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Abstract. Field Programmable Gate Arrays (FPGAs) are used more and more
frequently to implement cryptographic systems, which need random number generators
(RNGs) to be embedded in the same device. The main challenge related to the
implementation of a generator running inside FPGAs is that the physical source
of randomness, such as jittered clock generator, is implemented in the configurable
logic area, i.e. in the close vicinity of noisy running algorithms, which can have
significant impact on generated numbers or even serve to attack the generator. A
possible approach to prevent such influence is the use of Phase-Lock Loops (PLLs),
which are separated from the re-configurable logic area inside the FPGA chip. In this
paper, we propose a new architecture of the PLL-based TRNG including a method
to avoid correlation in the output through control of timing in the sampling process,
as well as new embedded tests based on the enhanced stochastic model. We also
propose a workflow to help find the best parameters, such as output bitrate and
entropy rate. We show that bitrates of around 400 kb/s or more can be achieved,
while guaranteeing min-entropy rates per bit higher than 0.98 as required by the
latest security standards.
Keywords: Random number generation · Parameterized stochastic models · Dedi-
cated statistical tests · Randomness monitoring

1 Introduction
Random number generators are essential in cryptography and data security as they
guarantee unpredictability of generated numbers, used as confidential keys, nonces (numbers
used once), padding data or as masks in side-channel attacks countermeasures. To avoid
possible manipulations, random numbers should never be generated outside the protected
cryptographic system, which is usually embedded inside an integrated logic device. However,
logic devices are developed to have predictable behavior to implement algorithmic systems.
Finding a robust physical source of randomness related to analog phenomena inside logic
devices remains a challenge.

The list of physical sources of randomness that can be exploited in digital devices is
quite limited. The most commonly used source is the jitter of clock signals generated in ring
oscillators [BLMT11, YRG+18], self-timed rings [CFFA13] or PLLs [FD03]. The frequency
spectrum of this jitter is often complex and composed of random components coming
from the thermal noise and low-frequency noises [HTBF14], but also from pseudo-random
noises or even data dependent noises [VABF10]. The designer must therefore analyze and
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quantify the jitter, as well as understand the possible manipulations with noise sources to
have a way of detecting them systematically or even creating a resilient design.

The unpredictability of generated numbers as one of the most important parameters
of TRNGs is guaranteed by a sufficient entropy rate at the generator output. Since the
entropy is a property of random variables and not of their realizations, it cannot be
measured (e.g. by observing the generated numbers). It can only be estimated using a
stochastic model, which has become a strict requirement by the AIS 31 standard [PV22].
The stochastic model consists of a family of probability distributions that describe the
theoretical behavior of the raw random signal allowing the verification of a (lower) entropy
bound for the output data (see [PV22], paragraph 45).

Ideally, the model should be based on a set of measurable parameters, e.g. the clock
jitter in the case of the ring oscillator based TRNGs [BLMT11] or the length of a randomly
lasting time intervals as it is the case in the TRNG using noise from two Zener diodes [KS08].
The measurement of input parameters of the model can then constitute a basis for the
dedicated tests of randomness, which can be used to verify the entropy rate in real time.
For example, jitter measurement methods that can be embedded in logic devices are
presented in [FL14, MLC+14].

Many papers proposing TRNG designs implementable in logic devices exist, but not all
TRNGs are suitable for implementation in both FPGAs and ASICs. Publications [PMB+16,
GGFZ22] contain surveys of TRNG implementable in FPGAs, and a recent example of a
generator dedicated to implementation in ASIC can be found in [PV22].

The challenge of TRNG implementation in logic devices is well illustrated by the
availability of the TRNG IP cores respecting stringent security criteria. Indeed, four
IP cores available currently on the market claim to be compliant only with NIST SP
800-90B [DR23, IPC23, Lat23, Ram23], two other IP cores also claim to pass AIS31
tests [Sil23, Ber23] and only three more claim to be fully compliant with NIST SP 800-
90B and AIS31 [IC23, Arm23, Syn23]. However, even for these last three IP cores, the
availability of a stochastic model and of efficient dedicated tests based on the model is not
clearly stated.

FPGA devices and especially reconfigurable systems on chip (SoC) are used very
frequently (and will be used even more in the future) as cryptographic systems on
chip [ZGS+21], in which random number generators (RNGs) constitute an essential
and unavoidable part. For security reasons, RNGs cannot be implemented outside the
cryptographic system; we therefore have to implement them inside the FPGA (when we
use FPGA as an implementation technology). Currently, PLLs are located in the only
part of the FPGA device which has independent power supply and which is outside the
configurable logic area. These elements are highly beneficial as they reduce to a minimum
the risk of crosstalk and thus possibilities of active attacks.

Surveys presented in [PMB+16, GGFZ22] show the main advantages of the TRNG
using PLLs (PLL-TRNG) compared to other TRNG designs suitable for FPGAs: a source
of randomness (PLLs) powered independently from the rest of the device, simple design,
high entropy rates, availability of the stochastic model and dedicated tests. The two main
weaknesses are a relatively low speed and possible correlations between output bits.
In this paper:

• we propose to use an m-bit time-to-digital converter (TDC) instead of a 1-bit
decimator used in the original PLL-TRNG, obtaining more information regarding
the source of randomness;

• we introduce new dedicated tests taking advantage of the information offered by the
m-bit TDC for an overall gain in speed, robustness and precision;

• we study correlations between random sampled bits before the TDC, and identify
the time distance between such bits as a determining factor for the entropy rate;

• we define a procedure to obtain suitable time distances for a given PLL setup and
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include the notion of time distances between random bits in the parameterized
stochastic model;

• we share all the necessary material (raw data as well as data processing scripts) to
reproduce the results of this paper in the GitHub repository [SDB+23].

The paper is organized as follows: after the Introduction, we first present the PLL-
TRNG principle and the enhanced architecture in Section 2. In Section 3 we describe the
stochastic model of the generator taking into account time distances between contributing
samples (samples increasing the entropy rate). Section 4 is dedicated to the proposed
dedicated statistical tests based on the parameterized PLL-TRNG statistical model.
Sections 5 and 6 contain results of hardware implementation as well as statistical validation
of the model assumptions. We finally discuss the obtained results in Section 7 before
closing the paper in Section 8.

2 PLL-TRNG architecture and its evolution
In this section, we will first present and discuss the original PLL-TRNG architecture. We
will then introduce the modified PLL-TRNG and the proposed dedicated embedded tests.

2.1 PLL-TRNG basic architecture
The PLL-TRNG, which uses a jittered clock signal generated in a phase-locked loop (PLL)
as a source of randomness, was first published in [FD03]. The stochastic model of the
generator and corresponding dedicated embedded tests were then introduced in [FBB19].
The original PLL-TRNG architecture is depicted in Fig. 1. The generator is based on
a coherent sampling principle: the clock signal clk1 is sampled in a D flip-flop (DFF)
at rising edges of the reference clock signal clk0. The mean frequencies f0 = 1/T0 and
f1 = 1/T1 of both clock signals have some fixed ratio determined by the PLL block.

PLL1

clk0

clk1

Decimator

(XOR-ing KD samples)

Raw digital noise

clkin

PLL0

DFF

T-base counter

(KD · T0)

si

Figure 1: Architecture of the PLL-based TRNG (PLL-TRNG).

In the simpler version of the generator, only one PLL (PLL1) is used and the PLL-
generated clock signal has the frequency f1 = (KM1/KD1) · fin = (KM/KD) · f0, where
KM1 and KD1 are multiplication and division factors of the PLL1 clock generator. If KM

and KD are mutually prime and KD is odd1, the generator’s output bitrate is equal to
R = f0/KD and the sensitivity to the jitter is S = ∆−1, where ∆ = T1/KD is the time
resolution in the reconstructed period T1, as it is presented in Fig. 2.

If the clock signals clk1 and clk0 were jitter-free, the signal si (the sampler output)
would feature a pattern with period TP = KD ·T0. To remove the pseudo-random behavior
of this pattern, a time-base signal is generated in a synchronous counter to restart the
decimator after each period TP . The decimator is thus XOR-ing KD samples to output
one bit.

In practice, both clk1 and clk0 are jittered, and we denote by σ0 (resp. σ1) the period
jitter of clk0 (resp. clk1). These jitters are mainly due to local noises originating from the

1Note that choosing KD odd increases sensitivity to the jitter by a factor of two as explained in [FD03,
Sect. 3.3].
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transistors inside each PLL and thus independent from one another. In this regard, we can
apply the technique detailed in [BLMT11, Appendix C] to simplify further computations
by transferring the jitter of clk0 to clk1. The period of clk1 is then considered to be a
random variable of the mean value T1 and standard deviation:

σ′1 '
√
σ2

1 + T1

T0
σ2

0 , (1)

and the period T0 of clk0 is supposed to be constant.

clk1

clk0

si = lj
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       j = (i · KM ) mod KD

f0    

Figure 2: Reconstruction of one sampled clock period T1 by reordering successive KD

samples si for KD = 7 and KM = 6, φ0 is the initial relative phase between clk1 and clk0.

Thanks to the coherent sampling principle, the period of the sampled signal clk1 can
be reconstructed by reordering KD original samples si (obtained at the DFF output) to a
new set λj , where si = λj , j = (i ·KM ) mod KD, as shown in Fig. 2. By increasing KD,
the designer can reduce the time resolution (∆) in the reconstructed period T1, increasing
the sensitivity to the jitter and consequently the entropy rate.

A majority of samples si most likely have a constant value: about half of them are
equal to zero (s1, s2, s6 in Fig. 2) and about half are equal to one (s3, s4, s8); depending
on the initial phase φ0, the time resolution ∆ and the standard deviation σ′1, few samples
(s0, s5, s7) will have a random value. The decimator thus outputs one pattern-free random
bit per pattern period TP .

As usually, the output bitrate and entropy rate have contradictory requirements:
increasing KD will decrease the output bitrate and increase entropy rate and vice versa.
However, since the sensitivity to the jitter is equal to S = KD · f1 = KM · f0, the entropy
rate can also be increased by increasing the multiplication factor KM and the reference
clock frequency f0.

If the multiplication and division factors of a unique PLL are not suitable to obtain
sufficient output bitrate and/or entropy rate, the second PLL can be used (see Fig. 1). The
new multiplication and division factors will be KM = KM1 ·KD0 and KD = KD1 ·KM0,
respectively. Since the main difficulty in the design of the PLL-TRNG is the choice
of suitable multiplication and division factors from the huge design space, the authors
in [APFB18] proposed an algorithm, which helps in finding all feasible configurations. This
algorithm was further enhanced in [CBBB20] by the use of possible optimisation criteria.

Based on this analysis, we can highlight the following advantages of the original
PLL-TRNG:

1. a simple architecture and a design essentially related to the choice of fin, KM , KD;
2. modern FPGA families always contain several PLLs, placed in a delimited area and

thus independent from activities in the rest of the circuitry inside the same device;
3. the pseudo-random pattern at the output is erased by the decimator, which facilitates

the detection of entropy failures.



V. Fischer, F. Bernard, N. Bochard, Q. Dallison, and M. Skórski 215

2.2 Design rationale of the modified PLL-TRNG
The enhanced PLL-TRNG architecture is presented in Fig. 3.

PLL1
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m-bit

time-to-digital 

converter
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Figure 3: Architecture of the enhanced PLL-based TRNG including m-bit time-to-digital
converter, security FIFO and new dedicated tests exploiting the m-bit converter output.

We introduced the following modifications aimed at increasing security and performance
of the PLL-TRNG:

1. the output of the PLL1 is sampled by two consecutive D flip-flops (DFFs) connected
in series, the second being used to resolve from possible metastable events;

2. the sampler output xi is converted to a pattern-free digitized analog signal (the das
signal mentioned in [KS11]) using an m-bit time-to-digital converter (TDC) – by
counting the number of samples xi equal to 1 during the pattern period TP = KD ·T0,
the TDC converts the pseudo-random pattern to an m-bit random number;

3. the Total failure test and Online test rely on the m-bit converter output;
4. the least significant converter bit cnt(0) is used as the raw random signal;
5. the raw signal is temporarily saved in a FIFO memory, whose depth depends on the

latency of the Total failure test;
6. to further increase the output entropy rate, we consider the sampled PLL (PLL1)

having up to n outputs delayed by 180/n degrees – if n = 1, then si0 = si = xi.
Note that the T-base counter serves the same purpose as in the original PLL-TRNG.

3 Stochastic model
In this section, we will introduce the assumptions that the stochastic model of the modified
PLL-TRNG relies on. Their validity will be verified and discussed later in Section 6.

3.1 Model assumptions
Assumption 1 (Stationarity of the pattern). Within each pattern period TP , the
sampler (DFF) outputs a vector of KD bits (bits xi from Fig. 3). We assume that this
vector is (time-locally) stationary.

Given the state-space of the random variable (a vector of 20 random bits can have 220

or about 1 000 000 different values), we are unable to perform a fully rigorous statistical
analysis. However, we can still be confident in our claim of stationarity of the DFF output
since the position in time of all the random bits of a given period TP is constant, as
illustrated in more detail in Section 6.1. In addition, we developed a local variant of the
stationarity test which gives (moderate) support of the claim.

Assumption 2 (Output stationarity). Raw random numbers at the TRNG output2
can be interpreted as realizations of stationarily distributed binary-valued random variables.

2We recall that we do not post-process the raw random numbers, so in our case raw random numbers
correspond to internal random numbers.
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This assumption is explored in detail and validated in Section 6.2. We also explore the
stationarity of the full counter value, as it can be used to produce a generator output with
higher bitrate.

Assumption 3 (Small intra-pattern correlations). Although consecutive sampled
bits are correlated, we will assume that this correlation decreases sharply over time and
that bits that are far enough from each other can be considered independent.

This claim is backed by observations made in Section 6.4. Moreover, since we can
somewhat control the time distances between random bits (as explained in Section 3.3),
this allows us to decrease any observable correlations down to acceptable levels.

Assumption 4 (Independence of least significant bits of the counter output).
We assume that the subsequent values of the counter least significant bit are uncorrelated.

This claim is backed by observations made in Section 6.3. However, more work should
be done to assess the independence of subsequent counter values.

3.2 Stochastic model of the modified PLL-TRNG
According to Fig. 3, the PLL block generates one reference clock (clk0) and n sampled
clocks (clk1k, k ∈ J0, n− 1K). These clocks have the same mean frequency f1 = 1/T1 and
differ only by a phase shift. Even if the formulas presented in this section can be extended
for any number n of phase shifted clock signals, we will first study the case of only one
clock signal (n = 1) clk1 := clk10 sampled by clk0 and discuss in Section 7 the use of
more phase shifted clock signals (n ≥ 2). In this case, samples xi in Fig. 3 correspond to
samples si in Fig. 2 and are realizations of a random variable Xi that will be characterized
in Prop. 2.

In general, the phase of a clock signal is influenced by different noise sources, but
only the thermal noise can be considered to be independent of other noise sources and
non-manipulable. This thermal noise is a white noise which can be modelled by a Gaussian
distribution law. In the case of the PLL-TRNG, low frequency noise sources (such as
1/fβ noises, e.g. flicker noise) are filtered out by the control loop of the PLL [DDS18].
Furthermore, the jitter due to thermal noise does not accumulate and remains bounded.

The consequence is that the phases of both rising and falling edges of the sampled
signal have the same standard deviation σ′1 caused mainly by the bounded accumulation
of the jitter coming from the thermal noise and denoted σ′1 ≈ σ′1,th according to Eq. (1).

According to this remark and following notations introduced in Fig. 2, we can state
the following proposition.

Proposition 1 (Phases Zj as random variables in the reconstructed period).
For each j ∈ J0,KD − 1K, Zj ∼ N

(
µj , σ

′
1
2
)
where µj := φ0 + j ×∆ mod T1, ∆ = T1

KD

and N
(
µ, σ2) denotes the Normal law of mean µ and variance σ2.

This proposition gives a set of input parameters for the stochastic model. We can
classify them into two categories:

1. Configurable parameters, chosen by the designer (helped by the stochastic model):
• the sampling frequency f0,
• the PLL coefficients KM and KD.

2. Intrinsic parameters, which can be observed or measured but not altered:
• the initial phase φ0 of the sampled clock,
• the duty cycle α of the sampled clock,
• the bounded accumulated jitter σ′1.
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In our case study, according to Fig. 2, the clk1 signal with period T1 and duty cycle α
starts in state 1, with a phase shift φ0 from clk0. Given the knowledge of the distribution
of each phase Zj (j ∈ J0,KD − 1K) from Prop. 1, it is possible to compute the probability
that the (j + 1)th bit Xj sampled on the clk1 signal is equal to 1.

Although we have µj ∈ [0, T1[, because of the jitter σ′1 > 0, realizations of Zj can lie
outside of [0, T1[. For example, for ε & 0 and µj = T1 − ε, a realization of Zj can be equal
to µj + 2ε > T1. Furthermore, because σ′1 � T1, it is unlikely that Zj < −T1 + α · T1
(previous falling edge of clk1) or Zj > T1 + α · T1 (next falling edge of clk1). For this
reason, we can assume that: Pr(−T1 + α · T1 < Zj < T1 + α · T1) = 1, and can state the
following proposition:

Proposition 2 (Sampled bit Xj on the reconstructed period). For each j ∈ J0,KD − 1K,

Pr (Xj = 1) = Pr (0 < Zj < α · T1) + Pr (T1 < Zj < T1 + α · T1)
= Pr (0 < Zj < α · T1) + Pr (T1 < Zj)

= 1√
2πσ′1

∫ α·T1

0
e
−

(t−µj)2

2σ′1
2
dt+ 1− 1√

2πσ′1

∫ T1

−∞
e
−

(t−µj)2

2σ′1
2
dt,

which can also be expressed with the cumulative density function Φ of the standard normal
distribution:

Pr (Xj = 1) = Φ
(
α · T1 − µj

σ′1

)
− Φ

(
−µj
σ′1

)
+ 1− Φ

(
T1 − µj
σ′1

)
.

Since counter values contain more information than their least significant bit, we will
study the probability distribution of these values. This is one of the main benefits of
replacing the decimator in the original TRNG architecture by the m-bit converter. Indeed,
this study will be used to define and configure the Online and Total failure tests.

Definition 1 (Counter output Np and raw random numbers Rp). For each pattern period
TP , the counter output value of Fig. 3 is represented by the stochastic process (Np)p∈N
defined below for each p:

Np :=
KD−1∑
i=0

Xi,

i.e. it is the sum of the random variables that are characterized by Prop. 2.
The raw random numbers are the random variables Rp corresponding to the least significant
bit of Np:

Rp := Np mod 2.

To study the probability distribution of Np (and, consequently, that of Rp), one has to
assume stationarity of these processes and particularly the stationarity of Xj among many
periods TP . This question is addressed in Section 6.1.

Once stationarity is confirmed, we want to ensure that random bits (Xj)j∈J0,KD−1K
are uncorrelated. This is not true in general for all these bits, but we can simplify the
problem by considering what we call contributors:

Definition 2 (Contributors). We call contributors, or contributing bits, the bits Xj such
as 0 < Pr (Xj = 1) < 1. They correspond to sampling points on either edge of the sampled
clock, and their value is random due to jitter.

In order to have a practical way to take into account these contributors, we can set
more precise thresholds such as 0.02275 ≤ Pr (Xj = 1) ≤ 0.97725 corresponding to a phase
Zj falling in the interval [µj − 2σ′1;µj + 2σ′1] of length 4σ′1. Moreover, using Pr(Xj = 1)
from Prop. 2, for given σ′1, φ0, α, it is possible to compute the theoretical number of
contributors for a given configuration.
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According to these thresholds, we can then split the set of KD indices in three subsets:
1. S0 the set of indices j such that Pr (Xj = 1) ≈ 0 (< 0.02275) (Xj is almost always 0)
2. S1 the set of indices j such that Pr (Xj = 1) ≈ 1 (> 0.97725) (Xj is almost always 1)
3. Sc the set of indices j for contributing bits

We can then rewrite the counter output as

Np =
∑
j∈Sc

Xj + #S1,

where #S1 denotes the number of elements in the set S1, and

Rp =
KD−1⊕
j=0

Xj =

⊕
j∈Sc

Xj

⊕B,
where B = 1 if and only if #S1 is odd.

As we want to express the probability that Rp = 1, we can use the formula from [Dav02]
to compute Pr(X ⊕ Y = 1) in the case where X and Y are not fully independent. It is
given in Eq. (2) where µ := Pr(X = 1), ν := Pr(Y = 1) and ρ := Corr(X,Y )

Pr (X ⊕ Y = 1) = 1
2 − 2

(
µ− 1

2

)(
ν − 1

2

)
− ρ
√
µ(1− µ)ν(1− ν). (2)

The expression ρ
√
µ(1− µ)ν(1− ν) is negligible if at least one of the two following

conditions is fulfilled:
Condition 1: The correlation ρ between bits is very small.
Condition 2: The probability that a bit is equal to 1 is very close to 0 or very close to 1.
If we can guarantee at least one of these two conditions, the formula becomes:

Pr (X ⊕ Y = 1) = 1
2 − 2

(
Pr(X = 1)− 1

2

)(
Pr(Y = 1)− 1

2

)
, (3)

which corresponds to assuming the independence of X and Y .
So according to Condition 2, only correlations between bits Xj where j ∈ Sc have to

be checked. They will form groups of adjacent bits (one group per clock edge) in this
reconstructed period, but not necessarily adjacent in time. The distance in time between
two samples Xj where j ∈ Sc should be long enough to reduce correlations between
sampled bits in time and satisfy Condition 1. We will present the methodology to find
such configurations based on this distance in Section 3.3 and show in Table 2 that such
configurations exist for all devices studied in this work.

Thus, it is possible to compute the probability that Rp is equal to 1.
Proposition 3 (Probability that Rp is equal to 1.).
If the distance between samples (Xj)j∈Sc is high enough to reduce correlations between
contributors, then

Pr (Rp = 1) = Pr

KD−1⊕
j=0

Xj = 1

 = 1
2 + (−2)KD−1

KD−1∏
j=0

(
Pr (Xj = 1)− 1

2

)
.

Finally, according to Assumption 4, both Shannon entropy and min-entropy can be
computed from the probability of Rp to be equal to 1.
Proposition 4 (Entropy rate of the PLL-TRNG).
In the case of a PLL-TRNG, the Shannon entropy rate H1 and the min-entropy rate H∞
follow:

H1 := −Pr (Rp = 1) log2 (Pr (Rp = 1))− (1− Pr (Rp = 1)) log2 (1− Pr (Rp = 1)) ,

H∞ := − log2 (max (Pr(Rp = 1) , 1− Pr (Rp = 1))).
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Figure 4: Position of contributors in the reconstructed period T1 depending on φ0 and α.

For a given configuration (f0, KM , KD are fixed), the formulas above depend on three
intrinsic parameters: the initial phase φ0, the duty cycle α and the jitter σ′1.
Some of them are difficult to measure precisely in the device (e.g. φ0 and α). Since we
want to compute a lower bound H1 (resp. H∞) for the Shannon (resp. min-) entropy
rate of the generator, a conservative approach is to set φ0 and α in the case where the
contributors have the lowest contribution to entropy. This worst case is achieved when
the position of contributors along both the rising and falling edges (i.e. the probability
Pr (Xj = 1)) are the farthest away from the value 0.5.

The problem is illustrated in Fig. 4, where the choice of φ0 determines the position
of the rising edge, and the choice of α controls the falling edge through the length of
the high state. Setting the initial phase φ0 = ∆

2 mod ∆ ensures a worst case scenario
by positioning the contributors in the rising edge as far away from the 0.5 threshold as
possible. Similarly, setting the duty cycle α = KD−1

2KD mod 1
KD

ensures that the situation
on the falling edge is analog to that on the rising edge. This overall worst case is pictured
in the top-left panel, where the contributors are as far away from 0.5 as possible.

As it is illustrated in Fig. 5, it means that H1 (resp. H∞) is a strictly increasing
function of the jitter σ′1 and for all φ0 and α, H1(σ′1) ≥ H1(σ′1) (resp. H∞(σ′1) ≥ H∞(σ′1)).
Thanks to this lower bound, it is possible to set a threshold on the expected entropy rate
of the generator and to compute the corresponding minimum required jitter value.

Figure 6 displays the importance of the minimal jitter obtained in that way. The
curves show the min-entropy given by the model, either as a function of φ0 or α, in two
situations: the left panels consider a jitter σ′1 < σmin, while the right panels consider a
sufficient jitter σ′1 > σmin. We can note that all the curves show the periodicity of the
entropy mentioned earlier. The dotted curves correspond to an arbitrary choice of the
fixed intrinsic parameter φ0 or α. They mostly satisfy the requested entropy level, but
not with certainty under σ′1 < σmin for unlucky values of φ0 or α. However, when these
parameters are set to be in the worst situation described above (solid curves), we are at a
minimum of the entropy; only by ensuring that σ′1 > σmin we can state that the entropy
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Figure 5: Entropy (left: Shannon, right: min-) per output bit as a function of the jitter.
The dotted curves are for a random φ0 and α whereas the solid one corresponds to the
worst case. These curves are generated for Configuration A in Table 2. In this case, a
minimum value of 9.94 ps (resp. 10.26 ps) for the jitter is computed in order to get 0.9998
Shannon entropy rate (resp. 0.98 min-entropy rate) required by [PS22].

level is always satisfactory.
This minimum value of the jitter will also be used to define, in Section 4, embedded tests

based on the expectation and variance of counter values. Thanks to Assumptions 2 and 4,
for each p, the counter value Np can be modelled as a Poisson binomial distribution and its
variance can be computed according to the distribution pi := Pr(Xi = 1) given in Prop. 2.
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Proposition 5 (First moments of the counter output).

E(Np) =
KD−1∑
i=0

pi =
∑
i∈Sc

pi + #S1,

Var(Np) =
KD−1∑
i=0

pi(1− pi) =
∑
i∈Sc

pi(1− pi).

Due to the possible presence of low frequency noises (e.g. flicker noise), it is generally
preferable to use the Allan variance AVAR(Np), which has the property of converging
despite the presence of low frequency noises. Moreover, it is less expensive to use the Allan
variance in terms of required hardware resources [APFB18].

Definition 3 (Allan variance of the counter output). The Allan variance of the counter
output is defined as follows:

AVAR(Np) := 1
2E
(
(Np+1 −Np)2) , (4)

where (Np)p∈N are realizations of the counter value.

In practice, we observed that the Allan variance and classical variance are very close
to each other – more details in the data log files in [SDB+23]. It goes to show that the
PLL naturally filters out low frequency noises through its feedback loop. Due to this
correspondence, we are able to keep the less expensive implementation of Allan variance
while the model still uses classical variance.

3.3 Computation of the distance in time between contributors
Our goal in this section is to ensure minimal correlation between contributors by somewhat
controlling the time distance between them. Indeed, the longer the time between two
contributors, the lower the probability of one influencing the other. We recall that i
denotes the index of samples in the pattern period TP and j the index of samples in the
reconstructed period T1 obtained through coherent sampling. They are related through
the following equation:

∀i ∈ J0,KD − 1K, j = i×KM mod KD.

Because KM and KD are coprime numbers, we can consider the reciprocal function:

∀j ∈ J0,KD − 1K, i(j) = (j ×K−1
M ) mod KD.

Given two samples λj and λj+τ that have an offset of τ > 0 positions in the reconstructed
period T1, we are interested in their distance in time, i.e. the non-negative quantity
|i(j + τ)− i(j)|.

|i(j + τ)− i(j)| =
{

(τ ×K−1
M ) mod KD if i(j + τ)− i(j) > 0,

KD − (τ ×K−1
M mod KD) if i(j + τ)− i(j) < 0.

This idea can then be generalized for a given offset τ and an arbitrary pair of samples with
the following definition.

Definition 4 (Minimal distance in time between samples with a given offset τ). Let
τ ∈ J1,KD − 1K. We then define:

dmin(τ) := min((τ ×K−1
M ) mod KD,KD − (τ ×K−1

M mod KD)).
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Let us consider all pairs of samples (λj , λj+τ ) in the reconstructed period T1: dmin(τ) is
the minimal distance in time (expressed as a number of clk0 periods) between any of those
pairs. In other words, all pairs of samples with an offset τ will have a time distance of at
least dmin(τ) in the pattern period TP .

In order to control the distance in time between contributors, we would need the list of
all offsets between contributors. Since this knowledge is not accessible, we want to find
a meaningful set of offsets T := {τ1, . . . , τq} to compute {dmin(τ)}τ∈T . This list of time
distances will be a great tool to examine possible correlations between contributors.
We consider two kinds of offsets between those contributing samples:

1. Between consecutive samples on one edge (rising or falling), such as samples λ0 and
λ8 in Fig. 2. Let τ1 be one less than the number of samples influenced by the jitter
in one edge; we want to consider all values τ ∈ J1, τ1K in order to account for all
offsets between samples within a given edge. For example, in Fig. 2, τ1 = 1.

2. Between samples on different edges (rising and falling), such as samples λ0 and λ4 in
Fig. 2. Given two samples λj and λj′ on the two edges, the offset τ2 is either α · T1
or (1− α) · T1 in the reconstructed period T1. It means that:

λj − λj′ ≡ α · T1 mod T1 ⇔ j ·∆− j′ ·∆ ≡ α · T1 mod T1

⇔ j − j′ ≡ α · T1

∆ mod T1

∆ ⇔ j − j′ ≡ α ·KD mod KD.

Similarly, if λj − λj′ ≡ (1 − α) · T1 mod T1, then j − j′ ≡ (1 − α) ·KD mod KD.
Because the duty cycle α is in general difficult to know precisely, we consider that
for a given configuration, α can be in [αmin, αmax], then we have to consider offsets
between :

τmin2 = bmin(αmin ·KD, (1− αmax) ·KD)c ,
τmax2 = dmax(αmax ·KD, (1− αmin) ·KD)e .

In the end, the set T of possible offsets between contributors to consider in the reconstructed
period T1 is:

T = J1, τ1K
⋃

Jτmin2 , τmax2 K.

Example 1 (Determination of time distances for a given configuration).
Let KD = 435, KM = 728 (corresponding to Configuration A in Table 2) and let τ1 = 3,
αmin = 0.47 and αmax = 0.52, then the set T will be given by:

T = J1, 3K
⋃

J204, 231K.

Using Definition 4, we obtain the following list of distances: {193, 49, 144, 213, 20, 173,
69, 124, 118, 75, 167, 26, 216, 23, 170, 72, 121, 121, 72, 170, 23, 216, 26, 167, 75, 118, 124,
69, 173, 20, 213}.

A first approach could be to filter out configurations where a pair of contributors is too
close – essentially setting a “minimal distance” constraint. A configuration with a high
enough minimal distance would ensure an absence of correlation between any contributors.
However, as we explored this possibility, it appeared to be too restrictive; it filters out
many acceptable configurations and we sometimes end up with no option left. Typically, a
configuration with eight well distributed contributors and two that are too close would be
filtered out, but is exploitable at the cost of ignoring the one correlated pair.

This observation motivated our current approach of analyzing the whole set of distances
between contributors for a given configuration. As stated in Definition 2, we estimate that
we need at least eight uncorrelated contributors in the worst case to meet the entropy
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requirements. Moreover, the correlation analysis made in Section 6.4 shows that a time
distance of roughly 30 · T0 is enough to neglect correlations.

Building on the precedent remarks, we propose the following analysis: for every distance
that would be lower than the given threshold of 30, we consider the corresponding pair
as one contributor, and make the conservative assumption that the second one does not
contribute to entropy at all. We then check if we still have the required eight contributors.

We upgraded the code published in [CBBB20] to compute the set of distances be-
tween contributors when exploring possible configurations. This workflow is explained in
Section 5.1 in more detail.

4 Dedicated embedded tests
In this section, we will present new embedded tests dedicated to the PLL-TRNG: the
Total failure test and the Online test.

4.1 Total failure test
The Total failure test observes the length of runs of identical subsequent counter values Np
at the output of the time-to-digital converter. In the event of a total failure of the source
of randomness, there are no contributors in TP so the counter values remain constant.
However there is always a small probability that some successive counter values are equal
even in the presence of jitter. The stochastic model can be used to define more precisely
how many times it can occur in normal operating condition within given period of time (a
day, a week, a month. . . ).

Equation 5 describes the probability that the counter value remains constant over l ≥ 2
consecutive periods TP .

Pr(N1 = . . . = Nl) =

KD∑
k=1

 ∑
I ∈ J0, KD − 1K
I = {i1 < . . . < ik}

 k∏
j=1

Pr
(
Xij = 1

)
·

∏
j∈J0,KD−1K\I

(1− Pr (Xj = 1))



l

. (5)

Unfortunately, this formula is very hard to compute in practice, mainly due to the
number of combinations of indices chosen among J0,KD − 1K.

We will use an approximation of this Poisson binomial distribution by a normal law.
Indeed, for any integer k ≥ 1, Pr(Np = k) = FNp(k) − FNp(k − 1) where FNp is the
Cumulative Density Function (CDF) of the Poisson binomial distribution.

According to [Hon13], FNp(k) ≈ Φ
(
k+0.5−E(Np)√

Var(Np)

)
, so Pr(Np = k) ≈ Φ

(
k+0.5−E(Np)√

Var(Np)

)
−

Φ
(
k−0.5−E(Np)√

Var(Np)

)
. Thus, Pr(N1 = · · · = Nl) can be approximately computed by

Pr(N1 = · · · = Nl) ≈
KD∑
k=1

(
Φ
(
k + 0.5− E(Np)√

Var(Np)

)
− Φ

(
k − 0.5− E(Np)√

Var(Np)

))l
.

Then, for any β ∈ [0, 1], it is easy to compute the minimum integer l such that
Pr(N1 = · · · = Nl) ≤ β. We denote lmin(β) this value that will be used as a threshold
for the Total failure test when too many subsequent counter values are identical. The
pseudo-code below returns such lmin(β):



224 Enhancing Quality and Security of the PLL-TRNG

Algorithm 1: Computation of lmin(β).
`← 1;

while
∑KD
k=1

(
Φ
(
k+0.5−E(Np)√

Var(Np)

)
− Φ

(
k−0.5−E(Np)√

Var(Np)

))`
> β do

`← `+ 1;
end
return `

The specific value of β will be related to the probability of false alarm we can accept
with this test during an operating time of t sec during which the generator produces t

KDT0
counter values (i.e. the probability that an ideal generator produces indeed l identical
consecutive values during time t sec) and is computed as β = KDT0

t .
As an example for Configuration A, Table 1 presents the thresholds lmin(β) for different
false alarm scenarios and the latency (lmin(β)KDT0) of the test that is very small as it is
expected for a Total failure test.

Table 1: Total failure test thresholds for configuration A (KM = 728, KD = 435,
T0 = 4.61 ns) for different false alarm scenarios and corresponding latency.

False alarm parameters Once per day Once per week Once per month
β 2−34.58 2−37.38 2−39.49

lmin(β) 24 26 28
Latency (as the number of periods T0) 10 440 11 310 12 180

Latency (in µs) 80.643 87.363 94.083

To compare these results to the old design of the Total failure test, recall that it was
based on 255 output bits; for this configuration with KD = 435, it corresponds to the
latency of 110 925 periods T0. This new test design is therefore roughly ten times faster
to raise an alarm in case of Total failure. Note that counting repetitions of the least
significant bit of the time-to-digital converter (the equivalent of the decimator output bit
in the original architecture) would also be possible, but this would significantly reduce
both agility and robustness of the test. Note also that other additional sub-tests can be
used to reinforce the Total failure test. Namely, the "locked" flag usually available as a
PLL output can be used to verify that the PLL is indeed locked, since only locked PLLs
ensure proper behavior of the PLL-TRNG.

4.2 Online test
The Online test is based on an estimation of the Allan variance according to Eq. 4, and
its comparison with a predefined threshold. We compute the Allan variance based on
4096 counter values, as a compromise between precision and latency. If higher precision is
needed, the number of counter values can be easily increased with small impact on the
cost. Recall that we can compare the estimated Allan variance to a threshold on statistical
variance, as the PLL naturally filters out low frequency noises.

The threshold value acts as a minimal required variance Vmin derived from a minimal
jitter σmin (see Fig. 5) that is required to obtain at least the lower bound of entropy per
bit (e.g. H∞ = 0.98 according to [PS22]). Besides the jitter size (σmin), the variance Vmin
also depends on the value of the initial clock phase φ0 and the duty cycle α. To account
for all possibilities, Vmin is derived considering the best and worst possible case for the
pair (φ0, α) as it is illustrated in Fig. 7.

Note that, if the variance is below 0.5, it is not possible to have precise information
about the jitter. Indeed, a configuration with a very small jitter but with a best case
scenario for φ0 and α will produce two contributors in the middle of both rising and falling
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edge and give a variance of at least 0.5. So there is an absolute minimum threshold of 0.5
for Var(Np) that can also be used as a complementary test to the Total Failure test.

The model can also be used to set an upper bound of the variance. Indeed in normal
operating conditions, the jitter shouldn’t be too high. As the variance is an increasing
function of the jitter, this upper bound could be used to detect any attempt (e.g. in
corner conditions) of manipulation of the source of randomness. Because the jitter will be
configuration-dependent, it is not possible to set an absolute value for σmax as it was done
for the lower bound.
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Figure 7: Variance of counter values as a function of the jitter for Configuration A,
computed with Prop. 5 in both best (dotted curve above) and worst (dotted curve below)
cases and for a random choice of φ0 and α (solid curve). Note that for the smallest jitter
value required in this configuration, the best case and worst case Vmin values are identical.

5 Hardware implementations
5.1 PLL-TRNG setup
The PLL-TRNG design is restricted essentially to the choice of the design space param-
eters ς ∈ {fin,M1, N1, C1, PV CO1, f1, n,M0, N0, C0, PV CO0, f0}, where fin is the input
frequency, Mi, Ni, Ci, and PV COi, i = {0, 1} are division factors of the PLL as presented
in Fig. 8, f1 and f0 are output frequencies of PLL1 and PLL0, respectively and n is number
of outputs of the PLL1. Namely, the objective of the design is to select the parameter

clkin

CP LF VCO
8

÷ M

÷ N

...

clkout0

clkout1

clkout(n-1)

8
÷ PVCOPFD

÷ C0

÷ C1

÷ Cn-1
fouti =  

N · Ci

M
fin   

Figure 8: Typical phase-locked loop (PLL) architecture (PFD – Phase-frequency detector;
CP – Charge pump; LF – Loop filter; VCO – Voltage-controlled oscillator; N , M , PV CO,
Ci – input, loop, Post-VCO, and output frequency division factors, respectively).

values, which are within the intervals supported by the selected technology (e.g. [Int19])
and which will guarantee suitable bitrate R and sensitivity to jitter S (and thus entropy).
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In our experiments, we used Intel Cyclone V FPGA device 5CEBA4F17C8N, Xilinx Spar-
tan 6 FPGA device XC6SLX16-2FTG256C, and Microchip SmartFusion2 FPGA device
M2S025-FG484, referred to in the following tables as CV, S6 and SF respectively. To find
all possible PLL-TRNG configurations under the selected design constraints, we use the
Python code presented in [CBBB20], which we upgraded as explained in Section 3.3.

In our experiments, we used the two-PLL TRNG configuration with the input frequency
fin = 125 MHz. While searching for possible configurations, we limited the reference clock
frequency to f0 < 250 MHz to guarantee timing constraints in counters and embedded
tests. These requirements limited the design space for each device to hundreds of thousand
possible configurations: more than 500 thousand configurations in Intel Cyclone V and
Cyclone 10 FPGAs, about 100 thousand in Xilinx Spartan 6 and Spartan 7 FPGAs, and
more than one million in Microchip SmartFusion2 FPGA. The exact values depending on
input and output frequency constraints can be obtained using the Python code available at
the GitHub repository [SDB+23]. We can observe in particular that some configurations
propose very good performance but display just one low distance; this is the main motivation
for our refined analysis of all time distances rather than just filtering by minimal value.

From the available configurations, we first selected the one which was identical for all
three devices – Configuration A. Next, Configuration B is chosen to give a high sensitivity
to the jitter, high distances between contributors, and a satisfying bitrate. Finally,
Configuration C aims to show the impact of small time distances between contributors
on correlations, while giving bitrates comparable with Configuration B. Table 2 presents
selected configurations in the three available FPGA families. For all configurations,
fin = 125 MHz, KM and KD are the TRNG multiplication and division factors, R is the
bitrate, S the jitter sensitivity.

Table 2: Selected PLL-TRNG configurations for the Intel Cyclone V FPGA, -C8 speed
grade (configurations marked CV), Xilinx Spartan 6 FPGA, -2 speed grade (configurations
S6), and Microchip SmartFusion2 FPGA, standard speed grade (configurations SF).

Config. M0 N0 C0 P0 f0 M1 N1 C1 P1 f1 KM KD R S
name [MHz] [MHz] [Mb/s] [ps−1]
CV_A
S6_A 29 4 7 1 129.46 26 5 3 1 216.67 728 435 0.30 0.094
SF_A
CV_B 99 13 4 1 237.98 8 1 5 1 200.00 416 495 0.48 0.099
S6_B 19 4 4 1 148.44 29 5 5 1 145.00 464 475 0.31 0.069
SF_B 31 4 4 1 242.19 23 3 3 1 319.44 368 279 0.87 0.089
CV_C 5 1 3 2 208.33 147 19 5 1 193.42 441 475 0.44 0.092
S6_C 33 4 7 1 147.32 17 5 3 1 141.67 476 495 0.30 0.070
SF_C 35 11 2 2 198.86 17 3 3 1 236.11 374 315 0.63 0.074

5.2 Implementation results
For a fair comparison, we realized three hardware modules, one for each family, with an
identical architecture. The modules were powered from linear power supplies to avoid
switching noises. Low noise quartz oscillators were used to generate the clock signal clkin.

One of the timing-critical parts of the PLL-TRNG design from Fig. 3 are the two
counters: the T-base counter and counter of samples equal to one representing the time-to-
digital converter. Both count up to KD − 1 at the frequency of clk0. According to Table 2,
KD is always smaller than 511, so 9-bit counters are sufficient. These counters are fast
enough even in the slowest family (SmartFusion2) to run at frequencies up to 250 MHz.
The embedded tests receive m-bit input data in time intervals equal to KD · T0, which
are largely sufficient to perform more complex multiplication and addition operations.
Another problem concerning placement and routing is the position of the first flip-flop of
the sampler and the way the clock signal clk1 arrives to its data input. Indeed, the PLLs
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are aimed at generating clock signals (and not data) and are thus preferably connected to
clock trees. We placed the first flip-flops as close as possible to the PLL1 output and used
a regional clock tree for the Cyclone V family, and local routing resources for Spartan 6
and SmartFusion2.

We used the signal xi from Fig. 3, which was output from the device via dedicated LVDS
pins, to acquire 32 Mb of sampler output bits at high speed. The acquired files were used to
reconstruct images of the period T1 (see the right panels in Fig. 10 and 11 as two examples),
to compute counter values and their mean values, Allan variance and the variance based
on the probability distribution of contributors used in the model. Finally, from the same
file, we generated the raw binary signal (TRNG output) and applied NIST SP 800-90B
statistical test [SBK+18] to confirm that the generated values are IID and to estimate
their min-entropy H∞. All generated files are available in the repository [SDB+23].

Implementation results for the three PLL-TRNG configurations with one and two PLL1
outputs implemented in three available FPGA families are presented in Table 3. The
mean counter values correspond approximately to KD/2 confirming that the duty cycle
is close to the expected value of 0.5. Note that counter values close to 0 or KD would
indicate possible loss of entropy (some contributors could be missing). We present only
the Allan variance of counter values, since the Allan variance and traditional variance were
always practically the same as can be seen in the log files in the GitHub repository. This
observation confirmed the ability of the PLL control loop to largely mitigate the impact of
the auto-correlated low frequency noises.

Table 3: PLL-TRNG implementation results for configurations A-C from Table 2 with
one and two PLL1 outputs, implemented in selected devices: CV, S6 and SF.

One PLL1 output Two PLL1 outputs
Config. R # Cnt Cnt Model H∞ # Cnt Cnt Model H∞
name [Mb/s] contr. mean Avar. var. (tests) contr. mean Avar. var. (tests)
CV_A 0.30 11 218.3 1.78 1.79 0.999 23 235.6 2.38 3.62 0.994
S6_A 0.30 11 217.8 1.85 1.84 0.996 24 218.3 3.20 3.81 0.995
SF_A 0.30 20 218.2 2.17 3.24 0.995 40 214.6 2.96 6.45 0.996
CV_B 0.48 8 250.2 1.16 1.21 0.993 15 264.3 1.70 2.41 0.995
S6_B 0.31 9 237.3 1.76 1.56 0.996 18 236.7 2.32 2.97 0.996
SF_B 0.87 9 140.4 1.11 1.37 0.996 18 135.9 1.68 2.75 0.995
CV_C 0.44 8 239.9 1.70 1.41 0.913 19 252.9 12.2 3.02 0.988
S6_C 0.30 11 247.3 1.01 1.79 0.962 24 248.7 8.09 3.84 0.993
SF_C 0.63 20 157.9 0.55 3.09 nonIID 39 153.3 11.3 6.16 0.729

Last but not least, we can observe differences between variances computed from the
counter values and the variance computed from the model, which is based on probabilities
of contributors assuming they are independent. While all the variances should ideally be
the same, these differences outline some noticeable correlation between the contributors.
Specifically, we could expect stronger correlations in Configurations C.

We also implemented the same configurations, but with two PLL1 outputs as a way of
improving the entropy rate; results are presented in the right part of Table 3. As could be
expected, the number of contributing bits and the variance computed from the model are
doubled. However, the difference between variances of counter values and the variance
computed from the model are bigger than in configurations with one PLL1 output. Once
again, this indicates an even stronger correlation in the generated signals, explained mostly
by the reduced distance between most contributors.

5.3 Effectiveness of the Online test and threshold selection
As we explained in Section 4.2, the result of the Online test depends on the required
threshold value for the Allan variance of the counter values, derived from the required
entropy rate (e.g. H1 = 0.9998 or H∞ = 0.98 according to [PS22]). We use the stochastic
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model from Section 3 to compute this threshold to obtain 1.06 for the required Shannon
entropy (H1) and 1.09 for the required min-entropy (H∞). The developer will have the
responsibility to claim either one or the other (or both) of these required entropy rates.

To assess the effectiveness of the Online test, we collected data samples over a grid of
environmental parameters regulated by temperature and power supply. We considered three
values for the temperature, which correspond to the used commercial version of devices (low
– 0◦C, nominal – 24◦C and high - 85◦C [Int19, Xil15, Mic18]) and three values for the power
supply (low, nominal, and high) depending on the device specification (1.07, 1.10, 1.13
for Cyclone V [Int19], 1.14, 1.20, 1.26 for Spartan 6 [Xil15] and SmartFusion 2 [Mic18]).
For each combination of card, temperature and power supply, we collected 8 data files
containing 32 MB of continuous samples. We then computed the NIST min-entropy
estimate and the Allan variance value for each of them, for a total of 216 = 8× 3× 3× 3
acquisitions and measurements. Figure 9a presents the min-entropy estimates against the
Allan variance for different temperature and power values.

(a) Min-entropy rates against the Allan variance. (b) Classification results.
Figure 9: Classification of high/low min-entropy rates with Allan variance (all families,
all voltage and temperature conditions, Config. B).

We framed the problem as a binary classification task of high (at least 0.98) and low
(below 0.98) min-entropy rate, based on the Allan variance. The Online test is expected to
pass under high entropy and raise an alarm under low entropy. Various decision thresholds
give rise to a trade-off between the false-positive rate (FPR) and false-negative rate (FNR).
To evaluate the overall optimal accuracy, we followed the framework of Receiver Operating
Characteristic (ROC) curves typically used in binary classification [Nah22].

The Allan variance value was passed through a logistic regression classifier, which
achieved very high accuracy (ROC-AUC bigger than 90%). We empirically find that the
variance value of 1.1 strikes a good balance across variety of families and environmental
conditions (see Figure 9b). More information and the detailed version of this analysis can
be found in the project repository [SDB+23].

6 Evaluation of the stochastic model assumptions

This section discusses results of experiments and statistical tests that were run to further
confirm the model assumptions from Section 3.1: stationarity and correlations, both in the
sampler output (in the pattern observed in periods TP ) and in the counter values. The
codes and all input data are available from the GitHub repository [SDB+23].
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6.1 Stationarity of the sampler output (contributors in the pattern)
We first confirmed the stationarity of the sampler output by hardware experiments.
Fig. 10 and 11 show the evolution in time of sets of KD original samples featuring the
pattern and followed by the set of reordered samples representing the image of subsequent
periods T1. During the whole observation, the time position of contributing bits located at
clock edges remains constant, which backs our claim of stationarity of the sampler output;
at least for a sufficiently long time that the Online test can consider it stationary.
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Figure 10: Evolution of KD samples before (above) and after (below) reordering to obtain
the image of period T1 during 15 ms, black pixels are bits equal to zero, white pixels are
bits equal to one (left) and reconstruction of period T1 with indices i of contributors in
the period TP , for Configuration B within the Spartan 6 device (right).
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Figure 11: Evolution of KD samples before (above) and after (below) reordering to obtain
the image of period T1 during 15 ms, black pixels are bits equal to zero, white pixels are
bits equal to one (left) and reconstruction of period T1 with indices i of contributors in
the period TP , for Configuration C within the Spartan 6 device (right).

We also performed a statistical test to confirm local stationarity of the sampler output
for all three families. To this end, we run the multivariate version of the KPSS test [NH00]
(referred to as loc-KPSS) over blocks of 10 000 subsequent vectors of the sampler output.
We then compared the obtained test statistics against the critical value (see Table 4 for
results and the code repository for details).

6.2 Stationarity of raw bits and counter values
We evaluated stationarity of raw bits and counter values using two established tests:
Augmented Dickey-Fuller test [DF79] (ADF) as well as Kwiatkowski, Phillips, Schmidt,
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Table 4: Results of stationarity and serial correlation tests (p-values). Tests confirm-
ing stationarity, respectively independence, at the confidence level α = 0.01 (following
[SBK+18]) are marked in green. Recall that KPSS checks the hypothesis of stationarity,
ADF tests non-stationarity, and Ljung-Box asserts lack of serial correlation.

Stationarity Autocorrelation

Test Contributors Raw bit Counter Counter Raw bit
Config card loc-KPSS KPSS ADF KPSS ADF LjungBox LjungBox

CV_A CV 0.10 0.10 0.00 0.01 0.00 0.00 0.07

S6_A S61 0.10 0.06 0.00 0.07 0.00 0.63 0.36
S62 0.10 0.10 0.00 0.05 0.00 0.38 0.16

SF_A SF 0.10 0.10 0.00 0.02 0.00 0.00 0.34

CV_B CV 0.10 0.10 0.00 0.01 0.00 0.00 0.36

S6_B S61 0.10 0.10 0.00 0.01 0.00 0.00 0.64
S62 0.10 0.10 0.00 0.10 0.00 0.04 0.63

SF_B SF 0.10 0.10 0.00 0.01 0.00 0.00 0.65

CV_C CV 0.10 0.05 0.00 0.01 0.00 0.61 0.93

S6_C S61 0.10 0.10 0.00 0.01 0.00 0.38 0.84
S62 0.10 0.10 0.00 0.01 0.00 0.12 0.63

SF_C SF 0.01 0.01 0.00 0.01 0.00 0.00 0.00

and Shin test [KPSS92] (KPSS) from the package statsmodels [SP10]; note that in the
KPSS test, reported p-values are rounded to the available range of 0.01-0.10.

The results for our three cards are presented in Table 4. Based on these results, we
can make the following observations:

• Only local stationarity of counter values - the counter variance shows a slight stochastic
drift over time, which is likely due to the presence of some low frequency noise,

• Strict stationarity of output bits, as confirmed by both KPSS and ADF tests.
To apply our new Online and Total Failure tests, we only need local stationarity of the
counter values, so these results confirm Assumption 2.

6.3 Dependencies in raw bits and counter values
The stationarity of output bits (Section 6.2) enables testing of possible long-term depen-
dencies in the counter output. In each experiment, 32 MB of data from the relevant
configuration were used to run Ljung-Box test on both counter values and output bits,
implemented in the package statsmodels v0.13.5 [SP10]. The results are presented in
detail in the right part of Table 4; they demonstrate that:

• there are no short or long-term dependencies in the output bits, except on configura-
tion SF_C where Table 3 shows the most correlation,

• there may be dependencies in the counter values pointed out by the LjungBox test.
Assumption 4 is therefore validated. The tests used default implementation parameters.
Note that the confidence in the claim of possible dependencies in the counter values is
weak, as the test may falsely reject data due to the long-term fluctuations in stationarity.

6.4 Correlation in the source of randomness
We evaluated intra-pattern dependencies in the chosen configurations, by estimating
lagged correlations between contributing bits (cf. Definition 2). In each experiment, the
correlation matrix was estimated using 32 MB of data; the resulting matrices have been
compared between different configurations. The findings are as follows:

• We observe that correlation of contributing bits sharply decays with distance. This
pattern is consistent across device families, cards, and even the number of PLL
outputs as shown in Fig. 12.
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Figure 12: Correlations within the pattern period TP in Configurations A, B, and C with
one (above) and two (below) PLL1 outputs in two Spartan 6 devices (blue and red curve,
respectively).

• Configuration B features the smallest correlations, while configuration C tends to
have bigger ones. Although it has more contributors, most of them are close – we
see a peak at distances 13 and 26. A full correlation matrix is shown in Fig. 13.

• While adding a second output to PLL1 to try and increase the bitrate of the TRNG,
we see that it also has the downside of reducing the correlation decay; this limitation
must not be overlooked.

• An identical analysis performed on a second Spartan 6 card shows lower correlations
across the range of lags – see the red dashed graphs in Fig. 12. We attribute this to
random luck, as controlling the time distances between contributors is a sufficient
condition for absence of correlation but not a necessary one.

These empirical results verify Assumption 3 under the condition stated in Section 3.3 for
the distance threshold between contributing bits.

7 Discussion
As we could see in Section 5.1, different FPGA families differ in degrees of freedom in the
choice of the PLL-TRNG configuration. Forcing a minimal sensitivity to the jitter (S) is
helpful in reducing the number of solutions, but the quality of the selected configuration
has to be further verified in hardware for two reasons: first, the jitter corresponding to
the selected configuration is not known beforehand; secondly the correlations between
contributing bits depend on the configuration and on the jitter and may not be negligible.

Indeed, we observed that the intra-pattern correlations are hard to avoid completely.
Since the available model assumes negligible correlations between samples, the designer
has to find a configuration in which this assumption can be verified.

To recover some bitrate, we explored going from 1 to 2 PLL outputs – we double the
number of random bits, but introduce unavoidable correlations. Empirically, the counter
variance rises, but the theoretical +100% rise is not obtained because, as random bits
are too close to each other, correlation reduces the individual impact of each contributor.
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(a) Config S6_B (b) Config S6_C
Figure 13: Correlations between contributing bits within the pattern period: examples of
a "good" (a) and a "bad" (b) configuration, in the Spartan 6 device S6_1.

Nevertheless, we still could find some configurations with negligible correlations (for
example configuration S6_B with two PLL1 outputs).

We have to stress that thanks to the coherent sampling principle, we can observe and
avoid correlations before randomness extraction (before the TDC in our case). This is not
possible in any TRNG based on free-running oscillators, in which this kind of correlations
certainly exist, but cannot be observed or quantified.

We observed that once a good configuration is found, the results are repeatable for the
same type of hardware (i.e. card, device, and its configuration, as it can be seen in Table 4
and Fig. 12 for similar results in both Spartan 6 devices). In addition, the stationarity of
the TRNG output is not an issue, primarily thanks to the behavior of the PLLs. Last but
not least, since PLLs occupy a separate device area and are powered from independent
power supplies, the logic running in the programmable area has practically no impact on
the generated numbers.

The cost of the new PLL-TRNG version including the TDC and new embedded tests
is very similar in the three tested FPGA families, especially concerning the use of PLLs,
registers and DSP modules: besides the two PLLs, about 58 registers are needed to
implement the core of the PLL-TRNG including two sampling registers per each PLL1
output, two times 9 registers for counters, and up to 34 registers for the FIFO. The number
of required combinational blocks depends on the family: 41 ALUTs in Cyclone V, 14 LUT
slices in Spartan 6 and 55 LUTs in SmartFusion2. The two embedded tests require 131
registers and one DSP module in each family and an additional 74 ALUTs in Cyclone V,
69 LUT slices in Spartan 6, and 133 LUTs in SmartFusion2.

We also tested the speed (latency) and efficiency of embedded tests. To test performance
of the Total failure test, we modified the frequency of the reference clock signal clk0 – the
PLL0 was replaced by an external clock signal generator. The left panel in Fig. 14 depicts
the oscilloscope screenshot when the frequency of clk0 was modified in configuration CV_B
from the nominal frequency of 237.98 MHz to 200 MHz (to simulate locking with clk1).
The Total failure alarm was triggered in 103.5 µs. In this case, the Online test alarm was
triggered much later (not visible in the figure). The right panel in Fig. 14 depicts the case
when the nominal frequency was changed to 231 MHz (not sufficient to trigger the Total
failure alarm). The Online test was triggered in 8.5 ms, i.e. in time in which the TRNG
parameters have been shown to be stationary (at least 15 ms as shown in Fig. 10 and 11).
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103.5 µs

8.5 ms

Figure 14: Total failure test (red waveform on the top) and online test (blue waveform on
the bottom) alarms during total failure (left) and online (right) attacks, on the CV_B
configuration featuring one PLL1 output.

8 Conclusions

In this paper, we proposed a new PLL-TRNG architecture with enhanced security. We
believe that the new design approach and corresponding results have a great importance in
the TRNG security in general and in the PLL-TRNG design in particular. Indeed, some
ideas have a general scope and are applicable to most TRNG designs:

1. Evaluating the randomness as close to the source as possible gives much more
information about the source itself, allowing for an enhanced model and increased
security. Namely, we evaluate correlations before the time-to-digital conversion
(TDC);

2. Evaluating the randomness using a multi-bit resolution gives more information,
which our design takes advantage of – the tests can be faster and even more efficient
than standard general-purpose black-box statistical tests. Namely, we model the
9-bit counter value by a Poisson binomial probability law, which we use to define
meaningful thresholds for repetition counts and Allan variance with better response
time and accuracy.

Some new ideas are also specific to the PLL-TRNG:
1. The study of correlation at the source of randomness is possible thanks to the

knowledge of a pattern period TP and isolation of so-called random samples – or con-
tributors. Note that in generators using freely running oscillators the sampler output
features a dynamically changing pattern and the correlations between contributors
cannot be therefore evaluated. This evaluation is possible only in PLL-based TRNG,
which we do for the first time in this paper;

2. We introduced a new parameter to allow for some control of the intra-pattern
correlations – the time-distance between contributing bits in the pattern period TP .
Through an appropriate search in the design parameter space, we can ensure that
this distance is high enough that random bits are uncorrelated, assuring in turn that
the model is a better fit to the implemented design.
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