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Abstract. Assume that we have a group G of known order q, in which we want to
solve discrete logarithms (dlogs). In 1994, Maurer showed how to compute dlogs in G
in poly time given a Diffie-Hellman (DH) oracle in G, and an auxiliary elliptic curve
Ê(Fq) of smooth order. The problem of Maurer’s reduction of solving dlogs via DH
oracles is that no efficient algorithm for constructing such a smooth auxiliary curve
is known. Thus, the implications of Maurer’s approach to real-world applications
remained widely unclear.
In this work, we explicitly construct smooth auxiliary curves for 13 commonly used,
standardized elliptic curves of bit-sizes in the range [204, 256], including e.g., NIST
P-256, Curve25519, SM2 and GOST R34.10. For all these curves we construct a
corresponding cyclic auxiliary curve Ê(Fq), whose order is 39-bit smooth, i.e., its
largest factor is of bit-length at most 39 bits.
This in turn allows us to compute for all divisors of the order of Ê(Fq) exhaustively a
codebook for all discrete logarithms. As a consequence, dlogs on Ê(Fq) can efficiently
be computed in a matter of seconds. Our resulting codebook sizes for each auxiliary
curve are less than 29 TByte individually, and fit on our hard disk.
We also construct auxiliary curves for NIST P-384 and NIST P-521 with a 65-bit and
110-bit smooth order.
Further, we provide an efficient implementation of Maurer’s reduction from the dlog
computation in G with order q to the dlog computation on its auxiliary curve Ê(Fq).
Let us provide a flavor of our results, e.g., when G is the NIST P-256 group, the
results for other curves are similar. With the help of our codebook for the auxiliary
curve Ê(Fq), and less than 24,000 calls to a DH oracle in G (that we simulate), we
can solve discrete logarithms on NIST P-256 in around 30 secs.
From a security perspective, our results show that for current elliptic curve standards
the difficulty of solving DH is practically tightly related to the difficulty of computing
dlogs. Namely, unless dlogs are easy to compute on these curves G, we provide a very
concrete security guarantee that DH in G must also be hard. From a cryptanalytic
perspective, our results show a way to efficiently solve discrete logarithms in the
presence of a DH oracle.
Keywords: Public-Key Cryptography · Discrete Logarithm · Elliptic Curve ·
Diffie-Hellman · Oracles · Implementation

1 Introduction
While we would like to base cryptographic security on the fundamental discrete logarithm
(dlog) problem in a group G, most cryptographic schemes like ElGamal encryption [ElG84]
and the famous (EC-)DSA signatures [Lab94, Lab13] require (at least) the stronger as-
sumption that the Diffie-Hellman (DH) problem is hard. Vulnerabilities of the DH problem
in practice can lead to quite dramatic consequences, see the Logjam attack [ABD+15] as
an example for the finite field setting.

Licensed under Creative Commons License CC-BY 4.0.
Received: 2023-04-15 Accepted: 2023-06-15 Published: 2023-08-31

https://doi.org/10.46586/tches.v2023.i4.146-166
https://orcid.org/0000-0001-5965-5675
https://orcid.org/0000-0001-6049-4880
mailto:alex.may@rub.de
mailto:carl.schneider@rub.de
http://creativecommons.org/licenses/by/4.0/


Alexander May and Carl Richard Theodor Schneider 147

While in theory Maurer and Wolf [Mau94, MW96, MW99] reduced the dlog problem
in a group G of order q to the DH problem —assuming the existence of a suitable auxiliary
elliptic curve Ê(Fq) of smooth order— the reduction’s practical implications remained
widely unclear. This is quite surprising given the ubiquitous use of ECDSA in practice.

Our work brings Maurer’s algorithm into practice, answering the practical tightness of
dlog and DH for the commonly used elliptic curve standards. To this end, let us have a
closer look at Maurer’s reduction.

High-level description of Maurer’s algorithm. Assume we have a base curve E(Fp) with
a generator P of prime order ord(P ) = q. Let Q = kP be our dlog problem on E(Fp).
Notice that Q = kP uniquely defines k ∈ Zq. Therefore, we call Q = kP an implicit
representation of k. For the base curve E(Fp), we also need access to a Diffie-Hellman
oracle DH : (x1P, x2P ) 7→ x1x2P , where x1, x2 ∈ Zq, and we can freely choose both inputs
x1P, x2P to the oracle.

Let Ê(Fq) be an auxiliary curve with a generator P̂ of smooth order ord(P̂ ) =
∏n

i=1 p
ei
i .

For any point Q̂ = (x, y) ∈ Ê(Fq) we denote by Q̂ = [xP, yP ] its implicit representation,
where both the x- and y-coordinate are implicitly represented via points on the base curve.

In the presence of such an auxiliary curve and a DH oracle we proceed as follows.

(1) Auxiliary Curve Construction. We lift our dlog problem Q = kP on E(Fp) to
an implicitly represented, lifted dlog problem Q̂ = [kP, yP ] = uP̂ on an auxiliary
curve Ê(Fq) 1 with smooth order ord(P̂ ) =

∏n
i=1 p

ei
i .

(2) Auxiliary Curve Dlog Codebook Construction. We run the Silver-Pohlig-
Hellman algorithm on the lifted dlog instance to precompute and store all values
vi mod pei

i for all i, and all vi ∈ Zp
ei
i

in implicit representation. This precomputation
gives us a codebook for all dlogs on the auxiliary curve Ê(Fq), which allows us to
compute dlogs on Ê(Fq) via simple table lookups.

(3) Dlog Computation on the Base Curve. For our lifted dlog instance Q̂ = uP̂ ,
we determine all ui = u mod pei

i , and combine them via Chinese Remaindering. All
computations on the lifted dlog instance are performed with implicit representations,
using DH oracles for multiplication/division/squaring in Fq for performing the elliptic
curve arithmetic on Ê(Fq). After we determined u, we compute uP̂ = Q̂ = (k, y) ∈
Ê(Fq) now —as opposed to Step (1)— explicitly, from which we directly read off the
desired dlog solution k.

The main problem of Maurer’s reduction is that it is non-uniform, i.e., it simply assumes
the existence of a smooth auxiliary curve Ê(Fq) as part of the input. However, the tightness
and practicality of the reduction heavily depends on Ê(Fq)’s smoothness. Therefore, the
reductions’ practical implications remain unclear: Which auxiliary curves can we construct?
How many DH oracles queries do we require? How fast are subsequent dlog computations?

We answer all these questions in the following.

Our Results. We construct for each of the base curves from the following 14 cryptographic
standards a corresponding auxiliary curve: Anomalous, ANSSIFRP256v1, BLS12-381,
BN(2,254), brainpoolP256t1, Curve25519, Fp − 256 from GM/T 0003.2-2012, GOST R
34.10, M-221, NIST P-224, NIST P-256, secp256k1, SM2, NIST P-384, and NIST P-521.

Auxiliary Curve Construction. For every base curve, we randomly sampled auxiliary
curves Ê(Fq), computed their order |Ê(Fq)| via Schoof’s algorithm, and factored the order

1Here we assume for simplicity that k is a valid x-coordinate on Ê(Fq). We later show how to modify
k otherwise.
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into its prime factors. For each curve with order at most 256 bit, it took us less than
106 samples to discover a cyclic, B-smooth auxiliary curve Ê(Fq) with B smaller than
40 bit. We explicitly provide these curves together with their generator point P̂ and the
factorization of ord(P̂ ) =

∏n
i=1 p

ei
i .

Auxiliary Curve Dlog Codebook. For every i = 1, . . . , n we compute the generator
P̂i = (ord(P̂ )/pei

i )P̂ of the subgroup of order pei
i . For all i and all 0 ≤ `i < pei

i we then
compute the values of `iP̂i (in implicit representation). This gives us a complete codebook
for all dlog computations in Ê(Fq). We do some further optimization to minimize the size
of our codebooks, and to minimize the number of DH oracle calls when using Maurer’s
algorithm. As a result, all our codebooks for the auxiliary curves corresponding to elliptic
curve standards with at most 256 bit require less than 29 TByte.

Dlog Computation on the Base Curve. Let Q = kP be our dlog problem on the
base curve. We lift it to Q̂ = [kP, yP ] = uP̂ on our auxiliary curve Ê(Fq). For every
i = 1, . . . , n we compute [ord(P̂ )/pei

i ]Q̂ in implicit representation using DH oracles for
multiplication/division in Fq. A comparison with our codebook for P̂i immediately reveals
ui = u mod pei

i . From u1, . . . , un we compute, via Chinese Remaindering, the dlog u on
our auxiliary curve Ê(Fq). The computation Q̂ = uP̂ = (k, y) eventually reveals the dlog k
on our base curve E(Fp). With our optimizations and the help of our codebook, a complete
dlog computation on any of the considered standardized elliptic curves with at most 256
bits requires less than 24,000 DH oracle calls, and a total running time of around 30 secs.

Source code. Our code for finding auxiliary curves, computing the codebooks, and
performing dlog computations is available at https://github.com/e70847616e1d2c84/
discrete-log.

Comparison with Previous Work. In a seminal work, Muzereau, Smart, and Ver-
cauteren [MSV04] provided auxiliary curves for some elliptic curve standards back in
2004. However, most of the curves they considered almost 20 years ago had group orders
smaller than 200 bits, which is by now considered too small. For secp256k1, Muzereau-
Smart-Vercauteren provide an auxiliary curve with 56 bit smoothness, whereas we succeed
to construct an auxiliary curve with 37 bit smoothness.

This significant improvement allows us for the first time to compute a codebook for
the auxiliary curve, and to perform dlog computations on secp256k1 with the help of a
DH-oracle, in practice! This would not be possible with the 56 bit smooth auxiliary curve
of [MSV04]. As another comparison, [MSV04] provide an auxiliary curve for secp384r1
with 83 bit smoothness, whereas we achieved to find an auxiliary curve for NIST P-384
with 65 bit smoothness.

Follow-up works by Bentahar [Ben05] and Kushwaha [Kus18] focussed on the theoretical
aspects of tightness of dlog and DH with respect to the number of required DH-oracle
calls. Namely, the number of DH-oracle calls is minimized for groups of order q when we
constructed an auxiliary curve, whose order splits into 3 co-prime factors of size roughly
q

1
3 . While such a tightness analysis is interesting from a theoretical perspective, it does

not lead to practical attacks. For 256-bit standards this would imply auxiliary curves
with 3 factors around 85 bits. For these factors we would not be able to determine dlogs
efficiently.

Our approach instead focuses on practicality, i.e., on auxiliary curves as smooth as
possible. We then also try to minimize the number of DH-oracle calls, but without
sacrificing practicality.

For group actions, the quantum equivalence of dlog and DH has been established by
Galbraith, Panny, Smith, and Vercauteren [GPSV18], which can be considered a quantum
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analogue of Maurer’s reduction. Interestingly, as opposed to the classical setting, in the
quantum setting the construction of an auxiliary group is not required.

A nice overview of results in this area can be found in Galbraith [Gal12] and in
Galbraith, Gaudry [GG16].

Organization of the paper. In Section 2, we show how to construct auxiliary curves for
current elliptic curve standards. In Section 3, we compute the codebooks for our auxiliary
curves. In Section 4, we detail how to compute dlogs on our standardized base curves
with the help of our constructed auxiliary curves, their codebooks and a DH-oracle. Our
results for curves up to 256-bit order are summarized in Subsection 4.3, and Subsection 4.4
discusses the required strength of our DH oracle. In Section 5 we show to which extent
our results generalize to groups of larger order like 384 and 521 bits.

Our auxiliary curves for standards with at most 256 bits can be found in Appendix A.
Appendix B contains our auxiliary curves for NIST P-384 and NIST P-521.

2 Auxiliary Curve Construction

Let E(Fp) be our base curve with a generator P of order ord(P ) = q. We sample random
auxiliary curves Ê(Fq) with curve equation y2 = x3 + Ax + B by randomly sampling
A,B ∈ Fq with non-zero discriminant 4A3 + 27B2 6= 0 mod q. Any elliptic curve Ê(Fq) is
either cyclic (i.e., generated by a single point), or the product of two cyclic groups. We
rejected non-cyclic groups.

For cyclic groups, we compute the order of Ê(Fq) with Schoof’s algorithm [Sch85],
together with a generator P̂ , i.e., ord(P̂ ) = |Ê(Fq)|.

We then factor ord(P̂ ) into its prime factors. The whole procedure is repeated, until
we find a cyclic auxiliary curve Ê(Fq) with B-smooth order for some B < 40 bit. The
details of the resulting algorithm are provided in Algorithm 1.

Algorithm 1 Auxiliary Curve Construction with Smooth Order
Input: q, prime order of generator P of our base curve E(Fp)
Output: A,B ∈ Fq, defining auxiliary Ê(Fq) : y2 = x3 +Ax+B mod q, generator P̂ of

Ê(Fq)
1: repeat
2: repeat
3: Sample A,B ∈R Fq

4: until (4A3 + 27B2 6= 0 mod q) and Ê(Fq) : y2 = x3 +Ax+B is cyclic
5: Compute |Ê(Fq)| with Schoof’s algorithms, together with a generator P̂ .
6: Factor ord P̂ =

∏
i pi

ei

7: until maxi {pei
i } is sufficiently small

8: return A,B, P̂

We provide the results of running Algorithm 1 in Table 1. For all elliptic curve standard
groups with maximal group size 256 bit we found a cyclic auxiliary curve with at most
39-bit smooth group order within at most 106 samples.

In Appendix A, we provide a complete list of all auxiliary curves for the considered
elliptic curve standards with at most 256 bits, together with their specification A,B, their
generator point P̂ = (x(P̂ ), y(P̂ )), and the factorization of their group order.
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Table 1: B-smoothness achieved for the constructed auxiliary curves.

Base curve E(Fp) q [bit] Samples B [bit]
Anomalous 204 71311 33
ANSSIFRP256v1 256 156841 39
BLS12-381 255 3829640 36
BN(2,254) 254 7060 39
brainpoolP256t1 256 498440 39
Curve25519 253 104806 37
Fp − 256 (GM/T 0003.2-2012) 256 514595 39
GOST R 34.10 256 113350 37
M-221 219 229513 37
NIST P-224 224 76980 38
NIST P-256 256 437088 37
secp256k1 256 991302 37
SM2 256 840273 39

2.1 Runtime Analysis of Our Auxiliary Curve Construction.
The runtime of our auxiliary curve construction in Algorithm 1 is dominated by the
expected number of samples that we have to process until the order N :=

∣∣∣Ê(Fq)
∣∣∣ has a

B-smooth factorization.
By Hasse’s theorem [Sil09], we have q + 1− 2√q ≤ N ≤ q + 1 + 2√q. Thus, N lies in

a so-called Hasse interval of length 4√q centered at q + 1. A theorem of Lenstra [LJ87]
shows that the distribution of N within the Hasse interval is almost uniform.

Let Ψ(q,B) denote the total number of B-smooth integers up to q. Then a random
integer picked uniformly from the interval [1, q] is B-smooth with probability

p≤B(q) := Pr
[
integer from [1, q] is B-smooth

]
= Ψ(q,B)

q
. (1)

For simplicity, we make the standard number-theoretic assumption that any elliptic curve
group order N taken uniformly from the Hasse interval (instead of [1, q]) is B-smooth with
the same probability p≤B(q).

We are also interested in the probability that a number is exactly B-smooth, meaning
that it is B-smooth but not (B − 1)-smooth. A random number picked uniformly from
[1, q] is exactly B-smooth with probability

p=B(q) := Pr
[
integer from [1, q] is exactly B-smooth

]
= Ψ(q,B)−Ψ(q,B − 1)

q
. (2)

We approximate Ψ(q,B) ≈ q · ρ
(

log q
B

)
[Gra08], where log is base 2 and ρ is the

Dickman-de Bruijn ρ-function that we evaluate with SageMath2. Thus, we estimate that
on expectation we obtain a B-smooth, respectively an exactly B-smooth, curve order after
sampling

p−1
≤B(q) ≈ ρ

(
log q
B

)−1
, respectively p−1

=B(q) ≈
(
ρ

(
log q
B

)
− ρ
(

log q
B − 1

))−1
, (3)

many curves in Algorithm 1.
In Figure 1 we plotted for 437,088 sampled auxiliary curves for NIST P-256 the observed

relative amount of B bit-smooth group orders N (yellow dots), as well as our estimate for
2https://doc.sagemath.org/html/en/reference/functions/sage/functions/transcendental.

html#sage.functions.transcendental.DickmanRho

https://doc.sagemath.org/html/en/reference/functions/sage/functions/transcendental.html#sage.functions.transcendental.DickmanRho
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p=B(q) from Eq. (2) (blue line). We see that our experimental observation very accurately
matches our estimate.

From Figure 1 we observe that 128-bit smooth orders appear most frequently, and p=B(q)
drops quite quickly for smaller B. We only found 97 curves with B < 50, until we eventually
discovered our 37-bit smooth auxiliary curve after 4.4 · 105 trials. This experimentally
observed number of trials is in line with the expected number p−1

≤37(q) ≈ 8.8 · 105 trials.
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Figure 1: Observed and estimated relative frequency of B-smooth auxiliary curves for
NIST P-256.

3 Auxiliary Curve Dlog Codebook
In Section 2, we constructed cyclic auxiliary curves Ê(Fq) with a generator P̂ of smooth
order

∏n
i=1 p

ei
i . Since P̂ generates Ê(Fq), the point

P̂i :=
(

ord(P̂ )
pei

i

)
P̂

generates the subgroup of order pei
i . The idea of the Silver-Pohlig-Hellman algorithm is to

determine the dlog in all these subgroups, and then to combine the results via Chinese
Remaindering.

In order to quickly determine dlogs on Ê(Fq) in the desired subgroups, we precompute

vi · P̂i for all values 1 ≤ i ≤ n and 0 ≤ vi ≤
pei

i

2 . (4)

Notice that on elliptic curves it suffices to compute viP̂i for vi ≤
p

ei
i

2 . Assume that vi ≥
p

ei
i

2 .
Then

https://orcid.org/0000-0001-5965-5675
https://orcid.org/0000-0001-6049-4880


152 Dlog is Practically as Hard (or Easy) as DH

viP̂i = − (pei
i − vi) · P̂i with pei

i − vi ≤
pei

i

2 .

Thus, if viP̂i = (x, y) then (pei
i − vi)P̂i = −viP̂i = (x,−y).

Let Q̂ = uP̂ be a dlog instance on our auxiliary curve. We compute(
ord(P̂ )
pei

i

)
Q̂ = uP̂i = (u mod pei

i ) P̂i. (5)

Assume that we store all values of (vi · P̂i, vi) from Eq. (4) in a codebook Ci. Then we
simply compute the point

(
ord(P̂ )

p
ei
i

)
Q̂, and search for the corresponding point in the first

entry (vi · P̂i, vi) of Ci. This reveals Q̂’s dlog ui := vi = u mod pei
i in the subgroup of order

pei
i .

Lifting to Implicit Representation. Recall that in Maurer’s algorithm, we obtain the
dlog instance Q̂ = uP̂ = [kP, yP ] in implicit representation only. Therefore, we should also
lift our codebook to implicit representation to allow for a simple dlog search, as before. To
this end, we define the implicit embedding

` : Ê(Fq)→ E(Fp), (x, y) 7→ xP = (xP , yP ) (6)

that takes a point (x, y) on the auxiliary curve and computes the implicit representation
xP = (xP , yP ) of x on the base curve. Recall that Maurer’s reduction embeds the dlog k
in the x-coordinate of Q̂, only. Therefore, our implicit embedding ignores the y-coordinate.

Thus, instead of storing all explicit points viP̂i = (x, y) in codebook Ci, we store their
implicit embedding `(viP̂i) = (xP , yP ) ∈ E(Fp). By the elliptic curve equation we have

yP = ±
√
x3

P +AxP + b mod p.

Since exactly one of the two values ±
√
x3

P +AxP + b mod p is smaller than p/2, we define
the function

sign : Fp → {0, 1}, yP 7→

{
0 if yP < p/2
1 else

. (7)

This enables us to compactly store (xP , yP ) as (xP , sign(yP )).
The resulting auxiliary curve dlog codebook generation algorithm is summarized in

Algorithm 2.
Remark 1 (Affine vs projective coordinates). Throughout this work, for ease of exposition
and for improved readability we use affine coordinates for all high-level descriptions of our
algorithms, such as in Algorithm 2. Our implementation of these algorithms however uses
projective coordinates. The reason for projective coordinates becomes clear in Subsection 4.1,
when we show that the inversion-free elliptic curve projective coordinate doubling and
addition formulas of Cohen, Miyaji, Ono [CMO98] provide benefits for calculating with
implicit representations.

Using Algorithm 2, we explicitly computed the codebooks Ci for all prime factors of
our 37-bit smooth auxiliary curve Ê(Fq) for NIST P-256. The results are depicted in
Table 2. In total, we obtain a memory requirement of 3.0 TByte, easily fitting on our hard
disk. This computation took roughly one week on a single machine with two AMD EPYC
7742 (2.25GHz), but the algorithm is trivially distributable over multiple machines.

We slightly deviate from the description of Algorithm 2 by grouping the three smallest
factors 2, 3, and 626663 into a single codebook. We elaborate in Subsection 4.2 why and
how the combination of prime factors is favorable.
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Algorithm 2 Auxiliary Curve Dlog Codebook
Input: E(Fp) with generator P ,

q = ord (P ),
Ê(Fq) with generator P̂ ,
factorization of ord(P̂ ) =

∏n
i p

ei
i

Output: Codebooks Ci, i = 1, . . . , n for subgroups of order pei
i

1: for i = 1 to n do
2: Ci = ∅
3: P̂i ←

(
ord P̂

p
ei
i

)
P̂ . ord(P̂i) = pei

i

4: R̂← O . Initialize R̂ = 0P̂i, invariant: R̂ = viP̂i.
5: for vi = 0 to bp

ei
i

2 c do
6: (xP , yP )← `(R̂) . implicit embedding, see Eq. (6)
7: Ci ← Ci ∪ {(xP , sign(yP ), vi)} . store implicit representation/dlog
8: R̂← R̂+ P̂i

9: end for
10: Return Ci, sorted by first entry (xP , sign(yP )).
11: end for

Table 2: The factors pi, their binary length and the resulting codebook sizes |Ci| for NIST
P-256’s auxiliary curve.

Factor pi d log2 pie |Ci| (GB)
2 · 3 · 626663 21 0.07

6487813 22 0.12
17752487 24 0.33
30034813 24 0.56

620378903 29 11.48
1316356273 30 24.35
4747815593 32 90.21

17399156003 34 330.58
131964961211 36 2507.33

4 Dlog Computation on the Base Curve
Let Q = kP with k ∈ Zq be the dlog instance on the base curve. For simplicity, we assumed
so far that Q̂ = [kP, yP ] is an implicit representation of a point (k, y) on the auxiliary
curve Ê(Fq). To this end, we have to ensure that k is a valid x-coordinate on Ê(Fq). In
other words, let y2 = x3 +Ax+B be our auxiliary curve equation, then β := k3 +Ak+B
has to be a square (of some y) in Fq. The term β is a square iff its Legendre symbol
satisfies (

β

q

)
:= β

q−1
2 = 1.

Two problems remain. First, what happens if β is not a square, which occurs with
probability roughly 1

2 . Second, since we do not know k explicitly, we have to show that all
computations can be performed with implicit representations. We address both problems
in the following.

Implicit Embedding of k into Our Auxiliary Curve. Choose some uniformly random
r ∈ Zq. Then

xP := Q+ rP = (k + r)P (8)

https://orcid.org/0000-0001-5965-5675
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has rerandomized dlog k + r, from which we easily derive our desired k.
We now have to check that x can indeed serve (implicitly) as an x-coordinate on Ê(Fq).

To this end, with the help of our DH oracle we compute

βP := DH(xP,DH(xP, xP )) +A · xP +B = (x3 +Ax+B)P. (9)

Next, we check the Legendre symbol (implicitly) via

β
q−1

2 P
?= P. (10)

The left-hand side is computed using O(log q) DH oracle calls. If this identity holds, we
know that β is a quadratic residue, i.e., there exists some square root y ∈ Fq satisfying the
auxiliary elliptic curve equation y2 = β = x3 +Ax+B mod q. Otherwise, we rerandomize
k again using Eq. (8).

Let β be a quadratic residue in Fq. In the case q = 3 mod 4, we have y = ±β
q+1

4 mod q.
Notice that both square roots work for our purpose, so we choose y = β

q+1
4 , and compute

y implicitly as
yP = β

q+1
4 P, (11)

again using O(log q) DH oracle calls. Eq. (8) and Eq. (11) together define our point
Q̂ = [xP, yP ] on the auxiliary curve in implicit representation.

In the case q = 1 mod 4, we compute a square root with Cipolla’s algorithm [Cip03],
which also allows for implicit computation of y as yP .

Dlog extraction of k. Let Q̂ = [xP, yP ] = uP̂i be our lifted dlog instance in implicit
representation. P̂i =

(
ord(P̂ )

p
ei
i

)
P̂ is a generator of the subgroup of order pei

i . We recap
from Eq. (5) that (

ord(P̂ )
pei

i

)
Q̂ = (u mod pei

i ) P̂i. (12)

A computation of the left-hand side of Eq. (12) in implicit representation, and a comparison
with the codebook Ci from Algorithm 2 reveals the value ui := u mod pei

i .
The resulting dlog computation of u, and therefore also the dlog computation of k, is

summarized in Algorithm 3.

In the subsequent Subsection 4.1 we detail how to perform the computation of
(

ord P̂
p

ei
i

)
Q̂

in line 9 of Algorithm 3, and to which extent this computation requires DH oracle calls.
In Subsection 4.2 we then show how to minimize the required number of DH oracle

calls in line 9.

4.1 How to Compute with Implicit Representations

We have to compute
(

ord P̂
p

ei
i

)
Q̂ for all i = 1, . . . , n, where Q̂ = [kP, yP ] is in implicit

representation.
Let ci =

(
ord P̂

p
ei
i

)
with binary representation ci =

∑m
j=1 ci,j2j , ci,j ∈ {0, 1}. Then

ciQ̂ =
m∑

j=1
ci,j(2jQ̂) =

∑
1≤j≤m,
ci,j 6=0

2jQ̂. (13)

Thus, we compute 2jQ̂ for all j with 2j ≤ ord P̂
mini{p

ei
i
} . These values are precomputed

once, and commonly used for the computation of all ciQ̂. This requires a point doubling
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Algorithm 3 Dlog Computation on the Base Curve
Input: Base curve E(Fp) with generator P of order q,

dlog instance Q = kP ,
DH oracle for E(Fp),
Auxiliary curve Ê(Fq) with equation y2 = x3 +Ax+ b and
Generator P̂ of order

∏n
i=1 p

ei
i ,

Codebooks Ci for dlogs in order-pei
i subgroups of Ê(Fq).

Output: k ∈ Zq

1: repeat
2: Choose r ∈ Zq uniformly at random
3: xP ← Q+ rP . xP = (k + r)P
4: βP ← (x3 +Ax+B)P . Eq. (10), DH oracle
5: until β

q−1
2 P = P . β square in Fq? DH oracle

6: yP ←
√
βP . Eq. (11) or Cipolla, DH oracle

7: Q̂← [xP, yP ] . Implicit Representation of Q̂ = uP̂
8: for i = 1 to n do
9: [xiP, yiP ]←

(
ord P̂

p
ei
i

)
Q̂ . DH oracle

10: Denote xiP = (xP , yP ) ∈ Fp × Fp.
11: Search entry {(xP , sign(yP )) , ui} in codebook Ci. . ui = u mod pei

i

12: end for
13: u← CRT(u1, . . . , un) ∈ Zord(P̂ )

14: Q̂← uP̂
15: Let Q̂ = (x, y) ∈ Fq × Fq.
16: return k = x− r

procedure. Subsequently, we show how to realize the sum computation in Eq. (13) via
some point addition procedure.

At this point we change to projective coordinates for Ê(Fq), since projective coordinates
allow defining point doubling and addition without costly inversions in Fq.

Let Q̂ = [xP, yP, zP ]. Before we turn our attention to point doubling and addition, let
us first show to work with the individual coordinates of Q̂. Let us take xP as an example.

Elementary operations on xP . Let us start with scalar multiplication, i.e., we want to
transform x 7→ αx for some constant α ∈ Fq, which is the same as a scalar multiplication in
E(Fq). To this end, we multiply the implicit representation xP on E(Fp) with α, resulting
in the desired

α(xP ) = αxP = (αx)P.

Negation x 7→ −x is the special case α = −1.
Addition (x1, x2) 7→ x1 + x2 is realized from x1P, x2P by elliptic curve point addition on
E(Fp) as

x1P + x2P = (x1 + x2)P.

Multiplication (x1, x2) 7→ x1x2 however is nothing but the application of a DH-oracle on
E(Fp), since

DH(x1P, x2P ) = (x1x2)P.

Squaring is the special case x1 = x2.
All operations are summarized in Table 3.
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Table 3: Arithmetic operations in Fq can be represented by operations on their implicit
representation as elements on E(Fp).

Fq operation E(Fp) operation
αx1, α constant α(x1P ) = αx1P = (αx1)P

x1 + x2 x1P + x2P = (x1 + x2)P
x1x2 DH(x1P, x2P ) = x1x2P

Point Doubling. Let y2 = x3 + Ax + B be the curve equation for our auxiliary curve
Ê(Fq). Assume for simplicity first that we want to double Q = (x1, y1, z1) given in explicit,
projective coordinates. We use the doubling formula of Cohen, Miyaji, Ono [CMO98] that
computes 2Q = (x2, y2, z2) as

x2 = 2hs, y2 = w(4b− h)− 8t2, and z2 = 8s3, (14)

where s, t, b, w, h are defined as

s := y1z1, t = y1s, b := x1t, w := Az2
1 + 3x2

1, h := w2 − 8b.

Ignoring scalar multiplications, the computations of s, t, b, h, x2 require a single multiplica-
tion in Fq, whereas the computations of w, y2, z2 require two multiplications, each. Thus,
point doubling can be realized with a total of 5 · 1 + 3 · 2 = 11 multiplications.

As a consequence, an application of the doubling formula (14) to Q = [x1P, y1P, z1P ]
using the arithmetic from Table 3 in order to compute 2Q = [x2P, y2P, z2P ] requires a
total of 11 DH-oracle applications.

Point Addition. Again, let us first assume for simplicity that we want to add Q1 =
(x1, y1, z1) and Q2 = (x2, y2, z2). The addition formula of Cohen, Miyaji, Ono [CMO98]
computes Q1 +Q2 = (x3, y3, z3) as

x3 = va, y3 = u(h5 − a)− h3h0, and z3 = h3h4, (15)

where h0, u, h1, v, h2, h3, h4, h5, a are defined as

h0 = y1z2, u := y2z1 − h0, h1 := x1z2, v := x2z1 − h1, h2 := v2, h3 := vh2,

h4 := z1z2, h5 := h2h1, a := u2h4 − h3 − 2h5.

Ignoring scalar multiplications, the computations of x3, z3, h0, u, h1, v, h2, h3, h4, h5 require
a single multiplication in Fq, whereas the computations of y3, a require two multiplications,
each. Thus, point addition can be realized with a total of 10 · 1 + 2 · 2 = 14 multiplications.

As a consequence, an application of the addition formula (15) to Q1 = [x1P, y1P, z1P ]
and Q2 = [x2P, y2P, z2P ] using the arithmetic from Table 3 in order to compute Q1 +Q2 =
[x3P, y3P, z3P ] requires a total of 14 DH-oracle applications.

4.2 Optimizing Oracle Calls by Prime Factor Pooling
From Subsection 4.1 we know that the majority of DH oracle calls of Algorithm 3 is
consumed in line 9, where we compute

(
ord P̂

p
ei
i

)
Q̂. By Eq. (13) these DH oracle calls can

be split into the following two steps.

(1) Precomputation of 2jQ̂ for all 2j with 2j ≤ ord P̂
mini{p

ei
i
} .

(2) Computation of all
(

ord P̂
p

ei
i

)
Q̂ via Eq. (13) for all prime powers.
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While step (1) is performed only once, step (2) is carried out for all prime powers.
However, for the Pohlig-Silver-Hellman algorithm it is not strictly necessary to compute
modulo all prime powers of the order. Chinese Remaindering only requires that all divisors
of the order are coprime. Thus, we can freely pool prime powers into larger divisors in order
to save on DH-oracle calls. We performed such a prime power pooling to minimize the
number of oracle calls with the following three constraints, sorted by descending priority.

Memory preserving. Our prime power pooling should not produce a divisor larger than
maxi{pei

i }. Notice that the size of our codebook computed in Section 3 mainly
depends on the parameter maxi{pei

i }. Thus, our pooling should not come at the cost
of a significant memory increase.

Minimize number of divisors. We pool prime powers such that the number of pools, i.e.,
the number of divisors, becomes minimal. This minimizes the number of iterations
of line 9 in Algorithm 3.

Maximize smallest divisor. Lastly, we maximize the smallest divisor, which minimizes
the number of DH oracle calls required during precomputation.

Let us first provide as an especially simple example the pooling of the prime factors of
NIST P-256’s auxiliary curve, all other optimizations can be found in Appendix A, where
we put the pooled prime factors into parentheses.

For NIST P-256 we only pooled the primes 2, 3 and 626663 into a single divisor
2 ·3 ·626663. This simple optimization already saves 220 oracle calls during precomputation,
and another 4, 868 oracle calls in line 9, thereby reducing the total number of DH-oracles
calls from 28, 524 down to 23, 656. For other auxiliary curves with larger pools we achieved
even more significant savings.

For instance, for secp256k1 we pooled the prime factors
(
22 · 2683 · 81197

)
, (7 · 189270023),

(3 · 59 · 8313647),
(
52 · 4787 · 16451

)
, and (41 · 4937 · 12577), resulting in 8 instead of 17

divisors. This saves 308 oracle calls during precomputation, and another 20, 377 oracle
calls in line 9, thereby reducing the total number of DH-oracles calls from 42, 554 down to
21, 868.

4.3 Results: Dlog Computations
The results of our implementation are summarized in Table 4.

Column B denotes the smoothness in bits of the auxiliary curves’ orders that we
computed in Section 2. For the (small) 204-bit Anomalous curve we computed an auxiliary
curves with 33 bit smoothness. For all curves with group sizes of maximal 256 bits we
achieved to compute auxiliary curves with smoothness between 36 and 39 bits.

Notice that the smoothness directly affects the required codebook size that we computed
in Section 3. For the Anomalous curve we only need a codebook of size less than 0.2
TByte. With 37-bit smoothness we obtain codebook sizes in the range of 3.0–4.1 TByte,
with 38-bit smoothness we require 7.3 TByte, whereas 39-bit smoothness implies codebook
sizes of up to 28.2 TByte.

More precisely, the codebook sizes depend on the full prime power factorization of our
auxiliary curves’ group orders. Notice that one can calculate the required codebook size
directly from the factorization. However, to experimentally verify our calculations and to
demonstrate the practicality of our achievements, we explicitly constructed the 3.0 TByte
Codebook for NIST P-256 (therefore marked bold in Table 4).

Column DH-calls provides the number of required DH-oracle calls for a single dlog
computation in Algorithm 3. This number heavily depends on whether our pooling strategy
from Subsection 4.2 succeeds in balancing the size of the divisors of the group order of our
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Table 4: Summary of our results. All data can be computed from our auxiliary curves
only, but we experimentally verified the data for NIST P-256, including the 3.0 TByte
codebook construction, and concrete dlog computations.

Curve q B Codebook DH-calls Time
[bit] [bit] [TB] [no.] [s]

ANSSIFRP256v1 256 39 7.4 20227 27
Anomalous 204 33 0.2 12308 17
BLS12-381 255 36 1.9 20397 28
BN(2,254) 254 39 6.0 22036 30
Curve25519 253 37 4.1 19091 26
Fp − 256 (GM/T 0003.2-2012) 256 39 19.4 16389 22
GOST R 34.10 256 37 3.0 17519 24
M-221 219 37 3.7 13648 18
NIST P-224 224 38 7.3 16859 23
NIST P-256 256 37 3.0 23656 32
SM2 256 39 10.0 19592 27
brainpoolP256t1 256 39 28.2 16542 22
secp256k1 256 37 3.1 21868 30

auxiliary curve. Assume that we achieved 37-bit smoothness for a 256-bit curve. Then
ideally pooling would result in a minimal number of 7 divisors, all of roughly the same size
of 37 bits. The pooling of our NIST P-256 auxiliary curve leads to 9 divisors of unbalanced
sizes, resulting in the maximal amount of 23.656 DH oracles. In contrast, the M-221’s
auxiliary curve allows for a pooling into only 7 divisors of balanced sizes, resulting in the
minimal amount of only 13.648 DH oracle calls.

We used our 3.0 TByte codebook to experimentally compute dlogs for NIST P-256.
To this end, the DH oracle was simulated (which can be done, since we know the dlog).
The running time for a dlog search in the codebook was negligible, thus the running time
basically scaled linearly with the number of DH-calls.

In our experiments, we achieved to compute dlogs in a maximum of 32 seconds (for
NIST P-256) on an AMD EPYC 7742 (2.25 GHz). If we could replace our DH-oracle
simulation by a real-world DH-oracle, our results imply that the dlog computation time
Tdlog is roughly the number DH-calls multiplied by the time cost TDH for the DH-oracle:

Tdlog ≈ DH-Calls · TDH .

Thus, our results tightly connect the difficulty of computing discrete logarithms to the
difficulty of computing DH in practice via our auxiliary curves from Appendix A, for the
most commonly used elliptic curve standards of at most 256 bit.

4.4 Required Strength of DH-Oracle
Our analysis so far assumed that we have a full DH-oracle DH(x1P, x2P ) = (x1x2)P for
freely chosen inputs x1P and x2P . We are able to simulate such an oracle, because for
every value x1P that we compute in our algorithm we keep track of its discrete logarithm
x1, and by construction we also know the discrete logarithm k of Q = kP .

Insufficiency of Static DH. Some real-world instantiations, e.g., [MBA+21], provide a
static DH-oracle DH(kP, ·) that provides DH(kP, xP ) for a fixed, static value kP and a
single freely chosen input xP . Such a static oracle is however not sufficient for efficiently
realizing our algorithm.
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As discussed in Subsection 4.2, our Algorithm 3 requires computing ci · Q̂, where
Q̂ = [kP, yP ] is in implicit representation. Since ci can be of size up to q, we make use of
a fast square-and-multiply procedure by precomputing 2jQ̂ for all 2j ≤ ci, and then using
Eq. (13).

As a consequence, Algorithm 3 can be realized with O(log q ) calls to a full DH-oracle,
but requires O(q ) calls when using a static DH-oracle, rendering our algorithm completely
impractical in the static DH-oracle case.

Real World Instantiation of a DH-oracle. Our construction provides a tight reduction
of the discrete logarithm problem on elliptic curves with 256-bit order to the DH problem.
Such a reduction implies that DH must be hard on these curves, unless the discrete
logarithm appears to be easy. This gives us a strong security guarantee for our standards,
under the dlog assumption.

However, such a tight reduction always also has a cryptanalytic facet. Namely, the
reduction also provides us with a very practical discrete logarithm algorithm for our elliptic
curve standards in the presence of an efficient DH oracle.

We are not aware of any real-world instantiation that provides such an oracle. However,
the situation might be comparable with the Hidden Number Problem that was originally
introduced by Boneh and Venkatesan [BV96] to show via a reduction the security of certain
bits of a Diffie-Hellman key. As cryptanalytic facet, the Hidden Number Problem was
widely applied to attack nonce leakage in (EC-)DSA signatures [HS01, DHMP13], and
many real-world side channels provided such nonce leakage [BvSY14, MSEH20, MBA+21].

Our work may stimulate the search for real-world instantiations of DH oracles.

5 Challenges for Curves with Larger Group Order
It is natural to ask whether our results also extend to elliptic curve standards with group
orders significantly larger than 256 bit. To this end, we constructed an auxiliary curve for
NIST P-384 with 65-bit smoothness (using 16,436 ≈ 214 sampled curves in the construction
of Section 2), and for NIST P-521 with 110-bit smoothness (using 1,860 ≈ 210.9 samples).
These auxiliary curves are provided in Appendix B, the results are summarized in Table 5.

Table 5: Results for large group orders.

Curve q B Codebook DH-calls
[bit] [bit] [TB] [no.]

NIST P-384 384 65 613, 705, 033 26129
NIST P-521 521 110 29, 923, 937, 044, 117, 456, 000, 000 34909

Several aspects are interesting when comparing Table 5 to Table 4. Naturally, we
cannot achieve comparably small smoothness bounds. This is because a single auxiliary
curve sample costs significantly more time to process (group order computation and full
factorization), and larger group orders are less likely to split smoothly.

Performance of our large smoothness auxiliary curves. As a consequence of the larger
smoothness B, the resulting codebooks would consume an excessive, today not realizable
amount of memory. More concretely, the codebooks for NIST P-384 would require 614
Exabyte, and for NIST P-521 even 29924 Quettabyte.

Let us assume for a moment that we have a quickly accessible storage with 614 Exabyte
capacity for storing NIST P-384’s auxiliary curve codebook. Since we can split its group
order into 7 divisors of balanced size (see Appendix B), we could realize dlog computations
with only 26,129 DH-oracle calls. This compares well to the numbers obtained in Table 5.
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Thus, with memory comparably fast as the one used in our experiments for NIST P-256’s
codebook we could realize dlog computations for NIST P-384 in slightly more than 30s.

Small memory variants. In order to avoid excessive memory requirements, one could
think of constructing a small memory dlog algorithm like Pollard Rho that works with
implicit representations. However, even if we realize such an algorithm then this would
come at the cost of a largely increased number of DH-oracle calls. Asymptotically speaking,
our approach has codebook memory size of roughly 2B , but its DH-oracle calls are linear
in log q and in the number of divisors. In contrast, a memory-less Pollard-type algorithm
would require DH-calls in the order of 2B/2. As a consequence, such an algorithm would
not tightly relate dlog to DH complexity.
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Figure 2: Expected number of samples to find an auxiliary curve with B-smooth order,
for different sizes of the base curve.

5.1 Estimations for Achieving Better Smoothness
Assume that we want to run our auxiliary curve construction from Algorithm 1 until we
obtain a smoothness bound B ≤ 40, comparable to the results for 256-bit curves, thereby
also establishing a tight relation between the discrete logarithm and the Diffie-Hellman
problem for curves with 384-bit and 521-bit order.

We take the estimate from Subsection 2.1 for the probability p≤B(q) that an auxiliary
curve Ê(Fq) has an order that is at most B-smooth. This gives an expected amount of
p−1
≤B(q) trials, until we find an at most B-smooth auxiliary curve.

Figure 2 provides the estimates of p−1
≤B(q) for the order q of NIST P-256, NIST P-384,

and NIST P-521. The estimates from Figure 2 are again in line with our results from
Table 5, where we found a 65-bit smooth auxiliary curve for NIST P-384 within 214 trials,
and a 110-bit smooth auxiliary curve for NIST P-521 within 210.9 trials. We see that the
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expected number of trials significantly increases with decreasing B, but it still appears to
be feasible for actors with high-performance computing capabilities.

Table 6: Expected number of trials to reach a given smoothness bound B.

Curve B ≤ 240 B ≤ 265 B ≤ 280 B ≤ 2110

NIST P-256 217.4 27.5 25.0 22.5

NIST P-384 233.0 215.2 210.7 25.9

NIST P-521 251.8 225.0 217.9 210.4

In Table 6, we provide estimates for the expected number p−1
≤B(q) of trials that is

necessary for achieving certain smoothness levels B. For instance, for NIST P-384 we
would expect to hit an auxiliary curve with at most 40-bit smoothness after 233 trials. For
NIST P-521 hitting a 40-bit smooth auxiliary curve would require an estimated number of
251.8 trials. These are certainly ambitious computational efforts, but also not completely
out of reach.

A List of Auxiliary Curves
Anomalous

A = 0x45ddec04e4ed7b779ac1e2864a23b561d6fbad726d249323723

B = 0xa32381cbd50fc8cb48201e84f600bf85cb0536adb34bd3f5f80

x(P̂ ) = 0x9bd8400e49480fe9f22b7b6e22bf5fcd9868cf05dca5bd7ae95

y(P̂ ) = 0x91b318c596349f5ae7fe5fd5ca3d5b8637784b9e8b00ff50cc0

ord P̂ = (31 · 1557019)· (53 · 1136459)·
(
22 · 3 · 7 · 764593

)
·1266653719· (2903 · 747743)·

5683625323 · 6057790241

ANSSIFRP256v1

A = 0x7c836c3107f9f9c7fb55773b5e389f347fcecf65a5065cbc6480de1e3038a028

B = 0x96c848939e57d61da7cec3c6b48db5f4c51167cb24cb60174c534888af7c2494

x(P̂ ) = 0x91e1316c2a1a3f1fc38906ce6b637c20c749b08b2d42f9fa6102968db3f0b56

y(P̂ ) = 0xdad16d846dc68b761fe8dd51aa971d49e130016c7e318953e87c938d08529bac

ord P̂ =
(
22 · 23 · 2339893

)
· (503 · 461239) · (5 · 52470317) · 4210883441 · 5780236507 ·

19660693177 · 58041243599 · 300758573363

BLS12-381

A = 0x41ae7764404433acbd3cbab0ca700ff2cc00f97f7f5f7251978f52618e3bd886

B = 0x28a1527292dd8a91c610e416acdf282794cc817a755a8f4980ef22b324e31d2a

x(P̂ ) = 0x69e12c9f2a3f4a4ec8dd0ca29964a2ede6eccdfeb1a4b52869f6551f314bb819

y(P̂ ) = 0x5dc3d5c62045b2b1b977ee64ba96d90e75dad87ae88fd759f97b1c242fa461a

ord P̂ = (2 · 265338611)·1158518213·
(
33 · 277 · 216761

)
· (7 · 7451 · 34519)·3826533983·

13897244563 · 15561919889 · 35310370103
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BN(2,254)

A = 0x23080b5443a53e447cee5a56e1a93a638ae09b1918a3519545fbafa9a1f34eba

B = 0x1a4ef8aad7675bd5594f06beac1e8a334ac71ff6b57f5f66eb43ec1c2940a0a2

x(P̂ ) = 0x21a844cb11b93a3a46eed06dacbfa2b1ccc293afadc5887fe5d7d48a9bf44532

y(P̂ ) = 0x1847b560ed162d5293a49b667e98ec03c265b0c24153b66af548430962714e79

ord P̂ = (7 · 2898739)· (3 · 10977103)·
(
22 · 8383013

)
·45422513· (19 · 2878037)· (23 · 2590279)·

(29917 · 51407) · 10561842803 · 311895131749

brainpoolP256t1

A = 0x83dce5e1fce1e7500b4830eb5ee0e8089ead4280a861a286a2f48cc2823e06b4

B = 0x4af4bfe1ab842bb4454875290fbb897c10516cec9bfb653ab9c1e3f7d833070e

x(P̂ ) = 0x3ac17faa67673cf8b888816c464a5312f92eb20f8cc37ef277e8424b65ec992e

y(P̂ ) = 0x555134db1215b0b63e4a5c530bbd211044ef63fe1d7330c0e97907455f1e9366

ord P̂ = (2 · 734197267)· (197 · 5813 · 38917)·163919008373·168007838681·262438726679·
296370932339 · 548492026207

Curve25519

A = 0x7c6924b558914bbfa3661a2a2a1687de21ed7b0b20b11ca4f69da9c7d797e20

B = 0x8396db4aa76eb4405c99e5d5d5e978232c0222df0ec8b0c08a8887ddf7c55cd

x(P̂ ) = 0x943069e813cca7ae6e0d920ea8be9b679a64af600d8791537887e2c5173e99b

y(P̂ ) = 0x7d2fafc0dc0869719f6f2c9f2c65fe0dd110db31ef833bfa13282f28c11b537

ord P̂ = 255833749·
(
22 · 53 · 1563739

)
· (3 · 7 · 1013 · 26339)· (23 · 25395859)·1073269973·

36776837081 · 49009622279 · 134777522111

Fp − 256 (GM/T 0003.2-2012)

A = 0x539f1a674e56855db0fbaf00cb505a7e155b2e8e3fee4c15998752eb31bf7050

B = 0x4ff601fb2c38236ad69db8219a9a410ee6cdbbf0aa9210cdddb891fe6fddeb0b

x(P̂ ) = 0x24f198eba9e4efc64f6f56a30a0c194381493c18a6ba44bec3af504a07ecd959

y(P̂ ) = 0x300eebc808a4ae372e022d029120d0b5258191c72fd1205efeb87c4ecfb8e9bf

ord P̂ =
(
32 · 4051573727

)
· (2 · 5 · 6311 · 634441) · 51412214251 · (106019 · 633053) ·

93252768551 · 288767400343 · 444310543783

GOST R 34.10

A = 0x11dc26d570c4f5328e738a6bf64968511d5d2356a7eec97adbebfc545f58cb89

B = 0x7ea42914cc45b3b7391b09dca5cf29ea96ec2e166b23e76e1a1645dd56871015

x(P̂ ) = 0x1c7c23c623f7bfc4b587d16a6f8095f41cca51ab452e651d117a60f8d809b90f

y(P̂ ) = 0x5f0c5eaf878bef7ed3895b853041c2d39c0e20911b1741100d9a8fa59bb136ed

ord P̂ = (13 · 29681521) · 393794411 ·
(
23 · 73276447

)
· (5 · 233492191) · 9210725213 ·

14479106177 · 59192041087 · 70526802109
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M-221

A = 0x11ab83a2b7b651fbd8ff1cc37e05111fd94e7874bee1c818b14fa82

B = 0x3681d5a10403d463bdc67504242200018032c05a3c51c9b4020b5c1

x(P̂ ) = 0x93f693abe651831bc9c06d2374a780d1b79f1355836f6fabdb1073

y(P̂ ) = 0x3049587cf7356670f417a594fe429ff95f7f41a044bcadebef8e53e

ord P̂ =
(
22 · 163 · 202309

)
· 191299609 · (31 · 19436929) · (89 · 15714541) · 1781291429 ·

82270262003 · 135177143687

NIST P-224

A = 0x5c01766a74b8c2d862b22285b00ac178f999026de39f63c7ecdfe6a4

B = 0x18b5ff0f9b632632db98fce082baa04f06e0f5a94cd98c8b19141fcc

x(P̂ ) = 0xda6600c2e2d292ac129cc267407b28721ff305987fe7903a20d32d9

y(P̂ ) = 0x33310ad7a6635ee685276e17bf07a6b83765d137bb45053f2497c010

ord P̂ = (2 · 67 · 697201) · (281 · 469207) ·
(
72 · 42767789

)
· (8677 · 408341) ·6707397163 ·

205822236209 · 213517584151

NIST P-256

A = 0x11c877b751dcab93a3dc546a7af6f26a4a7506a0f648d54b143b9cdbb100025a

B = 0xee378847ae23546d5c23ab9585090d957271f40cb0cec939df7e2de74b6322f7

x(P̂ ) = 0xcd7ca16b05e3dd64c99da4a31cef71bdf7d48798d213a40ba4ec3a4d137bab30

y(P̂ ) = 0x445c8a8c21843080bf651958a5c26df5f9ad5bd73f4684d1ecb1026ec59c161f

ord P̂ = (2 · 3 · 626663)·6487813·17752487·30034813·620378903·1316356273·4747815593·
17399156003 · 131964961211

secp256k1

A = 0xd7d03e8f857c179d91cd6a6778d0a4dc267f8f09a90c945e71e8253e9dccf81f

B = 0x34510d92130b79e1e7abf72e664bb0f458a34b9eb4d6fad4e62a165391732348

x(P̂ ) = 0x301bc7b2f9e3618092ddd09909bf7088c386370d284142e454fce8c0f8188962

y(P̂ ) = 0x19adf7dae54fb47e3ca69efa348d2193e8b61e66dbaed5ca21b9765c0dfc6a23

ord P̂ =
(
22 · 2683 · 81197

)
· (7 · 189270023) · (3 · 59 · 8313647) ·

(
52 · 4787 · 16451

)
· (41 · 4937 · 12577) · 2991313439 · 40403184727 · 112516500491

SM2

A = 0x603daf21c7be756f00b06fccfac7c2de9d6a4fe8839ddc3b036f914ac669526b

B = 0x82b5f187fe7a21c5b3956353223feb3464f7174c635a077e8958a6f38dc447b

x(P̂ ) = 0xe9a2490ac62b388b50fb3c69610dea0aee9b580e909b82a41b261ad6a9fe7383

y(P̂ ) = 0x40e4456b979905b7afca6e34b8fb84af318e31a74338ffc2394547d452ccc336

ord P̂ = 29148461 ·
(
22 · 53 · 182821

)
· (2099 · 55717) · 11753285897 · 26589277361 ·

74605790993 · 133832588101 · 280867123013
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B List of Auxiliary Curves for Larger Groups
NIST P-384

A = 0x3771167d1314bed32995fad5a54b3036e08377f4eb206ff082f6f2310ab7e773b47
d52c9bde56468615d4ed779550514

B = 0x1acf5f8d531c7d9d5eac68be4ba7f9373a55d6709d0e89252dc2224bb26da44d6
779ca65afeaaf56126970684514abd5

x(P̂ ) = 0xbf0033a63fc9b49c4c5bfdd3f49a6df96784959dba38f79ad00815dc6d01e6490d
62bfae169465f8588899da542701a2

y(P̂ ) = 0xcd385505741daaeeb9becdf3d9d0ae088a3e0faccbcfa1c3a649cf6fb31fbf135f30
8df0ed08bb01611c0ba9d19ab29f

ord P̂ = 3554867932881493 · (17 · 4431839 · 49164959) · (13 · 199 · 1759247842367)
· (11 · 151 · 4369951069619) · (7 · 2099 · 1015347659219) ·291305128317199177 ·
20843144683794886337

NIST P-521

A = 0x19aa7d0ff1fae51b05966f45b38bc87402ac74b9a3fc10fb24788669815efa941c1
75ea9de8fd469924197e880b27c77f4a73af58085daeb23070878cd603617afe

B = 0xf22dc68bdb0178729f4ce859afcf17391cf83c42724d9b653452f32c09985bc495e
8edfab0e75abaf2062a1e9ba14d23785552988aa1ed18c3e6e576552f231093

x(P̂ ) = 0x1d0f9662dec76a512d9e2c4354136af2e627a5be6751c68e4a87284d9a30ccadde
276835e28d8b5c3230668a18da69dc7d4d770fdf7a0bc19bb1eefb26e8c8cb6c8

y(P̂ ) = 0x1e9a561d48250a5e54caa73ab33a108d4e5d6ffb15676521be529a48da225ad10
445e92372f395527be317fe7add751c6fd878b9d306a485d6828167f8821c94f37

ord P̂ = (3 · 5 · 541 · 1738387339027138321) · 11757557626983443626690433
· 20433390575861429207316277
· (4435900135201 · 5611391852501)
· 108773751715661588194866439 · 748098266452871187238818871695923
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