
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2023, No. 4, pp. 167–187. DOI:10.46586/tches.v2023.i4.167-187

On Provable White-Box Security in the Strong
Incompressibility Model

Estuardo Alpirez Bock1, Chris Brzuska2 and Russell W. F. Lai2

1 Xiphera LTD, Espoo, Finland estuardo.alpirezbock@xiphera.com
2 Aalto University, Espoo, Finland chris.brzuska@gmail.com,russel.lai@aalto.fi

Abstract. Incompressibility is a popular security notion for white-box cryptography
and captures that a large encryption program cannot be compressed without losing
functionality. Fouque, Karpman, Kirchner and Minaud (FKKM) defined strong
incompressibility, where a compressed program should not even help to distinguish
encryptions of two messages of equal length. Equivalently, the notion can be phrased
as indistinguishability under chosen-plaintext attacks and key-leakage (LK-IND-CPA),
where the leakage rate is high.
In this paper, we show that LK-IND-CPA security with superlogarithmic-length
leakage, and thus strong incompressibility, cannot be proven under standard (i.e.
single-stage) assumptions, if the encryption scheme is key-fixing, i.e. a polynomial
number of message-ciphertext pairs uniquely determine the key with high probability.
Our impossibility result refutes a claim by FKKM that their big-key generation
mechanism achieves strong incompressibility when combined with any PRG or any
conventional encryption scheme, since the claim is not true for encryption schemes
which are key-fixing (or for PRGs which are injective). In particular, we prove that
the cipher block chaining (CBC) block cipher mode is key-fixing when modelling
the cipher as a truly random permutation for each key. Subsequent to and inspired
by our work, FKKM prove that their original big-key generation mechanism can
be combined with a random oracle into an LK-IND-CPA-secure encryption scheme,
circumventing the impossibility result by the use of an idealised model.
Along the way, our work also helps clarifying the relations between incompressible
white-box cryptography, big-key symmetric encryption, and general leakage resilient
cryptography, and their limitations.
Keywords: White-Box Cryptography · Incompressibility · Bounded-Retrieval ·
Leakage Resilience · Impossibility · Provable Security

1 Introduction
1.1 White-Box Cryptography and Big-Key Encryption
Chow, Eisen, Johnson, and van Oorschot [CEJv03, CEJvO03] introduced the white-box
attack model, where an adversary obtains full access to the implementation code of a
cryptographic algorithm and is in full control of its execution environment. White-box
cryptography aims at designing cryptographic implementations which remain secure in the
presence of a white-box adversary. As of today, white-box programs are largely deployed for
Digital Rights Management (DRM) and protecting mobile payment applications [EMV19,
Sma14]. Typically, white-box programs correspond to white-box versions of popular
symmetric encryption schemes, such as the Advanced Encryption Standard (AES).

Defining security for white-box cryptography is intricate and has been studied by quite
a number of works [SWP09, Wys11, DLPR14, FKKM16a, ABF+20, AABM20, ABCW23,
HITY22]. In particular, Delerablée, Lepoint, Paillier, and Rivain (DLPR) [DLPR14] noted

Licensed under Creative Commons License CC-BY 4.0.
Received: 2023-04-15 Accepted: 2023-06-15 Published: 2023-08-31

https://doi.org/10.46586/tches.v2023.i4.167-187
mailto:estuardo.alpirezbock@xiphera.com
mailto:chris.brzuska@gmail.com,russel.lai@aalto.fi
http://creativecommons.org/licenses/by/4.0/

168 On Provable White-Box Security in the Strong Incompressibility Model

that necessary security goals for white-box programs include not leaking the key (security
against key extraction) and not leaking the message (one-wayness). In addition, the authors
also pointed out that white-box programs might be susceptible to so called code-lifting
attacks, where an adversary simply copies the entire execution code of the program and
runs a copy on any device of its choice [Bre12]. As a mitigation technique against code-
lifting attacks, DLPR proposed the property of incompressibility. Constructions achieve
incompressibility by designing large programs implementing the desired cryptographic
operations which only remain functional in their complete forms, i.e. if such a program is
compressed, or if fragments of it are removed, the program loses its functionality. The
idea behind incompressibility is that a white-box adversary should not be able to copy the
complete program due to its large size, e.g. it should be difficult to move such a large
program over the network. At the same time, seeing (or copying) only some fractions of the
program should not give enough information to the adversary for breaking the security of
the program. For instance, an adversary who sees the incompressible program should not
be able to derive a functionally equivalent program of smaller size, or should not be able
to copy small fragments of the program and use them for decrypting arbitrary ciphertexts.

1.1.1 Incompressibility

As mentioned above, incompressibility was introduced in [DLPR14] as a means for white-
box programs to mitigate code-lifting attacks. In the syntax of an incompressible program,
we depart from a symmetric encryption scheme of conventional size and use a white-box
compiler to derive an incompressible encryption (or decryption) program. The incompress-
ible program can then be used in combination with the encryption scheme for performing
encryptions (or decryptions) in the white-box attack model, while the inverse operation
can be performed using the original program of conventional size (and thus retaining
the original efficiency). Incompressibility seems particularly interesting for white-box
programs as it provides a means of mitigating code-lifting attacks without needing to
rely on any external hardware or software components (in contrast to e.g. device-binding
[ABF+20, AABM20, ABCW23]).

Since its introduction, a line of works [DLPR14, FKKM16a, BBK14, BI15, BIT16,
AAB+19, KLLM20, KI21, HITY22] has presented constructions and concrete designs for
incompressible ciphers according to various security definitions [DLPR14, FKKM16a, BI15,
BIT16, AAB+19, KI21, HITY22]. All these definitions capture incompressibility intuitively
as described in the beginning of this section, but differ on how an adversary obtains leakage
from the incompressible white-box program, or how/whether the adversary may interact
with encryption oracles after receiving key leakage. In particular, Fouque, Karpman,
Kirchner, and Minaud (FKKM) [FKKM16a] introduced the strong incompressibility model,
which is our main focus.

Adopting the terminology of IND-CPA-security of encryption schemes, the strong
incompressibility model can be seen as indistinguishability under chosen plaintext attacks
and key-leakage (LK-IND-CPA). The LK-IND-CPA model indeed allows the adversary
to make encryption queries after seeing key leakage.1 Intuitively, if the incompressible
construction still has enough min-entropy conditioned on the leakage, e.g. a compressed
version of the program, then the adversary should not be able to distinguish between
encryptions of different messages. In other words, this model captures confidentiality,
which implies security against key extraction and one-wayness.

1Here, the term adversary refers to the algorithm trying to break the winning condition, e.g. encrypt a
message, distinguish between two values etc. In white-box security notions, the leakage algorithm or a
compressed adversary generator is sometimes referred to as an adversary and the entity trying to break
the winning condition is sometimes referred to as a decompression algorithm.

Estuardo Alpirez Bock, Chris Brzuska and Russell W. F. Lai 169

1.1.2 Big-Key Encryption

A very similar model was considered by Bellare, Kane and Rogaway (BKR) in the context
of big-key (symmetric) encryption [BKR16]. In big-key encryption, keys of very large size
are used as a means to achieve security in the bounded retrieval model (BRM), where we
assume that the adversary can only exfiltrate a limited amount of data from a system
under attack. BKR propose to use such large keys for deriving shorter subkeys, which
can then be used for encrypting messages using conventional encryption schemes. For
capturing security, BKR consider IND-CPA under leakage (which BKR refer to as LIND)
and thus a model which is essentially identical to strong incompressibility. The two models
only differ on their definitional style, since instead of bounding min-entropy directly, BKR
consider a bounded-length leakage function which implies an upper bound on the lost
min-entropy of the key. Throughout this paper, LK-IND-CPA refers to said IND-CPA
under leakage model and we consider this definition in the context of incompressible
white-box cryptography. For completeness, Section 5 shows formally that LK-IND-CPA is
equivalent to strong incompressibility by FKKM and to the LIND model by BKR.

1.1.3 Similarities and Differences

White-box incompressibility and big-key encryption share not only common intuitive goals,
as discussed above, but also possible use cases. Bogdanov and Isobe [BI15] discuss that
incompressibility may be useful for thwarting mass surveillance, which BKR [BKR16] also
mention as a main motivation of big-key encryption. The idea is that it may be admissible
for a local user to store large keys on their own device. However, a large-scale surveillance
project might not be able to store the keys of many users, if all users employ large keys.

The main syntactical difference between incompressible white-box cryptography and
big-key symmetric encryption is the process of how large keys are generated. In big-key
encryption, a large key is simply generated at random, and the same large key is used for
both encryption and decryption. In white-box cryptography, however, the large key (or
incompressible construction) is derived from a conventional (small-key) encryption scheme
via a white-box compiler. The compiler takes the short key of the encryption scheme and
compiles it into a functionally equivalent large key/program which performs encryptions
secure under leakage.

Having functionally equivalent short and large keys is particularly useful in scenarios
where only either encryption or decryption will be performed in the presence of a leakage
adversary. For instance, if encryption and decryption are performed in a safe environment
and a leaky environment respectively, then short key may be used for encryption while the
large key should be used for decryption.

1.2 On Strong Incompressibility from Standard Assumptions
The central question that we address in this work is the following:

Can white-box incompressible schemes based on conventional ciphers really be
provably secure under standard assumptions?

This question is motivated by the use of white-box cryptography for conventional ciphers
such as AES using conventional cipher modes such as CBC mode.

We answer the above question in the negative. We show that, for some types of
encryption schemes, it is impossible to achieve LK-IND-CPA security even with very mild
leakage under simple assumptions. More concretely, we present a general negative result
showing that, if a symmetric encryption scheme satisfies a property called key-fixing, then it
cannot be proven secure under a super-logarithmic amount of leakage based on single-stage
assumptions. A single-stage assumption is defined by a game played by a single adversary,

170 On Provable White-Box Security in the Strong Incompressibility Model

which is the case for most standard definitions. For example, IND-CPA security (cf. game
indcpabske,A(1n) in Fig. 1) is a single-stage assumption. In turn, LK-IND-CPA security (cf.
game lkindcpabbke,G,β,m(1n) in Fig. 1) is a two-stage assumption since the leakage-producing
adversary A1 and the main adversary A2 only share a short leakage lkg produced by A1,
but not their complete states.

Moreover, we show that the CBC mode of symmetric ciphers is key-fixing, when
modelling the cipher as an ideal random permutation for each key. In other words,
it is impossible to provably compile a CBC-mode-based encryption into its strongly
incompressible version under single-stage assumptions. Our result highlights the importance
of taking the cipher mode into account when arguing about the incompressibility of white-
box encryption schemes built from symmetric ciphers. Reasoning only about the security
of the key generator does not suffice. For example, our result shows that FKKM’s key
generator cannot be used in combination with key-fixing symmetric-encryption schemes if
we wish to have a provably secure white-box encryption scheme.

1.3 Technical Overview
Our goal is to show that the LK-IND-CPA security of a symmetric encryption scheme with
super-logarithmic-length leakage cannot be reduced to any single-stage assumption in a
black-box way. In the following, we will refer to the length of the leakage as β = ω(logn),
where n is the security parameter. We will also assume that the a secret key is a bit string
in {0, 1}m with m = poly(n). We will use the term WBE to refer to an incompressible
white-box encryption scheme. We shall keep in mind, however, that our result also applies
to big-key encryption.

Concretely, we prove via a meta-reduction that for any single-stage assumption modelled
by a game Gb, no PPT reduction R turns a pair of PPT adversaries (A1,A2) with non-
negligible advantage against LK-IND-CPA security into a PPT algorithm R(A1,A2) with
non-negligible distinguishing advantage against the game Gb.

1.3.1 Meta-Reduction Outline

Our proof technique is inspired by the meta-reduction approach of Wichs [Wic13], who
shows an impossibility result about leakage-resilient injective one-way functions. We here
paraphrase the intuition given by Wichs in our context: Building a reduction to prove
leakage-resilience or incompressibility is difficult, because the reduction first needs to give
a key k to a first adversary A1, and then receives some leakage lkg about k. Then, the
reduction gives lkg to a second adversary A2 and additionally simulates an encryption
oracle for A2. The reduction does not know how adversary A1 computes the leakage.
Therefore, it seems that the only way in which the reduction can simulate the leakage lkg
and the encryption oracle ENC correctly together is by knowing the key k already (see
Section 6 for a discussion). If the answers to the encryption oracle fix the key k uniquely,
then we can actually formalise the above. Technically, Wichs would have implemented the
above intuition using the two following steps.

1. First, sample a pair of inefficient adversaries (A1,A2) which do not share any state
and break the security of the WBE with non-negligible advantage.

2. Next, design a PPT simulator S that simulates both adversaries with a shared state
such that (A1,A2)

comp
≈ S.

Assume towards contradiction that there exists a single-stage assumption modelled by a
game Gb and a PPT reduction R which bases the LK-IND-CPA security of the encryption
scheme on said assumption, then it follows thatRS is PPT (because bothR and S are), and

Estuardo Alpirez Bock, Chris Brzuska and Russell W. F. Lai 171

has non-negligible advantage against Gb (since (A1,A2)
comp
≈ S implies R(A1,A2) comp

≈ RS),
which contradicts the single-stage assumption.

Simulation vs. Attack. The above simulation does not give a valid attack against the
scheme, because the two adversaries “cheat” by sharing a state. In fact, the shared state
gives the second adversary the entire key rather than just the leakage. This difference is
significant because there could be exponentially many possible keys which are consistent
with the leakage, and thus it is infeasible for the second adversary to guess the key if given
just the leakage.

However, if the reduction cannot detect this cheat, then it must be as successful when
interacting with the pair of cheating adversaries as with the real (inefficient) adversaries
(A1,A2). Thus, a key point in the analysis will be to argue that, from the reduction’s point
of view, the pair of inefficient adversaries (A1,A2) is indistinguishable from the efficiently
simulated pair of cheating adversaries. Below, we outline the inefficient adversaries
(A1,A2) and their simulator in more detail.

Sampling Inefficient (A1, A2). On a high-level, our simulatable attack works as follows:
The adversary pair (A1,A2) has a hardwired random function RO, with input space
{0, 1}m and output space {0, 1}β . Note that β = ω(logn) therefore it is difficult to guess
the output of RO on any given input. As required by the security definition of WBE
(Definition 4), A1 and A2 do not share any state.

Adversary A1. We construct the first-stage adversary A1 such that it simply outputs
lkg ← RO(K) where K is the big key of the WBE. By construction, the length of
the leakage is β, as permitted.

Adversary A2. The second-stage adversary A2 receives leakage lkg as input and is given
access to an encryption oracle encO. It queries sufficiently many messages to encO,
until the key K is uniquely determined2 and then finds K by exhaustive search. If
K does not match the leakage lkg, i.e. lkg 6= RO(K), the adversary A2 returns 1. In
turn, if K matches the leakage, then it will break the IND-CPA game by sending
two distinct messages msg0 and msg1 to the challenge oracle encO, getting back a
challenge ciphertext ctxt∗, decrypting ctxt∗ using K, and returning 0 if the resulting
plaintext is msg0, and 1, otherwise.

Efficiently Simulating (A1, A2). The adversary A2 is inefficient since it searches for K
exhaustively. Nevertheless, it turns out that we can simulate the pair (A1,A2) efficiently
by a simulator S which emulates A1 and A2 jointly, i.e. the simulated adversaries are
allowed to share a state. The simulated A1 (which takes K as input) does not have a
hardwired true random function. Instead, it implements RO jointly with the simulated A2
via lazy sampling, and with queries and responses recorded in a table. The simulated A2
will not perform an exhaustive search. Instead, it only tries out all polynomially-many
values in the table, i.e. values of K that were used for querying A1.

1.3.2 Conceptual Reflections

We highlight some key points in the analysis of the above meta-reduction.

Soundness of Simulation. To detect simulation, the reduction R needs to provide a
leakage lkg = RO(K∗) to A2 without querying A1 on K∗. Here, if the reduction is
interacting with the simulated A2, it would not be successful, since the simulator wouldn’t

2Achieving uniqueness is not always possible. We elaborate on this issue shortly.

172 On Provable White-Box Security in the Strong Incompressibility Model

have the correct value of K∗ stored in its state. On the other hand, the real (inefficient)
A2 would successfully break IND-CPA as described above. However, R is only able to
implement this distinguishing strategy with negligible probability, since random values of
length β = ω(logn) are hard to guess.

Key-Fixing. In order to make the above approach work, we need to assume that the key
K is uniquely determined after seeing sufficiently many encryption queries. This property,
analogous to Wichs’ injectivity requirement [Wic13], seems necessary for our adversary
to be successful. This is because, if there were too many keys, then the inefficient A2
would pick an arbitrary key from multiple possibilities with no guarantee in decryption
correctness. Indeed, this is how Hazay, Lopez-Alt, Wee, and Wichs (HLWW) [HLWW13]
obtain feasibility results for leakage-resilient encryption. In turn, it is still quite unclear how
practical encryption schemes could reasonably avoid key-fixing. As we will see in Section 4,
CBC-mode is key-fixing when the cipher is modelled as a truly random permutation for
every key. We also show that CBC-mode continues to be key-fixing when using different
fractions of a large key for each encryption.

Different Models. Our lower bound conceptually also applies to both strong incompress-
ibility and leakage-resilient encryption when the leakage bounds are chosen appropriately.
We prove the equivalence between strong incompressibility and leakage-resilient encryption
in Section 5.

1.3.3 Outline

Section 2 provides additional background and definitions. Section 3 states and proves our
main impossibility result. Section 4 illustrates that practical encryption schemes tend to
be key-fixing by showing that CBC-mode is key-fixing even when using different chunks
from a big key rather than only a small key. This result models the underlying cipher as a
random independent permutation for every key. Section 5 relates strong incompressibility
and leakage-resilient encryption. Section 6 discusses consequences of our impossibility
result and possible avenues to circumvent it, both in theory and in practice.

2 Preliminaries
Let N = {1, 2, . . .} be the set of positive integers and N0 = {0, 1, 2, . . .} be the set of
non-negative integers. For ` ∈ N, write [`] := {1, 2, . . . , `}. We write log for log2, the
base-2 logarithm. We denote the security parameter by n ∈ N. In big-key and white-box
primitives, algorithms often take a length parameter m ∈ N as additional input. For
conciseness, we often make the parameters n and m implicit. If S is a finite set, we write
x ←$ S for sampling from S uniformly at random. For a probabilistic algorithm A, we
write y ←$A(x) for running A on the input x with implicit uniform randomness. If the
randomness r is explicit, we write y ← A(x; r) instead.

We formalise security under leakage as a game played by a pair of adversaries (A1,A2).
Adversary A1 computes leakage of the secret key and passes it to A2.

Definition 1 (Two-Stage Adversary Generators). Let G(1n) be an algorithm which outputs
a pair of two algorithms (A1,A2) forming a two-stage adversary. We call the algorithm G
a two-stage adversary generator if G is probablistic polynomial-time and A1 and A2 also
run in time polynomial in n.

Estuardo Alpirez Bock, Chris Brzuska and Russell W. F. Lai 173

indcpabske,A(1n)
k ←$ {0, 1}n

b′ ←$AencO(1n)
return b′

encO(msg0,msg1)
assert |msg0| = |msg1|
return enc(k,msgb)

KencO(msg0,msg1)
assert |msg0| = |msg1|
return Kenc(K,msgb)

lkindcpabbke,G,β,m(1n)
(A1,A2)←$ G(1n)
K ←$ Kgen(1n, 1m)
lkg ←$A1(K)
b′ ← (|lkg| ≤ β)

b′′ ←$AKencO
2 (lkg)

return b′ ∧ b′′

lkindcpabwbe,G,β,m(1n)
(A1,A2)←$ G(1n)
k ←$ {0, 1}n

K ←$ wbkgen(k, 1m)
lkg ←$A1(K)
b′ ← (|lkg| ≤ β)

b′′ ←$AencO
2 (lkg)

return b′ ∧ b′′

Figure 1: (β,m)-LK-IND-CPA-security for SKE, BKE, and WBE.

2.1 Encryption Schemes
Definition 2 (SKE). A symmetric-key encryption (SKE) scheme ske = (enc, dec) is a
pair of PPT algorithms (which implicitly input 1n).

• ctxt ←$ enc(k,msg): The randomised encryption algorithm enc takes a key k ∈
{0, 1}n and a message msg ∈ {0, 1}∗ and produces a ciphertext ctxt ∈ {0, 1}∗.

• msg ← dec(k, ctxt): The deterministic decryption algorithm dec takes a key k ∈
{0, 1}n and decrypts a ciphertext ctxt ∈ {0, 1}∗ to a message msg ∈ {0, 1}∗.

An SKE scheme ske is correct if for any n ∈ N, k ∈ {0, 1}n, and msg ∈ {0, 1}∗,

dec(k, enc(k,msg)) = msg.

2.1.1 White-Box Encryption

A white-box encryption scheme is derived from a symmetric encryption scheme with a key
of conventional size. The small key of the latter can be transformed into a functionally
equivalent big key.

Definition 3 (WBE). A white-box encryption (WBE) scheme

wbe = (wbkgen, enc, dec,Kenc,Kdec)

is a tuple of six PPT algorithms with the following properties:

White-Box Key Generation: The randomised white-box key generation algorithm K ←$

wbkgen(k, 1m) generates a big key K ∈ {0, 1}m given a small key k ∈ {0, 1}n and a
length parameter m ∈ N.

Small-Key Mode: (enc, dec) is an SKE scheme running on the short key.

Big-Key Mode: (Kenc,Kdec) is an SKE scheme running on the large key.

A WBE scheme wbe is correct if the following properties are satisfied:

Small-Key Correctness: (enc, dec) is correct (as an SKE scheme).

Big-Key Correctness: (Kenc,Kdec) is correct (as an SKE scheme).

174 On Provable White-Box Security in the Strong Incompressibility Model

Encryption Equivalence: For any PPT distinguisher D, any n,m ∈ N, m ≥ n, any
k ∈ {0, 1}n, any K ∈ wbkgen(k, 1m), any O1,O′1 ∈ {enc(k, ·),Kenc(K, ·)}, and any
O2,O′2 ∈ {dec(k, ·),Kdec(K, ·)},∣∣∣Pr

[
DO1,O2(1n, 1m)

]
− Pr

[
DO′

1,O
′
2(1n, 1m)

]∣∣∣
is negligible.

In Definition 3, the small-key mode of a WBE works independently of the length
parameter chosen for the big-key mode. In other words, a small key of a WBE scheme
could have multiple equivalent big keys of different lengths.

We next define LK-IND-CPA security for white-box encryption, as introduced by
HLWW, adapted to WBE, with the only difference being the key generation process.
Namely, for white-box cryptography, we generate a pseudorandom large key from a smaller
key. Note that the LK-IND-CPA model considered by FKKM [FKKM16a] (named strong
incompressibility model), provides the adversary access to an additional encryption oracle,
so it can obtain ciphertexts for chosen plaintexts. Our models in Fig. 1 do not explicitly
provide access to such an encryption oracle, but the adversary can still obtain ciphertexts
for chosen plaintexts simply by querying the challenge oracle with two equal messages
msg0 = msg1.

Definition 4. [(β,m)-LK-IND-CPA for WBE] Let β,m be functions of n. A WBE scheme
wbe is (β,m)-LK-IND-CPA-secure if for any PPT two-stage adversary generator G

Advlkindcpa
wbe,G,β,m(n) :=

∣∣Pr
[
lkindcpa0

wbe,G,β,m(1n) = 1
]
− Pr

[
lkindcpa1

wbe,G,β,m(1n) = 1
]∣∣

is negligible, where the experiment lkindcpabwbe,G,β,m for b ∈ {0, 1} is defined in Fig. 1.

2.2 Big-Key Symmetric Encryption
We recall the definition of big-key encryption (BKE) [BKR16]. The syntax of BKE is
almost identical to that of SKE, except that the (big-)key generation algorithm additionally
inputs a length parameter m ∈ N which determines the size of the secret-key.

Definition 5 (BKE). A big-key encryption (BKE) scheme bke = (Kgen,Kenc,Kdec) is a
tuple of three PPT algorithms with the following properties:

• K ←$ Kgen(1n, 1m): The randomised big-key generation algorithm Kgen generates a
secret key K ∈ {0, 1}m.

• ctxt ←$ Kenc(K,msg): The randomised big-key encryption algorithm Kenc produces
a ciphertext ctxt ∈ {0, 1}∗ given a big key K ∈ {0, 1}m and a message msg ∈ {0, 1}∗.

• msg ← Kdec(K, ctxt): The deterministic big-key decryption algorithm Kdec takes
a big key K ∈ {0, 1}m and decrypts a ciphertext ctxt ∈ {0, 1}∗ to a message
msg ∈ {0, 1}∗.

A BKE scheme bke is correct if for any n,m ∈ N, K ∈ Kgen(1n, 1m), and msg ∈ {0, 1}∗,

Kdec(K,Kenc(K,msg)) = msg.

Definition 6 ((β,m)-LK-IND-CPA for BKE). Let β,m be functions of n. A BKE scheme
bke is (β,m)-LK-IND-CPA-secure if for any PPT two-stage adversary generator G

Advlkindcpa
bke,G,β,m(n) :=

∣∣Pr
[
lkindcpa0

bke,G,β,m(1n) = 1
]
− Pr

[
lkindcpa1

bke,G,β,m(1n) = 1
]∣∣

is negligible, where Fig. 1 defines the experiment indcpabbke,G,β,m for b ∈ {0, 1}.

Estuardo Alpirez Bock, Chris Brzuska and Russell W. F. Lai 175

3 Impossibility Result
In this section, we prove that the (β,m)-LK-IND-CPA security of a WBE scheme cannot
be black-box-reduced to any single-stage assumption, provided that the WBE scheme is
key-fixing, and that the leakage β = ω(logn). In Section 3.1, we formalise single-stage
assumptions and black-box reductions which establish the (β,m)-LK-IND-CPA security of
WBE schemes as well as key-fixing. We then present our impossibility result in Section 3.2.

3.1 Single-Stage Assumptions, Black-Box Reductions, and Key-Fixing
Notation. In this section, we use the notation B → Gb(1n) for the interaction between
adversary B and the game Gb(1n). We denote by 1 = B → Gb(1n) the even that the
adversary returns 1 when interacting with game Gb(1n). This notation makes the adversary
the “main routine” which calls the game (rather than making the game call the adversary).

Remark. The→ notation is useful, because we can later write B = RA1,A2 and RA1,A2 →
Gb(1n). This way, the notation distinguishes between R’s black-box interface to the two-
stage adversary (A1,A2) and to the game Gb(1n). In this notation, the security parameter
is given to B and R implicitly.
Definition 7 (Single-Stage Assumption). A single-stage assumption is defined via two
PPT games G0 and G1 which provide the same set of oracles Q to an adversary B. The
assumption is then that for all PPT adversaries B,∣∣Pr

[
1 = B → G0(1n)

]
− Pr

[
1 = B → G1(1n)

]∣∣
is negligible in n.

Example. The IND-CPA security game indcpabske,A(1n) (cf. Fig. 1) is a single-stage game,
while the LK-IND-CPA game lkindcpabbke,G,β,m(1n) (cf. Fig. 1) is a two-stage assumption
since the leakage-producing adversary A0 and the main adversary A1 do not share their
complete state.

Style. Definition 7 encodes security without an experiment environment, but instead the
adversary B is the main procedure and calls oracles which are exposed by the game. This
encoding is w.l.o.g., since one can always add an oracle for setup. It is convenient, since
the interface between the adversary and the game is explicit. Moreover, encoding single-
stage games as distinguishing games is w.l.o.g., since every search game with efficiently
checkable winning condition can be encoded as a decision game by adding an oracle in
the real world which returns 1 when the winning condition is satisfied, but always returns
0 in the ideal world. This encoding of single-stage games is borrowed from [BDF+18]
and requires query restrictions on adversaries to be formulated via silencing oracles à la
Rogaway-Zhang [RZ18].

We now define what it means for a reduction to base security of a big-key encryption
scheme on a single-stage assumption.
Definition 8 (Black-Box Reduction). Let (G0, G1) be two games defining a single-stage
assumption. Let wbe be a white-box encryption scheme. A PPT oracle algorithm R
bases the (β,m)-LK-IND-CPA security of wbe on (G0, G1) if for all (possibly inefficient)
distributions G over (possibly inefficient) two-stage adversaries (A1,A2) the following holds:
If Advlkindcpa

wbe,G,β,m(n) is non-negligible, then

Adv(RO0[G],O1[G],O2[G], G0, G1)

:=
∣∣∣Pr
[
1 = RO0[G],O1[G],O2[G] → G0(1n)

]
− Pr

[
1 = RO0[G],O1[G],O2[G] → G1(1n)

]∣∣∣

176 On Provable White-Box Security in the Strong Incompressibility Model

O0[G](i, 1n)
if Ai,1 = ⊥ :

(Ai,1,Ai,2)←$ G(1n)
return ()

O1[G](i,K)
if Ai,1 = ⊥ : return ⊥
lkg ←$Ai,1(K)
return lkg

O2[G]encO(i, lkg)
if Ai,2 = ⊥ : return ⊥

b∗ ←$AencO
i,2 (lkg)

return b∗

Figure 2: Oracles given to black-box reductions which establish (β,m)-LK-IND-CPA
security of wbe. The oracle encO is implemented by the caller of O2.

is also non-negligible. See Fig. 2 for the behaviour of O0, O1, and O2. We call such an
algorithm R a black-box reduction.

The reduction R can query O0[G] with an integer i to sample a new pair of adversaries
Ai,1 and Ai,2. It can then run O1[G](i,K) which returns lkg ←$ Ai,1(K). It can query
O1[G] on as many inputs (i,K) as it likes, repeating both i and K. Similarly, R can query
O2[G] on (i, lkg). It will then obtain several encryption requests from O2[G] and eventually
obtain a bit b∗. Our proof allows rewinding. However, all oracles are stateless and it is
w.l.o.g. to assume that Ai,1 and Ai,2 do not have randomness beyond the randomness
that was used by G to generate them. Similarly, we model rewinding of the adversaries by
being able to query them multiple times with different inputs.

We now define key-fixing, which roughly means that a polynomial number of ciphertexts
uniquely determine the key with high probability. Formally, we say that a scheme is key-
fixing if there exists an algorithm UniqueChecker which determines with good probability
whether the key associated with a given set of ciphertexts is unique. The number of
required ciphertexts to determine uniqueness depends on the key size m, because if their
accumulated length is less than m, the ciphertexts cannot determine the key information-
theoretically. Additionally, for local constructions, we need to have sufficiently many
samples to access each key bit sufficiently frequently. We do not make the number of
necessary ciphertexts explicit, but instead also allow it to depend on the scheme.

Definition 9 (Key-Fixing). Let m, ` be polynomials in n. A symmetric-key encryption
scheme (enc, dec) is (m, `)-key-fixing if there is a PPT algorithm UniqueChecker such that
the following hold:

Overwhelmingly Unique For any K ∈ {0, 1}m,

Pr∀i∈[m], ci←$enc(K,0`)[UniqueChecker(c1, . . . , cm) 6= 1]

is negligible in n.

Correctness For any PPT algorithm R,

Pr(K,(ci)m
i=1)←$R(1n)

[
UniqueChecker(c1, . . . , cm) = 1
∧ ∃K ′ 6= K, ∀i ∈ [m], dec(K, ci) = dec(K ′, ci) = 0`

]
is negligible in n.

A white-box encryption scheme (wbkgen, enc, dec,Kenc,Kdec) is (m, `)-key-fixing if the
symmetric-key encryption scheme (Kenc,Kdec) is (m, `)-key-fixing.

The key-fixing property above which we require for our impossibility result on strong
incompressibility corresponds to Wichs’ [Wic13] injectivity requirement for their impossi-
bility result on leakage-resilient one-way functions. Essentially, key-fixing is a probabilistic
version of injectivity, saying that for honestly generated ciphertexts, the probability that
they fix the key is overwhelming. We remark that the choice of the all zero message 0` is
arbitrary – it suffices for the property to hold for some arbitrarily fixed message sequence.

Estuardo Alpirez Bock, Chris Brzuska and Russell W. F. Lai 177

G(1n)
RO←$ {f : {0, 1}m → {0, 1}β}
return (A1[RO],A2[RO])

A1[RO](K)

lkg ← RO(K)
return lkg

A2[RO]encO(lkg)
C ← ∅
for j ∈ [`] :

cj ←$ encO(0`, 0`)
if UniqueChecker(c1, . . . , c`) 6= 1 : return 1
findK∗ :{

RO(K∗) = lkg
∀j, 0` = dec(K∗, cj)

if no such K∗ : return 1

c∗ ←$ encO(0`, 1`)

if dec(K∗, c∗) = 0` :
return 0

return 1

Ĝ(1n)
T ← empty table

return (ÂT1 , ÂT2)

ÂT1 (K)
if T [K] = ⊥ :
T [K]←$ {0, 1}β

lkg ← T [K]
return lkg

ÂT,encO
2 (lkg)
C ← ∅
for j ∈ [`] :

cj ←$ encO(0`, 0`)
if UniqueChecker(c1, . . . , c`) 6= 1 : return 1
findK∗ :{

T (K∗) = lkg
∀j, 0` = dec(K∗, cj)

if no such K∗ : return 1

c∗ ←$ encO(0`, 1`)

if dec(K∗, c∗) = 0` :
return 0

return 1

Figure 3: An inefficient stateless adversary distribution G (left) and its efficient stateful
(with shared tables T) simulation (right), both parametrised by (m, `, β).

3.2 Impossibility Result
Theorem 1. Let m, ` be polynomials in n. Let wbe be a correct (m, `)-key-fixing white-box
encryption scheme. If β = ω(logn), then there exists no black-box reduction which bases
the (β,m)-LK-IND-CPA-security on a single-stage assumption, or the assumption is false.

In other words, the above theorem states that for all PPT reductions R and all
(true) single-state assumption modelled by a pair of games (G0, G1), the advantage
Adv(RO0,O1,O2 , G0, G1) is negligible. Of course, for an incorrect assumption, there might
still be a successful adversary.

Proof of Theorem 1. Let the games (G0, G1) model a single-stage assumption. If the
assumption (G0, G1) is false, then we are done. Below, assume that the assumption
(G0, G1) is true.

Recall that β = ω(logn) and wbe is correct and (m, `)-key-fixing. Assume towards
contradiction that there exists a PPT black-box reduction which bases the (β,m)-LK-IND-
CPA-security of wbe on the assumption (G0, G1).

Consider the distribution G of inefficient stateless adversaries defined in the left column
of Fig. 3, and the distribution Ĝ of efficient stateful adversaries defined in the right column
of Fig. 3. To prove Theorem 1, we will prove the following two claims:

178 On Provable White-Box Security in the Strong Incompressibility Model

Claim 1 (Successful Adversary). Advlkindcpa
wbe,G,β,m(n) is non-negligible.

Claim 2 (Efficient Simulation). For any PPT reduction R and all b ∈ {0, 1},∣∣∣Pr
[
1 = RO0[G],O1[G],O2[G] → Gb(1n)

]
− Pr

[
1 = RO0[Ĝ],O1[Ĝ],O2[Ĝ] → Gb(1n)

]∣∣∣
is negligible.

Assuming that both claims hold, and that R is a black-box reduction from the (β,m)-
LK-IND-CPA security of wbe to the single-stage assumption modeled by (G0, G1), we
conclude that∣∣∣Pr

[
1 = RO0[Ĝ],O1[Ĝ],O2[Ĝ] → G0(1n)

]
− Pr

[
1 = RO0[Ĝ],O1[Ĝ],O2[Ĝ] → G1(1n)

]∣∣∣
is non-negligible in n, which contradicts the single-stage assumption. It remains to prove
the two claims.

Proof of Claim 1. We argue that G almost always breaks (β,m)-LK-IND-CPA-security
when directly interacting with the security game lkindcpabwbe,G,β,m(n), i.e. the advantage
Advlkindcpa

wbe,G,β,m(n) is overwhelming. For sanity check, we note that for any (A1,A2) generated
by G, A1 has output length exactly β. It therefore remains to show that A2 guesses the
hidden bit b correctly except with negligible probability.

We first note that, by the overwhelmingly unique condition of key-fixing (Definition 9),

UniqueChecker(c1, . . . , c`) = 1

with overwhelming probability. Next, by the correctness condition of key-fixing, there is no
second K ′ 6= K∗ which could have yielded the same ciphertexts. Hence, K must be equal
to K∗. Finally, by correctness of the encryption scheme, we must have dec(K∗, c∗) = b`.

Proof of Claim 2. Observe that the only difference between G and Ĝ is that the random
function hardwired in (A1,A2) is simulated by lazy sampling in (Â1, Â2). Define R :=
RO0[G],O1[G],O2[G] → Gb(1n) and define R̂ analogously. We observe that R and R̂ produce
identically distributed outputs except when there exists a tuple (i,K∗, lkg) where all four
following events and conditions are satisfied:

• R did not query O1[G](i,K∗),

• R queried O2[G](i, lkg),

• RO(K∗) = lkg,

• UniqueChecker(c1, . . . , c`) = 1

where RO is the random function hardwired to the i-th instance of (A1,A2).
Since UniqueChecker(c1, . . . , c`) = 1, by the correctness property of key-fixing (Defini-

tion 9), there is only a unique key K∗ which is consistent with these ciphertexts. Since
R did not query O1[G](i,K∗), the value RO(K∗) for this unique key K∗ is information-
theoretically hidden from R and thus the probability that the value lkg chosen by R is
equal to RO(K∗) is negligible.

Estuardo Alpirez Bock, Chris Brzuska and Russell W. F. Lai 179

4 CBC-Mode with a Random Permutation is Key-Fixing.
We now prove that CBC mode is key-fixing when modelling the cipher as a (family of)
truly random permutation π, i.e. for any key k ∈ {0, 1}n, we treat π(k, ·) as a random
permutation and π−1(k, ·) its inverse. We first prove this statement for the case where the
key is not large (Section 4.1) and then handle the case with a large key (Section 4.2). In
order to formalise this statement, we consider an FKKM-like construction where, for each
encryption, a number of random indices into the large key are sampled, run through an
extractor (which we implement by a random matrix), and then used as a key for CBC-mode
(Section 4.2). This second result proves key-fixing for one example of obtaining small
keys from large keys. Similar results can be proven for other natural approaches using
different extractors as well, as long as all inputs bits are treated equally.

4.1 Key-Fixing of Small-Key CBC-mode
We start by describing CBC-mode. Since the length of some messages is not divisible by
n, we first need to encode the message into a multiple of n.

Definition 10 (Encoding scheme). We call two functions encoden : {0, 1}∗ → {0, 1}∗ and
decoden : {0, 1}∗ → {0, 1}∗ an encoding scheme if the following hold:

• encoden and decoden are computable in time polynomial in n and the input length.

• decoden is the inverse of encoden, i.e. for all x ∈ {0, 1}∗, decoden can recover x from
encoden(x), that is, we have decoden(encoden(x)) = x. In particular, encoden is
injective, i.e. if x 6= x′, then encoden(x) 6= encoden(x′).

• the length encoden only depends on the length of the input, i.e. if |x| = |x′|, then
|encoden(x)| = |encoden(x′)|.

• For all x ∈ {0, 1}∗, |encoden(x)| is divisible by n.

We can construct a CBC-mode encryption scheme skeπ,CBC = (enc, dec) as follows:

enc(k,msg)
n← |k|
msg′ ← encoden(msg)
nc←$ {0, 1}n

c0 ← nc

`← |msg′|
n

for i ∈ [`]
xi ← msg′(i−1)n+1...in

ci ← π(k, xi ⊕ ci−1)
ctxt ← (c0, . . . , c`)
return ctxt

dec(k, ctxt)
n← |k|

`← |ctxt|
n
− 1

(c0, . . . , c`)← ctxt
for i ∈ [`]
xi ← ci−1 ⊕ π−1(k, ci)

msg′ ← x1|| . . . ||x`
msg ← decode|k|(msg′)
return msg

Theorem 2. For m = n and ` = 3n, skeπ,CBC is (m, `)-key-fixing.

Proof. Define UniqueChecker(c1, . . . , c`) to always return 1. Therefore, the overwhelmingly
uniqueness condition is satisfied. We now turn to correctness.

We prove that a PPT adversary R cannot come up with a ciphertext c1 and a key k
such that there exists a key k′ such that dec(k, c1) = deck′(c1) = 0`. Namely, for every

180 On Provable White-Box Security in the Strong Incompressibility Model

nonce nc and keys k and k′, there is a probability of 2−n that πk(nc) = πk′(nc). Now, let
y := πk(nc) and assume that y 6= nc. Then, again, the probability that πk(y) = πk′(y)
is 2−n. Letting y′ := πk(y) and again assuming that y′ /∈ {y, nc}, the probability that
πk(y′) = πk′(y′) is 2−n. And and we get the same probability for the next ciphertext block
y′′ := πk(y′) Thus, for triple (k, k′, nc) such that |{y′′, y′, y, nc}| = 4, we have that

Prπ[dec(k, c1) = deck′(c1)] = 2−4n.

Taking a union bound over all nonces and pairs of distinct keys (nc, k, k′), the probability
over π that such a nonce and pair (k, k′) exists, is 2−n. Moreover, in a polynomial number
of queries, R will not be able to find k and nc such that {nc, y, y′} contains a collision, so
that |{y′′, y′, y, nc}| = 4 for all values that the reduction can compute. This concludes the
proof of Theorem 2.

4.2 Key-Fixing of Big-Key CBC-Mode
We now construct a big-key symmetric encryption scheme bkeπ,CBC = (Kenc,Kdec) by
augmenting the skeπ,CBC scheme constructed above. In the construction below, we derive
a subkey by multiplying a random binary matrix M to it. This gives us a subkey of
conventional length, which we use for running the CBC-based encryption scheme from
the previous subsection. Note that the construction below can equally be turned into an
incompressible white-box encryption if the large key K is itself derived from a small key of
conventional length.

Kenc(K,msg)
M ←$ {0, 1}m×n

k ← K ·M
nc←$ {0, 1}n

c′ ←$ skeπ,CBC.enc(k,msg, nc)
c← (M, c′)
return c

Kdec(K, c)
(M, c′)← c

k ← K ·M

msg ← skeπ,CBC.dec(k, c′, nc)

return msg

Theorem 3. For m ≥ n a polynomial in n and n` ≥ 2m− 1, bkeπ,CBC is (m, `)-key-fixing.

Proof. As in the proof of Theorem 2, we construct UniqueChecker so that it almost always
returns 1, but it now performs an additional check. Concretely, let Mi denote the matrix
specified in ci. UniqueChecker additionally checks that the matrix M̂ := M1|| . . . ||M` is of
full rank m over the binary field {0, 1}. If so, UniqueChecker outputs 1. Else, it outputs 0.
For a random m-by-t matrix over {0, 1} where t ≥ m, the probability that the matrix is
of full rank m is at least 1−m/2t−m+1. Setting t = n`, the probability that M̂ is of full
rank m is at least 1−m/2m which is overwhelming in n. Thus the overwhelmingly unique
property holds.

For correctness of UniqueChecker, observe that (a) the analysis of Theorem 2 now
applies to each extracted key individually. Bootstrapping from the individual keys and
using the full-rank matrix M̂ , we then obtain uniqueness of the entire big-key K.

Remark. We remark that the above impossibility can be extended to the case where M
is chosen to be a random sparse matrix (so that, for example, each encryption/decryption
only depends on κ� m bits of the big key K) as long as M̂ = M1|| . . . ||M` is of full rank
m with overwhelming probability for some ` polynomial in m.

Estuardo Alpirez Bock, Chris Brzuska and Russell W. F. Lai 181

ENC− COMb
µ,A(1n)

k ←$ kgen(1n)
K ←$ wbkgen(k)
leak(·)←$A(1n)
lkg ←$ leak(K)

b′ ←$AencO,encOb (lkg)
b′′ ← (H∞(K|lkg)) ≥ µ)
return b′ ∧ b′′

encO(m)
c←$ Kenc(m)
return c

encOb(m0,m1)
if |m0| = |m1|
cb ←$ Kenc(mb)

return cb

Figure 4: Strong incompressibility model.

LINDbβ,A(1n)
leak(·)←$A(1n)
K ←$ kgen(1n)
lkg ← leak(K)

b′ ←$AencOb (lkg)
b← |lkg| ≤ β
return b′ ∧ b′′

encOb(m0,m1)
if |m0| = |m1|
cb ←$ Kenc(K,mb)

return cb

Figure 5: LIND security

5 Equivalence of Strong Incompressibility and Big-Key En-
cryption Security

In this section, we show that the strong incompressibility model of FKKM ([FKKM16a,
Definition 4] or Definition 11 below) and the LIND model of BKR ([BKR16, Figure
10] or Definition 11 below) are equivalent to the LK-IND-CPA model when choosing
appropriate leakage classes. We thus show formally that our impossibility result from
Section 3 does not only apply to incompressible white-box cryptography, but also to big-key
symmetric encryption and any other leakage-resilient cryptographic schemes whose security
is defined via LK-IND-CPA.

Definition 11 (Strong Incompressibility [FKKM16a, Definition 4]). A WBE-scheme is
µ-strongly incompressible (ENC-COM) if for any PPT stateful adversary A the following
advantage ∣∣Pr

[
1 = ENC− COM0

µ,A(1n)
]
− Pr

[
1 = ENC− COM1

µ,A(1n)
]∣∣,

is negligible, where the experiment ENC− COMb
µ,A(1n) runs as described in Section 5.

Definition 12 (LIND-security [BKR16, Figure 10]). A BKE-scheme is β-LIND-secure if
for any PPT stateful adversary A the following probability is negligible,

Pr
[
1 = LIND0

β,A(1n)
]
− Pr

[
1 = LIND1

β,A(1n)
]
,

where Fig. 5 defines LINDbβ,A(1n).

Our previously defined LK-IND-CPA game defines an upper bound β on the leakage.
Instead, LK-IND-CPA can also consider adversary pairs (A1,A2) which ensure that the

182 On Provable White-Box Security in the Strong Incompressibility Model

min-entropy of K conditioned on the leakage is greater than some value µ. With a strict
upper bound β as defined previously, LK-IND-CPA is equivalent to LIND security, and
with a min-entropy bound, LK-IND-CPA security is equivalent to strong incompressibility.
We now show that if a scheme is LK-IND-CPA secure w.r.t. a strict upper bound β, then
it is also LK-IND-CPA secure with a closely related upper bound on the leakage resulting
from the following claim.

Claim 3 (Relation between leakage classes). Let leak be such that |leak(K)| ≤ β for all
K ∈ {0, 1}m. Let δ = ω(logn). Given leakage lkg := leak(K), the min-entropy H∞(K|lkg)
is at least m− β − δ except with negligible probability over the choice of K.

Proof. The claim follows by a counting argument. There are 2m values of K and at most
2β leakage values of lkg. For any fixed leakage lkg, write

Klkg := {K : leak(K) = lkg}.

Let S be the set of lkg such that

|Klkg| < 2m−β−δ.

Now, the union ⋃
lkg∈S

Klkg

contains at most
|S| · 2m−β−δ < 2m−δ

elements. Thus, the fraction of keys K which lead to leakage that has too low min-entropy
is at most

2m−δ
2m = 2−δ,

which is negligible, which concludes the proof.
Therefore, when an adversary is a valid adversary w.r.t. leakage bounded by β, then

the adversary is also a valid adversary w.r.t. min-entropy |K| − β − δ for any δ = ω(logn).
Hence, our impossibility result also applies to models which consider min-entropy.

6 Discussion
We now discuss consequences of our impossibility result.

Implication to FKKM’s Strong Incompressibility Model. FKKM [FKKM16a] use a
symmetric-key cipher, e.g. AES, to generate large look-up tables as well as their input
queries. These tables are intended as an incompressible key generator for deriving subkeys,
to be fed into a PRG or any conventional encryption scheme for encrypting messages.

In their original paper, FKKM claim that this composition yields LK-IND-CPA-security
based on the security of the underlying cipher. However, this contradicts our impossibility
result, and indeed, FKKM did not provide arguments to support the claim. More concretely,
the security proof only argues about indistinguishability of keys, but the reduction does
not emulate encryption oracles. Therefore the security argument is insufficient for proving
LK-IND-CPA-security, but only a weaker (or incomparable) model of security. Inspired by
our impossibility result, FKKM revisited their security analysis [FKKM16b, Appendix D]
and now prove that their key generator can be combined with a length-expanding random
oracle to yield an LK-IND-CPA-secure encryption scheme in the random oracle model.
The use of idealised models circumvents our impossibility result.

Estuardo Alpirez Bock, Chris Brzuska and Russell W. F. Lai 183

(Non-)Implication to Other Security Models. Our impossibility result does not apply
to weaker incompressibility models without encryption oracles, as considered, for example,
in [DLPR14, BI15, BIT16, BBK14, CCD+17, AAB+19, KLLM20, KI21]. Although we
present our negative result in the context of incompressible white-box cryptography, it
readily generalises to any leakage-resilient encryption scheme whose security implies LK-
IND-CPA-security, such as big-key symmetric encryption. For completeness, we showed
formally that both FKKM’s strong incompressibility and the BKR’s LIND-security are
equivalent to LK-IND-CPA-security (cf. Section 5).

Circumventing our Impossibility Result. Given that our impossibility result rules out
proving key-fixing schemes secure under single-stage assumptions in the standard model,
natural approaches towards circumvention include:

• proving security in an idealised model such as the random oracle model (ROM),

• proving security under two-stage assumptions, or

• designing a non-key-fixing scheme.

Using Random Oracles or Two-Stage Assumptions. Highly efficient encryption with
provable LK-IND-CPA-security with large leakage was achieved in the context of big-key
encryption in BKR [BKR16] and a follow-up work by Bellare and Dai (BD [BD17]) in the
random oracle model. In particular, BKR and BD seek to reduce the number of (blocks of)
bits accessed by, i.e. the locality of, the encryption algorithm to securely derive a subkey,
where the former is modelled as a function of (1) the key size and (2) the output length of
the adversarially chosen leakage function.

BKR and BD further show that the random oracle can be instantiated using universal
computational extractors (UCE) [BHK13]. UCEs are a strong two-stage-assumption
for hash-functions which, in some cases, can be instantiated from indistinguishability
obfuscation [BFM14] in a provably secure, yet inefficient way. As of now, no practically
efficient, provably secure constructions of UCEs based on standard assumptions are known.

Although the BKR construction of big-key encryption falls short of being a white-box
encryption scheme due to the lack of functionally equivalent small keys, the latter can be
easily added by deriving the big key from a small key using a PRG.

Using Non-Key-Fixing Constructions. A very exciting feasibility result for building LK-
IND-CPA-secure encryption schemes under the mere assumption of one-way functions was
provided by HLWW [HLWW13]. While “natural” encryption schemes tend to satisfy key-
fixing, as illustrated by our result for CBC-encryption in Section 4, HLWW demonstrate
that there are meaningful ways of introducing redundancy which allows to prove leakage-
resilience beyond logn many bits and thus circumvent our impossibility result.

Crucially, their scheme has key material which is never accessed for the generation of
honest ciphertexts. A sequence of subtle game-hops then moves to a situation where,
for the challenge ciphertext, the additional key material is accessed, so that one obtains
information-theoretic security for the challenge ciphertext. The difficult argument is to
show that this modified challenge ciphertext which accesses the additional information is
indistinguishable from a real ciphertext, using hash-proof systems. Specifically, HLWW
introduce symmetric-key weak hash proof systems (wHPS), which can be seen as a special
type of PRFs which can take as input values from valid and invalid distributions. Given
multiple (valid) input-output pairs and one random invalid input, the corresponding output
on the invalid input should be uniformly random and statistically independent from the
previously obtained input-output pairs.

HLWW construct wHPS from weak PRFs (wPRFs) and show how wHPS can be used
for constructing leakage resilient wPRFs by simply applying a randomness extractor to

184 On Provable White-Box Security in the Strong Incompressibility Model

the output of the wHPS. Then, given such leakage-resilient wPRF, messages can easily be
encrypted in an LK-IND-CPA-secure way by padding them with outputs of the leakage-
resilient wPRF. Crucially, a leakage-resilient wPRF constructed via the above complicated
process is not key-fixing, which circumvents our impossibility result.

The HLWW construction as outlined above achieves a moderate leakage rate of log(n)
n

and uses the complete secret key for each encryption. HLWW show that using t parallel
repetitions of the above construction and random sampling yields a big-key encryption
scheme with significantly improved locality while retaining the leakage rate t·log(n)

t·n = log(n)
n .

Recently, Quach, Waters and Wichs (QWW) [QWW21] provide a construction secure
against the same leakage rate, based on pseudo-entropy functions which are derived from
targeted lossy functions based on injective PRGs. Unlike HLWW, the ciphertext size in
QWW do not increase with the leakage bound, but the secret key size does.

Summary. Amongst all options for circumventing our impossibility result, it seems that
opting for a weaker security model for incompressibility is not advisable, because the
encryption oracle is close to a real-life attacker capability3. However, when seeking to
prevent code-lifting attack [Bre12], if the hardware supports it, a promising alternative is
to aim for hardware-binding [CdRP14, SdHM15, BBIJ17, AABM20], since provably secure
constructions are feasible in this domain [ABCW23, ABF+20].

As HLWW and QWW show, developing tailor-made ciphers which are provably strongly
incompressible under standard assumptions is theoretically feasible, but at present remains
impractical. While this might change at some point in the future, the BKR and BD
approaches of using strong (two-stage) assumptions on hash-functions, or the BKR, BD,
and FKKM approaches to use a random oracle seem to lead to more practical constructions.

Additionally, it might be feasible to mix ideal-model analysis and cryptanalysis for a
higher degree of confidence. For example, hash-functions are usually presented with a proof
of indifferentiability, assuming only that smaller building blocks are ideal, and a similar
style of results might be possible and desirable for incompressibility. In particular, this
latter avenue potentially allows us to still prove security for standard encryption schemes.

In summary, from our perspective, one should either aim for device-binding instead of
incompressibility, or, if one needs to aim for incompressibility, then the most promising
way to achieve high-confidence security of real-life constructions is to employ a mix of
cryptanalysis and ideal-model analysis.

Acknowledgement
We thank the CHES reviewers and, in particular, our shepherd Sebastian Berndt for very
useful comments on the presentation and, in particular, on suggestions for explaining the
proof technique of our impossibility result.

References
[AAB+19] Estuardo Alpirez Bock, Alessandro Amadori, Joppe W. Bos, Chris Brzuska,

and Wil Michiels. Doubly half-injective PRGs for incompressible white-box
cryptography. In Mitsuru Matsui, editor, CT-RSA 2019, volume 11405 of
LNCS, pages 189–209. Springer, Heidelberg, March 2019.

[AABM20] Estuardo Alpirez Bock, Alessandro Amadori, Chris Brzuska, and Wil Michiels.
On the security goals of white-box cryptography. IACR TCHES, 2020(2):327–

3Realistically, ciphertexts can be obtained for partially known messages, if not for adversarially chosen
messages. Conceptually, our argument also applies to many such weaker kinds of encryption oracles.

Estuardo Alpirez Bock, Chris Brzuska and Russell W. F. Lai 185

357, 2020. https://tches.iacr.org/index.php/TCHES/article/view/
8554.

[ABCW23] Shashank Agrawal, Estuardo Alpirez Bock, Yilei Chen, and Gaven J. Watson.
White-box cryptography with global device binding from message-recoverable
signatures and token-based obfuscation. In Elif Bilge Kavun and Michael
Pehl, editors, Constructive Side-Channel Analysis and Secure Design - 14th
International Workshop, COSADE 2023, Munich, Germany, April 3-4, 2023,
Proceedings, volume 13979 of Lecture Notes in Computer Science, pages
241–261. Springer, 2023.

[ABF+20] Estuardo Alpirez Bock, Chris Brzuska, Marc Fischlin, Christian Janson,
and Wil Michiels. Security reductions for white-box key-storage in mobile
payments. In Shiho Moriai and Huaxiong Wang, editors, ASIACRYPT 2020,
Part I, volume 12491 of LNCS, pages 221–252. Springer, Heidelberg, December
2020.

[BBIJ17] Subhadeep Banik, Andrey Bogdanov, Takanori Isobe, and Martin Bjerregaard
Jepsen. Analysis of software countermeasures for whitebox encryption. IACR
Trans. Symm. Cryptol., 2017(1):307–328, 2017.

[BBK14] Alex Biryukov, Charles Bouillaguet, and Dmitry Khovratovich. Crypto-
graphic schemes based on the ASASA structure: Black-box, white-box, and
public-key (extended abstract). In Palash Sarkar and Tetsu Iwata, editors,
ASIACRYPT 2014, Part I, volume 8873 of LNCS, pages 63–84. Springer,
Heidelberg, December 2014.

[BD17] Mihir Bellare and Wei Dai. Defending against key exfiltration: Efficiency
improvements for big-key cryptography via large-alphabet subkey prediction.
In Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu,
editors, ACM CCS 2017, pages 923–940. ACM Press, October / November
2017.

[BDF+18] Chris Brzuska, Antoine Delignat-Lavaud, Cédric Fournet, Konrad Kohbrok,
and Markulf Kohlweiss. State separation for code-based game-playing proofs.
In Thomas Peyrin and Steven Galbraith, editors, ASIACRYPT 2018, Part III,
volume 11274 of LNCS, pages 222–249. Springer, Heidelberg, December 2018.

[BFM14] Christina Brzuska, Pooya Farshim, and Arno Mittelbach. Indistinguishability
obfuscation and UCEs: The case of computationally unpredictable sources.
In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014, Part I,
volume 8616 of LNCS, pages 188–205. Springer, Heidelberg, August 2014.

[BHK13] Mihir Bellare, Viet Tung Hoang, and Sriram Keelveedhi. Instantiating random
oracles via UCEs. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013,
Part II, volume 8043 of LNCS, pages 398–415. Springer, Heidelberg, August
2013.

[BI15] Andrey Bogdanov and Takanori Isobe. White-box cryptography revisited:
Space-hard ciphers. In Indrajit Ray, Ninghui Li, and Christopher Kruegel,
editors, ACM CCS 2015, pages 1058–1069. ACM Press, October 2015.

[BIT16] Andrey Bogdanov, Takanori Isobe, and Elmar Tischhauser. Towards prac-
tical whitebox cryptography: Optimizing efficiency and space hardness. In
Jung Hee Cheon and Tsuyoshi Takagi, editors, ASIACRYPT 2016, Part I,
volume 10031 of LNCS, pages 126–158. Springer, Heidelberg, December 2016.

https://tches.iacr.org/index.php/TCHES/article/view/8554
https://tches.iacr.org/index.php/TCHES/article/view/8554

186 On Provable White-Box Security in the Strong Incompressibility Model

[BKR16] Mihir Bellare, Daniel Kane, and Phillip Rogaway. Big-key symmetric en-
cryption: Resisting key exfiltration. In Matthew Robshaw and Jonathan
Katz, editors, CRYPTO 2016, Part I, volume 9814 of LNCS, pages 373–402.
Springer, Heidelberg, August 2016.

[Bre12] Brecht Wyseur. White-box cryptography: hiding keys in software. MISC
Magazine, 2012. http://www.whiteboxcrypto.com/index.php.

[CCD+17] Jihoon Cho, Kyu Young Choi, Itai Dinur, Orr Dunkelman, Nathan Keller,
Dukjae Moon, and Aviya Veidberg. WEM: A new family of white-box block
ciphers based on the Even-Mansour construction. In Helena Handschuh,
editor, CT-RSA 2017, volume 10159 of LNCS, pages 293–308. Springer,
Heidelberg, February 2017.

[CdRP14] Tim Cooijmans, Joeri de Ruiter, and Erik Poll. Analysis of secure key storage
solutions on android. In Proceedings of the 4th ACM Workshop on Security
and Privacy in Smartphones & Mobile Devices, SPSM ’14, pages 11–20.
ACM, 2014.

[CEJv03] Stanley Chow, Philip A. Eisen, Harold Johnson, and Paul C. van Oorschot.
White-box cryptography and an AES implementation. In Kaisa Nyberg and
Howard M. Heys, editors, SAC 2002, volume 2595 of LNCS, pages 250–270.
Springer, Heidelberg, August 2003.

[CEJvO03] Stanley Chow, Philip A. Eisen, Harold Johnson, and Paul C. van Oorschot. A
white-box DES implementation for DRM applications. In Joan Feigenbaum,
editor, Security and Privacy in Digital Rights Management, ACM CCS-9
Workshop, DRM 2002, volume 2696 of LNCS, pages 1–15. Springer, 2003.

[DLPR14] Cécile Delerablée, Tancrède Lepoint, Pascal Paillier, and Matthieu Rivain.
White-box security notions for symmetric encryption schemes. In Tanja
Lange, Kristin Lauter, and Petr Lisonek, editors, SAC 2013, volume 8282 of
LNCS, pages 247–264. Springer, Heidelberg, August 2014.

[EMV19] EMVCo. Emv mobile payment: Software-based mobile payment security
requirements, 2019. https://www.emvco.com/wp-content/uploads/
documents/EMVCo-SBMP-16-G01-V1.2_SBMP_Security_Requirements.
pdf.

[FKKM16a] Pierre-Alain Fouque, Pierre Karpman, Paul Kirchner, and Brice Minaud.
Efficient and provable white-box primitives. In Jung Hee Cheon and Tsuyoshi
Takagi, editors, ASIACRYPT 2016, Part I, volume 10031 of LNCS, pages
159–188. Springer, Heidelberg, December 2016.

[FKKM16b] Pierre-Alain Fouque, Pierre Karpman, Paul Kirchner, and Brice Minaud.
Efficient and provable white-box primitives. Cryptology ePrint Archive,
Report 2016/642, 2016. https://eprint.iacr.org/2016/642.

[HITY22] Akinori Hosoyamada, Takanori Isobe, Yosuke Todo, and Kan Yasuda. A
modular approach to the incompressibility of block-cipher-based AEADs.
In Shweta Agrawal and Dongdai Lin, editors, ASIACRYPT 2022, Part II,
volume 13792 of LNCS, pages 585–619. Springer, Heidelberg, December 2022.

[HLWW13] Carmit Hazay, Adriana López-Alt, Hoeteck Wee, and Daniel Wichs. Leakage-
resilient cryptography from minimal assumptions. In Thomas Johansson and
Phong Q. Nguyen, editors, EUROCRYPT 2013, volume 7881 of LNCS, pages
160–176. Springer, Heidelberg, May 2013.

http://www.whiteboxcrypto.com/index.php
https://www.emvco.com/wp-content/uploads/documents/EMVCo-SBMP-16-G01-V1.2_SBMP_Security_Requirements.pdf
https://www.emvco.com/wp-content/uploads/documents/EMVCo-SBMP-16-G01-V1.2_SBMP_Security_Requirements.pdf
https://www.emvco.com/wp-content/uploads/documents/EMVCo-SBMP-16-G01-V1.2_SBMP_Security_Requirements.pdf
https://eprint.iacr.org/2016/642

Estuardo Alpirez Bock, Chris Brzuska and Russell W. F. Lai 187

[KI21] Yuji Koike and Takanori Isobe. Yoroi: Updatable whitebox cryptography.
IACR Trans. Cryptogr. Hardw. Embed. Syst., 2021(4):587–617, 2021.

[KLLM20] Jihoon Kwon, ByeongHak Lee, Jooyoung Lee, and Dukjae Moon. FPL: White-
box secure block cipher using parallel table look-ups. In Stanislaw Jarecki,
editor, CT-RSA 2020, volume 12006 of LNCS, pages 106–128. Springer,
Heidelberg, February 2020.

[QWW21] Willy Quach, Brent Waters, and Daniel Wichs. Targeted lossy functions
and applications. In Tal Malkin and Chris Peikert, editors, CRYPTO 2021,
Part IV, volume 12828 of LNCS, pages 424–453, Virtual Event, August 2021.
Springer, Heidelberg.

[RZ18] Phillip Rogaway and Yusi Zhang. Simplifying game-based definitions - indis-
tinguishability up to correctness and its application to stateful AE. In Hovav
Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part II, volume
10992 of LNCS, pages 3–32. Springer, Heidelberg, August 2018.

[SdHM15] Eloi Sanfelix, Job de Haas, and Cristofaro Mune. Unboxing the white-box:
Practical attacks against obfuscated ciphers. Presentation at BlackHat Europe
2015, 2015. https://www.blackhat.com/eu-15/briefings.html.

[Sma14] Smart Card Alliance Mobile and NFC Council. Host card emulation 101.
white paper, 2014. http://www.smartcardalliance.org/downloads/HCE-
101-WP-FINAL-081114-clean.pdf.

[SWP09] Amitabh Saxena, Brecht Wyseur, and Bart Preneel. Towards security notions
for white-box cryptography. In Pierangela Samarati, Moti Yung, Fabio
Martinelli, and Claudio Agostino Ardagna, editors, ISC 2009, volume 5735
of LNCS, pages 49–58. Springer, Heidelberg, September 2009.

[Wic13] Daniel Wichs. Barriers in cryptography with weak, correlated and leaky
sources. In Robert D. Kleinberg, editor, ITCS 2013, pages 111–126. ACM,
January 2013.

[Wys11] Brecht Wyseur. White-box cryptography. In Henk C. A. van Tilborg and
Sushil Jajodia, editors, Encyclopedia of Cryptography and Security, 2nd Ed,
pages 1386–1387. Springer, 2011.

https://www.blackhat.com/eu-15/briefings.html
http://www.smartcardalliance.org/downloads/HCE-101-WP-FINAL-081114-clean.pdf
http://www.smartcardalliance.org/downloads/HCE-101-WP-FINAL-081114-clean.pdf

	Introduction
	White-Box Cryptography and Big-Key Encryption
	On Strong Incompressibility from Standard Assumptions
	Technical Overview

	Preliminaries
	Encryption Schemes
	Big-Key Symmetric Encryption

	Impossibility Result
	Single-Stage Assumptions, Black-Box Reductions, and Key-Fixing
	Impossibility Result

	CBC-Mode with a Random Permutation is Key-Fixing.
	Key-Fixing of Small-Key CBC-mode
	Key-Fixing of Big-Key CBC-Mode

	Equivalence of Strong Incompressibility and Big-Key Encryption Security
	Discussion

