario (we compare various estimators in Appendix B and observe the same behavior).

The results are provided in Table 2 for the three Dilithium NIST security levels. The
top half of the table corresponds to the standard Dilithium security prior to the attack
and the bottom half of the table to the reduced security after the attack by exploiting the
reduction from MLWE to RLWE resulting from the induced faults. The dimensions for

6https://github.com/pq-crystals/security-estimates
7Produced using the "DBDD_predict" variant of the framework. Results are rounded up to next integer

as estimator outputs BKZ block-size estimations with 2 decimal places for finer security estimations.

https://github.com/pq-crystals/security-estimates

ElGhamrawy et al. 273

Table 2: Summary of estimated hardness reduction from the fault attack and runtime of
resulting RLWE solving. Both are obtained using the tools provided in [DDGR20]7. For
concrete solving, we provide minimum, average and maximum values observed over 10
random faulted signatures with random keys (in the form min/avg/max).

NIST Security Level II III V
LWE Hardness (pre-attack)

Secret key range η 2 4 2
Dimension (n · k, n · `) (1024, 1024) (1536, 1280) (2048, 1792)
Estimated β 434 641 890

LWE Hardness (post-attack)
LWE dimension (n, n) (256, 256) (256, 256) (256, 256)
Estimated β 62 68 62
Actual β 57/59/61 - 57/59/61
Runtime (hh:mm) 21:40/40:05/54:50 - 21:40/40:05/54:50
Success Rate 100% - 100%

the respective problems are also provided. From Table 2, it is clear that after the fault
attack the baseline security is significantly decreased. For illustration, the estimated BKZ
block-size β is reduced from 434 to 62 for Dilithium level II, from 641 to 68 for level III
and from 890 to 62 for level III. Interestingly, we note that for level II and V, the resulting
RLWE is similar as the resulting dimensions are the same as well as the noise range η.
The only difference is the number of faults that need to be injected to reduce the MLWE
down to RLWE. For level III, the noise range is slightly larger, hence the estimated β is
slightly higher.

4.2 Solving RLWE instances

For all versions, the significant hardness reduction leads to much smaller LWE dimensions
and BKZ block-sizes, and hence to practical lattice reduction attacks. For this purpose, we
use the toolbox provided by Dachman-Soled et al. [DDGR20]. The Search-LWE problem
is solved via primal-uSVP and Kannan’s embedding (as mentioned in Subsection 2.2). In
terms of setup, we use 16 cores of an Intel Xeon processor running at 2.75 GHz.

The results of the lattice reduction attacks are shown in Table 2. In particular, we
provide the minimum, average and maximum BKZ block-size β, along with the minimum,
average and maximum runtime observed over 10 lattice reductions for random keys for
Dilithium level II. The results for levels II and V are identical since the LWE instances are
equivalent as discussed above. Over our 10 experiments with level II and V parameters, we
were always able to recover the polynomial s1[0] in Equation 6 with an average runtime of
40 hours. The rest of the secret key being trivially obtained from Equation 3. Interestingly,
we observe that the actual β is close to the estimated one. The actual β is on average
equal to 59 and was estimated to be 62, confirming that the estimations of [DDGR20]
are accurate in this case. We did not perform the attack for level III since the attack
time would be prohibitive with our current setup (estimated BKZ block-size β for level
III is 68). However, from Table 2 it is clear that since the block-size for level III is only
marginally higher than the one for levels II and V, the lattice reduction should still be
practical, potentially with lattice sieving.

274 From MLWE to RLWE: A DFA on Randomized & Deterministic Dilithium

1 2 3 4 5
0

20

40

60

80

100

120
N

um
be

r
of

 c
oe

ff
ic

ie
nt

s
Dilithium-II

1 2 3 4 5 6 7 8 9
Number of possible solutions

0

20

40

60

80

Dilithium-III

1 2 3 4 5
0

25

50

75

100

125

150

175

Dilithium-V

Figure 3: Frequency of the number of remaining possibilities after enumeration.

5 Improving attacks with side-information
In the previous sections, we showed that it is possible to recover the secret signing key of
Dilithium in very few signatures using a combined fault injection and lattice reduction
attack. The lattice reduction attack succeeds without using any additional information
and instead only relying on the faulty signatures.

In the following, we first show in Subsection 5.1 how additional knowledge on the secret
key, referred to as side-information (or hints) in [DDGR20], can be recovered from the
faulty signatures. This additional knowledge can be plugged into to the solver to further
reduce the complexity of the previous lattice reductions. Subsequently, in Subsection 5.2
we provide security estimates and the runtime of the improved attack. These results are
summarized in Table 3. In Subsection 5.3, we explore the possibility to recover the secret
without the full knowledge of t, and instead only the high part t1 that is shared as part of
the public key after key compression. Finally, in Subsection 5.4, we compare these results
with other published attacks.

5.1 Side-information from partial enumeration
In addition to reducing the number of dimensions of the MLWE problem, the faults
can also be used to gain additional information on each of the coefficients s1[0,j] in s1[0]
independently. Indeed, for each of these coefficients, some value can never be compatible
with the linear system of equations in Equation 3. Concretely, we first observe that these
values are uniformly distributed on a small range [−η, η] with η ∈ {2, 4}. Then, the linear
system in Equation 3 can be expressed for each of the n coefficients independently. As
a result, it is possible to narrow down the possible values for each s1[0,j] independently.
This can be efficiently achieved by enumerating over all possibilities for the ` coefficients
s1[:,j] at a particular index j. The plausible values of s1[0,j] are then obtained by listing
all the s1[:,j] leading to a valid solution of Equation 3. Overall, this process involves n
enumerations over (2η + 1)` possibilities.

The results of such an enumeration are plotted in Figure 3 for Dilithium with NIST
security levels II, III and V, from left to right. The enumeration is performed by simulating
our attack for 10,000 random Dilithium keys for each level. On all the plots the x-axes
correspond to the number of possibilities remaining after enumeration for a single coefficient
index s1[0,j], i.e., the number of possible solutions or the size of the solution space for
a single coefficient after solving the system of equations. This value ranges from 1 (the
coefficient is known) to 2η + 1 (no side-information is recovered). The y-axes correspond
to the number of coefficients in the polynomial s1[0] that are known up to a number of
possibilities on the x-axis. Since these results are provided for a set of 10,000 random keys
for each plot, the red crosses indicate the average number of coefficients with x remaining
possibilities. Solid lines indicate key space reduction within ± 1.5 the interquartile range
from the median, while the hollow circles indicate outliers.

ElGhamrawy et al. 275

First, we observe from Figure 3 that the number of coefficients fully recovered is
relatively high. Specifically, on average we fully recover ≈ 80 coefficients (31%), ≈ 45
(17%) and ≈ 156 (61%) out of the total 256 coefficients for all secret key polynomials, for
level II, III and V, respectively. Many other coefficients are also reduced to 2 possibilities
(for instance ≈ 90 and ≈ 60 coefficients for level II and III, respectively) and in general
to less than 2η + 1 possibilities. No information is recovered on a very small number of
coefficients for which the initial 2η + 1 possible values remain. Accordingly, in addition to
reducing the MLWE problem to a significantly easier RLWE problem, the attack is also
able to recover a significant portion of the secret key coefficients and partial information
on the remaining ones.

Interestingly, the key recovery proportion depends on the security level, precisely on
the values of the parameters η and `. First and naturally, the key recovery potential is
lower for level III since the key space or the solution space for the system of pairwise
differences is larger for η = 4 compared to levels II and V for which η = 2. Second and
surprisingly, the increase in ` leads to more coefficients being recovered, as illustrated
by the enumeration results for level V. As opposed to standard MLWE security where
increasing ` results in harder instances, in this case the increase in ` negatively impacts
security (but still increasing the number of faults needed). This is due to having more
equations in the system we use for enumeration and hence to more constraints which
reduce the key space.

5.2 Lattice reduction attack with hints
In the following, we use the toolkit from Dachman-Soled et al. [DDGR20] to evaluate the
impact of the side-information obtained in the previous section on the hardness of the
lattice problem. Indeed, it provides the ability to insert leaked information about secrets
and/or errors into lattice reduction attacks and estimate their complexity. The resulting
estimates are available in Table 3.

Table 3: Summary of estimated hardness reduction from the fault attack with side-
information and runtime of resulting RLWE solving. Both are obtained using the tools
provided in [DDGR20]7. We provide minimum, average and maximum values observed
over 10 random faulted signatures with random keys (in the form min/avg/max). The
total runtime is the sum of the BKZ runtime and the hint integration.
NIST Security Level II III V

LWE Hardness (pre-attack)
Secret key range η 2 4 2
Lattice dimension 2049 2817 3841
Estimated β 434 641 890

LWE Hardness (post-attack with side-information)
Lattice dimension 426/438/450 449/465/472 267/340/359
Estimated β 4/15/27 35/41/43 2/2/2
Actual β 21/29/35 41/48/54 2/2/2
BKZ Runtime (hh:mm) 01:01/01:53/02:54 03:44/09:55/19:01 00:03/00:07/00:13
Total Runtime (hh:mm) 13:08/15:10/19:38 11:04/17:22/24:06 20:38/23:12/25:50
Success Rate 100% 100% 100%

Integration of perfect hints. As mentioned above, some secret key coefficients can be
determined uniquely simply thanks to enumeration. This knowledge can be integrated as
Perfect Hints in the [DDGR20, Definition 23] framework and provides the strongest form

276 From MLWE to RLWE: A DFA on Randomized & Deterministic Dilithium

of side information. In addition, the framework can be used to implicitly integrate Short
Vector Hints [DDGR20, Definition 30]. Concretely, all the prefect hints are first integrated,
and the short vector hint is then integrated (its computation is integrated into the toolkit).

In addition, the framework of Dachman-Soled et al. considers so-called modular and
approximate hints. These correspond in the context of our attack to key coefficients
that are not uniquely determined with enumeration and their integration could lead to
improved attacks. We leave the study of these kinds of hints for future works since in the
context of our attack perfect and short vector hints are sufficient to significantly reduce
the complexity of the RLWE problem and lead to practical key recovery. In the following,
we refer to both perfect and short vector hints as simply hints.

Estimated & concrete security. The results of the lattice reduction attacks using hints
are provided in Table 3. In this table, both estimates and concrete key recovery results
are averaged over 10 experiments as the number of hints may vary for different secret keys
as illustrated in Figure 3. We again provide the minimum, average and maximum BKZ
block-size β, along with the minimum, average and maximum runtime. Concretely, our
experiments illustrate that the integration of hints significantly reduces the hardness of
the lattice problem. First comparing with Table 2, the lattice dimension decreases from
513 for all NIST security levels without hints down to 438, 465 and 340 on average for
level II, III and V, respectively. Similarly, it reduces the block-size β. As an example for
level II, the actual (resp. estimated) β is on average decreased from 59 (resp., 62) down to
29 (resp., 15)8. Interestingly, the improvement offered by the integration of hints is larger
for level V, as the number of available perfect hints is higher compared to level II and III
(see Figure 3).

Next, the runtime of the attack is also significantly reduced. With our resources, from
≈ 40 hours on average to ≈ 15 hours for level II and ≈ 23 hours for level V. The attack is
also practical for level III, with an average runtime of ≈ 17 hours. In particular, we note
that with the large number of hints we are able to extract, the total runtime of the attack
is actually dominated by the hint integration. Despite the long hint integration runtime,
our results show that integrating short vector hints significantly decreased the dimension
of the instance and significantly improved lattice reduction time. As previously mentioned,
this suggests that for practical attacks it might be possible to reach some kind of trade-off
between the number of hints integrated and the remaining BKZ complexity to minimize
the total runtime. This question is left for future work.

5.3 Lattice reduction attack with hints without knowledge of t0

A key feature of Dilithium is public key compression. That is, the key generation algorithm
only publicly outputs t1 such that t12d + t0 = As1 + s2. In the previous sections, we
assumed that the attacker has knowledge of t0, the lower 13 bits of the public key. While
t0 is not assumed to be secret and can potentially be recovered from enough signatures
as hinted in [Lyu22, RJH+18, RRB+19], we still explore the possibility for key recovery
without knowledge of t0. For this purpose, we essentially include t0 as part of the error,
which was only s2 in the previous sections. This increases the support of the error
distribution from [−η, η] for s2 to [−η − 2d−1, η + 2d−1] for s2 − t0. For key recovery, we
apply the same previously described lattice reduction methodology to recover s1. Unlike
Section 5 where lattice reduction will also recover s2, this method will only yield s2 − t0
and will not result in a straight-forward recovery of the private key component s2. However,
s1 is sufficient to achieve existential forgery as shown in [RJH+18].

8The discrepancies between actual and estimated small block-sizes are discussed in [DDGR20, page
12].

ElGhamrawy et al. 277

The lattice reduction estimates using hints but without knowledge of t0 are given in
Table 4. As expected, since the variance of the error distribution is larger, the attacks are
more difficult than with the knowledge of t0. However, we can still observe a significant
reduction of the security level. It reduces on average from β = 434 to β = 94 for level II,
and from β = 641 to β = 136 for level III. Notably for level V, since more perfect hints can
be recovered on the secret, security is reduced from β = 890 to β = 49. Such a block-size
is practical on our setup as illustrated in Table 3. Indeed, successful attacks are reported
for β = 48 and higher dimensions.

Table 4: Summary of estimated hardness reduction (assuming t0 is secret) from the
fault attack with side-information and runtime of resulting RLWE solving. Both are
obtained using the tools provided in [DDGR20]7. We provide minimum, average and
maximum values observed over 10 random faulted signatures with random keys (in the
form min/avg/max).

NIST Security Level II III V
LWE Hardness (pre-attack)

Secret key range η 2 4 2
Lattice dimension 2049 2817 3841
Estimated β 434 641 890

LWE Hardness (post-attack with side-information)
Lattice dimension 403/433/462 445/468/491 325/357/388
Estimated β 73/94/117 114/136/159 28/49/65

5.4 Comparison to related attacks

In this section we compare our attack to state-of-the-art fault injection attacks against
Dilithium. For consistency and to simplify comparison in future works we extend the table
provided by Ravi et al. [RCDB22] to include our attack. The columns Attack_Vector
and Countermeasure have been removed for conciseness, since instruction skipping faults
can be achieved by different means and countermeasures against our attack are discussed
in Section 6. For the full table we refer the reader to [RCDB22, Table 3]. Notably,
the attack characteristic column in our case essentially captures the difference between
deterministic and randomized signing. This characteristic is defined in [RCDB22], and
namely with the ability to communicate with the target device (Communicate_DUT_IO)
an attacker can request signatures for specific messages. In the deterministic case this is
useful since it allows an attacker to sign the same message twice or multiple times and
hence identify the expected final signing iteration. In the randomized case, this is not
possible and it usually suffices to observe the returned signature (Observe_DUT_IO).

Table 5: Extension of [RCDB22, Table 3] with our attack. The number of executions is
given on average for all Dilithium security levels (in the form level II/level III/level V).

Attack Attack Characteristic
DUT_IO_Access Targeted_Or_Not Num_Faults Num_Executions

This work Communicate_DUT_IO Targeted_Fault 1 7.3 / 13 / 15.8 †
Observe_DUT_IO Targeted_Fault 1 11.3 / 18.8 / 22.2

† additional valid signatures are required in the deterministic case to determine the expected final signing
iteration and is not accounted for in the average number of faulted signatures.

278 From MLWE to RLWE: A DFA on Randomized & Deterministic Dilithium

6 Re-computation and norm-based countermeasures
In the following, we present and analyze two countermeasures to protect Dilithium against
the attack described earlier in this paper, when an attacker can induce one fault per
signature. This is motivated by the fact that verification after signing does not prevent
the attack, since despite the fault, the returned signature is still valid. Indeed, the whole
signature stems from the pseudo randomly generated y and the message, so generating a
faulty y at the beginning of a signing attempt is virtually the same as signing with a different
random y. Interestingly however, on memory-constrained devices y is typically generated
twice since it is used at two different stages of the signing algorithm [GKS21, BRS22].
Naturally, faulting only one out of the two generations of y leads to a faulty signature and
hence the attack would be detected by verification after signing. In the following, we focus
on implementations which do not regenerate y.

We first discuss a simple trick related to re-computation based detection for Fiat-Shamir
with aborts signatures. We then also present a more efficient countermeasure in comparison
to re-computation which protects specifically against the attack presented in this work.
Note that ensuring the control flow integrity of the signature generation can prevent the
attack, by making sure that the increment of the nonce cannot be skipped, still in this
section we suggest and discuss efficient algorithmic countermeasures.

6.1 Re-computation for Fiat-Shamir with aborts
This section is based on the two following observations. First, almost all known fault
attacks on Dilithium (safe error and ineffective fault attacks excluded) require access to the
returned signature. Second, one particular property of Fiat-Shamir with aborts signature
schemes such as Dilithium is that signatures are checked before being released. In the
case of Dilithium, if the norm checks on z and r̃ do not pass, the signature generation is
aborted and repeated starting from the generation of y with an incremented counter κ.
On average, Dilithium requires 3 to 5 attempts depending on the parameter set as recalled
in Table 1, but even 10 or 20 attempts could be observed with non-negligible probability
before accepting a signature9.

A full re-computation of a signature generation leads to a 100% overhead. Based
on the previous observations, we propose to significantly reduce this overhead by only
re-computing the last signing attempt, hence ensuring that the released final signature is
not faulty or detecting any faults in the final signature and not releasing it. An extension
of this proposal is to use lightweight and more efficient countermeasures for all the signing
attempts and use stronger but potentially more expensive countermeasures during the
re-computation of the last attempt. In the following, we simply focus on re-computing
the last signing attempt to estimate the benefit of this strategy. These estimations are
given in Table 6, where for instance when 5 signing attempts are required (which is close
to the average number of signing attempts for Dilithium III) to generate a signature,
re-computing only the last attempt induces only a 20% overhead instead of a 100% when
re-computing all signing attempts.

Table 6: Comparison between re-computing every signing attempt and re-computing only
the last valid signing attempt. Values represent the overhead on top of the regular signing,
which is constant at 100% when re-computation is applied to all attempts.

signing attempts 1 2 3 4 5
Re-computing signature generation 100% 100% 100% 100% 100%
Re-computing only valid attempt 100% 50% 33% 25% 20%

9The number of signing attempts follows a geometric distribution with parameter p ≈ 0.23, p ≈ 0.20
or p ≈ 0.26.

ElGhamrawy et al. 279

6.2 Norm-based fault detection countermeasure
In this section, we propose an efficient countermeasure meant to protect against the attack
presented in this paper. We first explain the idea behind the countermeasure, then provide
an algorithm detailing it and finally analyze it, in particular with respect to false positives.
This countermeasure uses the same trick described previously, i.e., it is only performed for
the final valid signature, however, it is also more efficient since it avoids re-computing a
whole signing attempt.

Notations and reminders. For simplicity, we will use ∆z,∆y,∆s1, c∆s1 to denote differ-
ences of the form z[i,j] − z[i′,j],y[i,j] − y[i′,j], s1[i,j] − s1[i′,j], c(s1[i] − s1[i′])[j], respectively.
Recall that the secret vector s1 is sampled similarly to y but from the much smaller range
[−η, η] with η ∈ {2, 4}. The polynomial c consists of n = 256 coefficients, τ of which
are ±1 (τ ∈ {39, 49, 60}), the rest are zero. So the range of possible values for a single
coefficient in cs1 is [−τη, τη], and for c∆s1 it is [−2τη, 2τη].

Idea behind the fault detection. Our countermeasure is based on the observation that a
fault can be detected by analyzing the differences between the coefficients of the polynomials
of z, which we already hinted to in Subsection 3.1. Indeed, if y[i,j] = y[i′,j] then ∆z = c∆s1
and we know from the distribution of the challenge polynomial and the secret vector that
the coefficients of c∆s1 are ∈ [−2τη, 2τη]. The countermeasure consists of analyzing the
values of ∆z’s and counting how many of them are small (i.e., inside the range [−2τη, 2τη])
and how many are large (i.e., outside this range). On the one hand, if a ∆z is outside this
range, we can say with confidence that the ∆y-term is present and no fault was injected
(at least for the coefficients in question). On the other hand, since the range of ∆y is much
larger than that of c∆s1, the probability of an unfaulted ∆z lying inside of [−2τη, 2τη] by
chance is quite small. That is the key observation we use as a criterion for fault detection.
One of the main advantages of this method, is that since the check is performed on z, as
opposed to checking y, it can be done only once after the final signing attempt.

Norm-based fault detection algorithm. The inputs to the fault detection countermeasure
are the vector z and what we refer to as the strictness parameter N . The strictness
parameter N will correspond to the maximum number of small ∆z’s that we permit for a
given signature. Concretely, if there are more than N small ∆z values then we assume
that a fault was injected, discard the signature and compute a new one. Interestingly,
the parameter N additionally dictates what kind of attacks are prevented. By setting
N = 256 we can prevent attacks which force two full polynomials of y to be equal. A
smaller value of N allows detecting other versions of the attack, e.g., when only a few
coefficients of two polynomials of y are forced to be equal. The smaller N is, the more
kind of attacks are detected, but a low value of N also leads to a high False Positive Rate
(FPR) since random coefficients can be close to each other and therefore lead to a small
∆z value simply by chance. The fault detection is presented in Algorithm 2. In Line 1 we
initialize a counter that will count the number of small ∆z. The for-loops in Lines 2 and 3
iterate over all possible combinations of polynomials in z, the loop in Line 4 iterates over
the coefficients. Lines 5 and 6 check whether a ∆z is small, and in that case increment the
counter. We then check if the maximum number of permitted small ∆z is surpassed (Line
7). The output is 1 if we suspect a fault, and 0 if none was detected.

Analysis of the countermeasure. In the following we analyze Algorithm 2 and the
probabilities involved, and in particular how the FPR depends on the strictness N . For
this we need the probability distributions of ∆y and c∆s1. Based on the Dilithium

280 From MLWE to RLWE: A DFA on Randomized & Deterministic Dilithium

Algorithm 2 Fault Detection Countermeasure (z, N)
1: counter = 0
2: for i = 0, ..., `− 2 do
3: for i′ = i+ 1, ..., `− 1 do
4: for j = 0, ..., n− 1 do
5: if z[i,j] − z[i′,j] ∈ [−2τη, 2τη] then
6: counter += 1
7: if counter > N then
8: return 1
9: return 0

specifications, we derived the probability mass functions of the former as:

P (∆y = x) =
{

2γ1−|x|
(2γ1)2 , x ∈ (−2γ1, 2γ1),

0, else,
(7)

while the latter can be approximated by a normal distribution N (0,
√

2
3τη(η + 1)) following

the Central Limit Theorem. For an unfaulted ∆z the probability of lying inside the range
[−2τη, 2τη] can now be calculated in the following way:

P (∆z ∈ [−2τη, 2τη]) =
∞∑

x=−∞
P (∆y = x) · P (c∆s1 ∈ [−2τη − x, 2τη − x]).

We will call this probability p. This sum is not infinite, because P (∆y = x) is only
non-zero for a finite number of x (see Equation 7). For a given z we can derive `(`− 1)/2
differences of polynomials and because each polynomial has n coefficients, we then get
n ·`(`−1)/2 := nz differences of coefficients ∆z. We approximate the FPR using a binomial
distribution B(nz, p)10. The FPR is the probability that more than N ∆z’s are small.

FPR(N) = P (#∆z > N) = 1− P (#∆z ≤ N) = 1−
N∑
k=0

(
nz
k

)
pk(1− p)nz−k.

In an implementation of Dilithium it is important to know how many unfaulted signatures,
i.e., ones that passed all Dilithium rejection checks, will have to be computed until one is
accepted by the fault detection in Algorithm 2. We want this number to be as close to 1
as possible to avoid rejecting valid signatures due to the false positives in the detection.
The probability that m− 1 signatures are rejected and then the m-th one is accepted is
(1− FPR)m−1 · FPR. The expected number of signatures until we accept is then:

Esig(N) =
∞∑
m=1

m · (1− FPR(N))m−1 · FPR(N) = 1
1− FPR(N) .

The above number is not the number of overall signatures created, but rather the number
of valid signatures that already passed all rejection requirements of Dilithium itself, and
are then passed on to Algorithm 2. In Table 7 we summarize all relevant values for the
different parameter sets of Dilithium and provide the FPR and Esig for exemplary values
of N . For the strictest fault detection (N = 0), the FPR as well as the number of generated
signatures Esig are quite high for all three NIST security levels. However, if we increase N

10Since the ∆z are not independent random variables, we have verified that the approximations given
in Table 7 match values derived experimentally for random signatures.

ElGhamrawy et al. 281

only slightly, which is equivalent to allowing some minimal equality in the polynomials of
y which could be the case simply by chance, both the FPR and Esig drop relatively fast
until Esig reaches ≈ 1 for N = 15. This value of N still provides sufficient security for
all Dilithium parameter sets since it would detect when full polynomials or a significant
portion of the polynomials of y are equal but with a close to zero FPR and negligible
impact on the rejection rate.

Table 7: Parameters and FPR of the norm-based fault detection approach for different
NIST security levels and strictness parameter N .

NIST security level II III V
nz 1536 2560 5376
P (∆z ∈ [−2τη, 2τη]) 0.001190 0.000748 0.000458
FPR(N = 0) 0.839 0.853 0.915
Esig(N = 0) 6.23 6.79 11.74
FPR(N = 5) 0.011 0.014 0.040
Esig(N = 5) 1.01 1.01 1.04
FPR(N = 15) 1.26× 10−10 2.59× 10−10 8.54× 10−9

Esig(N = 15) ~1 ~1 ~1

Performance evaluation. Figure 4 shows the overhead introduced by the countermeasure
as function of the strictness parameter N . The numbers are obtained from the PQM4
reference implementation and the added countermeasure running on the NUCLEO-L4R5ZI
board. The left side provides the overhead in the number of clock cycles, and the right side
the overhead relative to the unprotected signature generation. The dashed lines on the left
side correspond to the clock cycles spent on the unprotected signature generation. These
results confirm the estimations provided in Table 711. For a very small N (e.g., N = 0),
the overhead is quite significant since many signing iterations are needed to generate a
valid signature that also fulfills the condition set by the countermeasure, but as soon as N
is large enough, for instance N ≥ 5 no additional signing iterations are needed most of
the time. As a result, the proposed countermeasure can be parameterized to achieve a
negligible overhead.

0 5 10 15

1

2

3

4

5

6
·107

N

cy
cl
es

Level II

Level III

Level V

(a) Performance

0 5 10 15

2

4

6

N

ov
er
he

ad
fa
ct
or Level II

Level III

Level V

(b) Relative overhead

Figure 4: Comparison of average runtime of Dilithium signatures with and without the
countermeasure as function of the strictness parameter N .

11Note that the relative overheads on the right side of the figure when N = 0 are not equal to the
estimated Esig . This is expected since the public matrix A is only computed once at the beginning of the
signature generation and not for every signing iteration.

282 From MLWE to RLWE: A DFA on Randomized & Deterministic Dilithium

7 Conclusion
In this paper, we introduced a new fault attack which applies to both randomized and
deterministic versions of Dilithium. In particular, the attack requires a few instruction
skips to reduce the MLWE problem Dilithium is based on to a much simpler RLWE
problem. The latter can be solved with lattice reduction attacks which we demonstrate
and enhance with the integration of side-information or hints extracted from the faulty
signatures. As a final contribution we also suggested countermeasures to protect against
the presented attack with minimal overheads.

As for perspectives, it is clear that PQC schemes are relatively less investigated than
standard asymmetric cryptography based on RSA or ECC that has been practically
deployed for decades. This holds true as well with respect to implementation attacks,
including side-channel and fault attacks. From our work, we confirm the interest of the first
steps taken in [DDGR20] to bind the gap between lattice reduction attacks and fault/side-
channel attacks. We believe that using partial (i.e., probabilistic) side-information, as
usually obtained from noisy measurements, would be an important step forward into that
direction.

A Impact of faults on s2

It was noted in [ABC+22] that although r̃ = w0−cs2 = w−αw1−cs2 is not released as part
of the signature it can be computed from the signature and the public key as Az−ct−αw1.
In the context of our attack, we first examine how the faulty y affects w = A · y. This is
shown in Equation 8 where we denote ∀i ∈ {0, 1, . . . , k − 1},

∑`−1
j=0 A[i,j] = a[i].

w[0]
w[1]
...

w[k−1]

 =


A[0,0] · · · A[0,`−1]
A[1,0] · · · A[1,`−1]

...
. . .

...
A[k−1,0] · · · A[k−1,`−1]

 ·


y
y
...
y

 = y ·


a[0]
a[1]
...

a[k−1]

 (8)

Next we compute weighted pairwise differences of the polynomials of r̃ as follows:

a[1] .̃r[0] − a[0] .̃r[1] = a[0](w[0] − αw1[0] − cs2[0])− a[1](w[1] − αw1[1] − cs2[1])
= a[1](a[0].y − αw1[0] − cs2[0])− a[0](a[1].y − αw1[1] − cs2[1])
= a[0](αw1[1] + cs2[1])− a[1](αw1[0] + cs2[0])

And as a result we can write s2[1] as function of s2[0].

a[0](αw1[1] + cs2[1]) = a[1] .̃r[0] − a[0] .̃r[1] + a[1](αw1[0] + cs2[0])
αw1[1] + cs2[1]) = a−1

[0] a[1](r̃[0] + αw1[0] + cs2[0])− r̃[1]

s2[1] = c−1(a−1
[0] a[1](r̃[0] + αw1[0] + cs2[0])− r̃[1] − αw1[1]) (9)

Eventually, what Equation 9 highlights is that, similarly to s1, after the attack it is
possible to recover all polynomials of s2 from a single one.

B Comparing LWE estimates for RLWE instance

ElGhamrawy et al. 283

Table 8: Comparison of LWE estimators pre- and post-attack assuming that t is public.
NIST Security Level II III V

LWE Hardness of Dilithium (standard)
(n · k, n · `) [LWE dimension] (1024, 1024) (1536, 1280) (2048, 1792)
[DKL+21]6 433 638 883
"GSA" [APS15] 424 625 883
"GSA-Intersect" [DDGR20]7 424 627 870
"Probabilistic-Simulation" [DDGR20]7 434 641 890

LWE Hardness of Dilithium (post-attack)
(n, n) [LWE dimension] (256, 256) (256, 256) (256, 256)
[DKL+21]6 50 50 50
"GSA" [APS15] 40 48 40
"GSA-Intersect" [DDGR20]7 29 46 29
"Probabilistic-Simulation" [DDGR20]7 62 68 62

References
[ABC+22] Melissa Azouaoui, Olivier Bronchain, Gaëtan Cassiers, Clément Hoffmann,

Yulia Kuzovkova, Joost Renes, Markus Schönauer, Tobias Schneider, François-
Xavier Standaert, and Christine van Vredendaal. Leveling dilithium against
leakage: Revisited sensitivity analysis and improved implementations. IACR
Cryptol. ePrint Arch., page 1406, 2022.

[ADPS16] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. Post-
quantum key exchange - A new hope. In Thorsten Holz and Stefan Savage,
editors, 25th USENIX Security Symposium, USENIX Security 16, Austin, TX,
USA, August 10-12, 2016, pages 327–343. USENIX Association, 2016.

[AGVW17] Martin R. Albrecht, Florian Göpfert, Fernando Virdia, and Thomas Wun-
derer. Revisiting the expected cost of solving usvp and applications to LWE.
In Tsuyoshi Takagi and Thomas Peyrin, editors, Advances in Cryptology -
ASIACRYPT 2017 - 23rd International Conference on the Theory and Appli-
cations of Cryptology and Information Security, Hong Kong, China, December
3-7, 2017, Proceedings, Part I, volume 10624 of Lecture Notes in Computer
Science, pages 297–322. Springer, 2017.

[Ajt99] Miklós Ajtai. Generating hard instances of the short basis problem. In Jirí Wie-
dermann, Peter van Emde Boas, and Mogens Nielsen, editors, Automata, Lan-
guages and Programming, 26th International Colloquium, ICALP’99, Prague,
Czech Republic, July 11-15, 1999, Proceedings, volume 1644 of Lecture Notes
in Computer Science, pages 1–9. Springer, 1999.

[AKS01] Miklós Ajtai, Ravi Kumar, and D. Sivakumar. A sieve algorithm for the
shortest lattice vector problem. In Jeffrey Scott Vitter, Paul G. Spirakis, and
Mihalis Yannakakis, editors, Proceedings on 33rd Annual ACM Symposium on
Theory of Computing, July 6-8, 2001, Heraklion, Crete, Greece, pages 601–610.
ACM, 2001.

[APS15] Martin R. Albrecht, Rachel Player, and Sam Scott. On the concrete hardness
of learning with errors. J. Math. Cryptol., 9(3):169–203, 2015.

[BBK16] Nina Bindel, Johannes Buchmann, and Juliane Krämer. Lattice-based signa-
ture schemes and their sensitivity to fault attacks. In 2016 Workshop on Fault
Diagnosis and Tolerance in Cryptography, FDTC 2016, Santa Barbara, CA,
USA, August 16, 2016, pages 63–77. IEEE Computer Society, 2016.

284 From MLWE to RLWE: A DFA on Randomized & Deterministic Dilithium

[BFP19] Claudio Bozzato, Riccardo Focardi, and Francesco Palmarini. Shaping the
glitch: Optimizing voltage fault injection attacks. IACR Trans. Cryptogr.
Hardw. Embed. Syst., 2019(2):199–224, 2019.

[BG14] Shi Bai and Steven D. Galbraith. Lattice decoding attacks on binary LWE.
In Willy Susilo and Yi Mu, editors, Information Security and Privacy - 19th
Australasian Conference, ACISP 2014, Wollongong, NSW, Australia, July 7-9,
2014. Proceedings, volume 8544 of Lecture Notes in Computer Science, pages
322–337. Springer, 2014.

[BMR21] Luk Bettale, Simon Montoya, and Guénaël Renault. Safe-error analysis of
post-quantum cryptography mechanisms - short paper-. In 18th Workshop
on Fault Detection and Tolerance in Cryptography, FDTC 2021, Milan, Italy,
September 17, 2021, pages 39–44. IEEE, 2021.

[BP18] Leon Groot Bruinderink and Peter Pessl. Differential fault attacks on de-
terministic lattice signatures. IACR Trans. Cryptogr. Hardw. Embed. Syst.,
2018(3):21–43, 2018.

[BRS22] Joppe W. Bos, Joost Renes, and Amber Sprenkels. Dilithium for memory
constrained devices. In Lejla Batina and Joan Daemen, editors, Progress
in Cryptology - AFRICACRYPT 2022: 13th International Conference on
Cryptology in Africa, AFRICACRYPT 2022, Fes, Morocco, July 18-20, 2022,
Proceedings, Lecture Notes in Computer Science, pages 217–235. Springer
Nature Switzerland, 2022.

[CN11] Yuanmi Chen and Phong Q. Nguyen. BKZ 2.0: Better lattice security esti-
mates. In Dong Hoon Lee and Xiaoyun Wang, editors, Advances in Cryptology
- ASIACRYPT 2011 - 17th International Conference on the Theory and Appli-
cation of Cryptology and Information Security, Seoul, South Korea, December
4-8, 2011. Proceedings, volume 7073 of Lecture Notes in Computer Science,
pages 1–20. Springer, 2011.

[DDGR20] Dana Dachman-Soled, Léo Ducas, Huijing Gong, and Mélissa Rossi. LWE with
side information: Attacks and concrete security estimation. In Daniele Mic-
ciancio and Thomas Ristenpart, editors, Advances in Cryptology - CRYPTO
2020 - 40th Annual International Cryptology Conference, CRYPTO 2020,
Santa Barbara, CA, USA, August 17-21, 2020, Proceedings, Part II, volume
12171 of Lecture Notes in Computer Science, pages 329–358. Springer, 2020.

[DKL+21] Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, Peter Schwabe,
Gregor Seiler, and Damien Stehlé. Crystals-dilithium algorithm specifications
and supporting documentation (version 3.1). 2021.

[DRPR19] Jean-Max Dutertre, Timothée Riom, Olivier Potin, and Jean-Baptiste Rigaud.
Experimental analysis of the laser-induced instruction skip fault model. In
Aslan Askarov, René Rydhof Hansen, and Willard Rafnsson, editors, Secure IT
Systems - 24th Nordic Conference, NordSec 2019, Aalborg, Denmark, November
18-20, 2019, Proceedings, volume 11875 of Lecture Notes in Computer Science,
pages 221–237. Springer, 2019.

[dt21] The FPLLL development team. fpylll, a Python wraper for the fplll lattice
reduction library, Version: 0.5.7. Available at https://github.com/fplll/
fpylll, 2021.

https://github.com/fplll/fpylll
https://github.com/fplll/fpylll

ElGhamrawy et al. 285

[EFGT16] Thomas Espitau, Pierre-Alain Fouque, Benoît Gérard, and Mehdi Tibouchi.
Loop-abort faults on lattice-based fiat-shamir and hash-and-sign signatures. In
Roberto Avanzi and Howard M. Heys, editors, Selected Areas in Cryptography -
SAC 2016 - 23rd International Conference, St. John’s, NL, Canada, August 10-
12, 2016, Revised Selected Papers, volume 10532 of Lecture Notes in Computer
Science, pages 140–158. Springer, 2016.

[GKS21] Denisa O. C. Greconici, Matthias J. Kannwischer, and Amber Sprenkels.
Compact dilithium implementations on cortex-m3 and cortex-m4. IACR
Trans. Cryptogr. Hardw. Embed. Syst., 2021(1):1–24, 2021.

[IMS+22] Saad Islam, Koksal Mus, Richa Singh, Patrick Schaumont, and Berk Sunar.
Signature correction attack on dilithium signature scheme. In 7th IEEE
European Symposium on Security and Privacy, EuroS&P 2022, Genoa, Italy,
June 6-10, 2022, pages 647–663. IEEE, 2022.

[Kan87] Ravi Kannan. Minkowski’s convex body theorem and integer programming.
Math. Oper. Res., 12(3):415–440, 1987.

[Kor77] Korkine. Sur les formes quadratiques positives. (zus. mit s. zolotareff). Math-
ematische Annalen, 11:242–292, 1877.

[LLL82] Arjen K. Lenstra, Hendrik W. Lenstra, and László Miklós Lovász. Factoring
polynomials with rational coefficients. Mathematische Annalen, 261:515–534,
1982.

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and
learning with errors over rings. In Henri Gilbert, editor, Advances in Cryptology
- EUROCRYPT 2010, 29th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Monaco / French Riviera, May
30 - June 3, 2010. Proceedings, volume 6110 of Lecture Notes in Computer
Science, pages 1–23. Springer, 2010.

[Lyu22] Vadim Lyubashevsky. Crystals-dilithium update. Fourth PQC Standardization
Conference, 2022.

[LZS+21] Yuejun Liu, Yongbin Zhou, Shuo Sun, Tianyu Wang, Rui Zhang, and Jingdian
Ming. On the security of lattice-based fiat-shamir signatures in the presence of
randomness leakage. IEEE Trans. Inf. Forensics Secur., 16:1868–1879, 2021.

[MDP+20] Alexandre Menu, Jean-Max Dutertre, Olivier Potin, Jean-Baptiste Rigaud, and
Jean-Luc Danger. Experimental analysis of the electromagnetic instruction
skip fault model. In 15th Design & Technology of Integrated Systems in
Nanoscale Era, DTIS 2020, Marrakech, Morocco, April 1-3, 2020, pages 1–7.
IEEE, 2020.

[Nat] National Institute of Standards and Technology. Post-
quantum cryptography standardization. https://
csrc.nist.gov/Projects/Post-Quantum-Cryptography/
Post-Quantum-Cryptography-Standardization.

[PV06] Dan Page and Frederik Vercauteren. A fault attack on pairing-based cryptog-
raphy. IEEE Trans. Computers, 55(9):1075–1080, 2006.

[RCDB22] Prasanna Ravi, Anupam Chattopadhyay, Jan Pieter D’Anvers, and Anubhab
Baksi. Side-channel and fault-injection attacks over lattice-based post-quantum
schemes (kyber, dilithium): Survey and new results. Cryptology ePrint Archive,
Paper 2022/737, 2022. https://eprint.iacr.org/2022/737.

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://eprint.iacr.org/2022/737

286 From MLWE to RLWE: A DFA on Randomized & Deterministic Dilithium

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and
cryptography. In Harold N. Gabow and Ronald Fagin, editors, Proceedings of
the 37th Annual ACM Symposium on Theory of Computing, Baltimore, MD,
USA, May 22-24, 2005, pages 84–93. ACM, 2005.

[RJH+18] Prasanna Ravi, Mahabir Prasad Jhanwar, James Howe, Anupam Chattopad-
hyay, and Shivam Bhasin. Side-channel assisted existential forgery attack on
dilithium - A NIST PQC candidate. IACR Cryptol. ePrint Arch., page 821,
2018.

[RJH+19] Prasanna Ravi, Mahabir Prasad Jhanwar, James Howe, Anupam Chattopad-
hyay, and Shivam Bhasin. Exploiting determinism in lattice-based signatures:
Practical fault attacks on pqm4 implementations of NIST candidates. In
Steven D. Galbraith, Giovanni Russello, Willy Susilo, Dieter Gollmann, Engin
Kirda, and Zhenkai Liang, editors, Proceedings of the 2019 ACM Asia Confer-
ence on Computer and Communications Security, AsiaCCS 2019, Auckland,
New Zealand, July 09-12, 2019, pages 427–440. ACM, 2019.

[RRB+19] Prasanna Ravi, Debapriya Basu Roy, Shivam Bhasin, Anupam Chattopadhyay,
and Debdeep Mukhopadhyay. Number "not used" once - practical fault attack
on pqm4 implementations of NIST candidates. In Ilia Polian and Marc
Stöttinger, editors, Constructive Side-Channel Analysis and Secure Design
- 10th International Workshop, COSADE 2019, Darmstadt, Germany, April
3-5, 2019, Proceedings, volume 11421 of Lecture Notes in Computer Science,
pages 232–250. Springer, 2019.

[Sch87] Claus-Peter Schnorr. A hierarchy of polynomial time lattice basis reduction
algorithms. Theor. Comput. Sci., 53:201–224, 1987.

[Sho21] Victor Shoup. NTL (Number Theory Library) - a library for doing number
theory, Version: 11.5.1. Available at https://libntl.org, 2021.

https://libntl.org

	Introduction
	Background
	Polynomial ring notations
	Learning with errors
	CRYSTALS-Dilithium
	Fault injection attacks on Dilithium

	Attack description & practical consideration
	Vulnerability description
	From MLWE to RLWE

	Impact on estimated security & key recovery
	Post-attack hardness estimates
	Solving RLWE instances

	Improving attacks with side-information
	Side-information from partial enumeration
	Lattice reduction attack with hints
	Lattice reduction attack with hints without knowledge of t0
	Comparison to related attacks

	Re-computation and norm-based countermeasures
	Re-computation for Fiat-Shamir with aborts
	Norm-based fault detection countermeasure

	Conclusion
	Impact of faults on s2
	Comparing LWE estimates for RLWE instance

