
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2023, No. 4, pp. 110–145. DOI:10.46586/tches.v2023.i4.110-145

Improved Gadgets for the High-Order Masking
of Dilithium

Jean-Sébastien Coron1, François Gérard1, Matthias Trannoy1,2 and Rina
Zeitoun2

1 University of Luxembourg, Esch-sur-Alzette, Luxembourg
jean-sebastien.coron@uni.lu,francois.gerard@uni.lu

2 IDEMIA, Cryptography & Security Labs, Courbevoie, France
matthias.trannoy@idemia.com,rina.zeitoun@idemia.com

Abstract. We present novel and improved high-order masking gadgets for Dilithium, a
post-quantum signature scheme that has been standardized by the National Institute
of Standards and Technologies (NIST). Our proposed gadgets include the ShiftMod
gadget, which is used for efficient arithmetic shifts and serves as a component in other
masking gadgets. Additionally, we propose a new algorithm for Boolean-to-arithmetic
masking conversion of a µ-bit integer x modulo any integer q, with a complexity
that is independent of both µ and q. This algorithm is used in Dilithium to mask
the generation of the random variable y modulo q. Moreover, we describe improved
techniques for masking the Decompose function in Dilithium. Our new gadgets are
proven to be secure in the t-probing model.
We demonstrate the effectiveness of our countermeasures by presenting a complete
high-order masked implementation of Dilithium that utilizes the improved gadgets
described above. We provide practical results obtained from a C implementation and
compare the performance improvements provided by our new gadgets with those of
previous work.
Keywords: Lattice-based signature, Dilithium, high-order masking

1 Introduction
Dilithium signatures. The impending development of scalable quantum computers threat-
ens the security of prevailing asymmetric cryptography primitives. In 1994, Shor showed
that both RSA and ECC can be broken by a quantum computer in polynomial time. As a re-
sult, the National Institute of Standards and Technologies (NIST) launched a competition
in 2016 to select new standards for digital signature and public-key encryption/key-
establishment algorithms. The competition came to a conclusion in 2022, with the
announcement of CRYSTALS-Kyber for public-key encryption and CRYSTALS-Dilithium,
FALCON, and SPHINCS+ for digital signature algorithms. This paper will focus on
Dilithium, the primary post-quantum signature scheme standardized by NIST.

Dilithium is a signature scheme based on lattice cryptography [BDK+21]. It utilizes the
“Fiat-Shamir with Aborts" technique developed by Lyubashevsky [Lyu09], which is based
on rejection sampling. The security of Dilithium relies on the computational hardness of
finding short vectors in lattices. NIST selected Dilithium as the primary post-quantum
signature scheme due to its excellent performance and small signature size. To make
implementation easier, Dilithium employs uniform sampling, as in [GLP12], rather than
discrete Gaussian sampling, which would be much harder to protect against side-channel
attacks.

Licensed under Creative Commons License CC-BY 4.0.
Received: 2023-04-15 Accepted: 2023-06-15 Published: 2023-08-31

https://doi.org/10.46586/tches.v2023.i4.110-145
mailto:jean-sebastien.coron@uni.lu, francois.gerard@uni.lu
mailto:matthias.trannoy@idemia.com, rina.zeitoun@idemia.com
http://creativecommons.org/licenses/by/4.0/

Jean-Sébastien Coron, François Gérard, Matthias Trannoy and Rina Zeitoun 111

Side-channel vulnerabilities. Like most implementations of cryptographic primitives, the
Dilithium signature scheme is vulnerable to side-channel attacks. These attacks focus on
exploiting physical leakage that occurs during the execution of an algorithm when run
on an embedded device. Recently, Liu et al. [LZS+21] described a side-channel attack on
Dilithium that uses only a single bit of the nonce y for multiple signatures. They reduced
the problem of recovering the secret key to a variant of the Integer Learning with Errors
(ILWE) problem [BDE+18] and proved that it can be solved using least squares method
in polynomial time. Similarly, the authors of [MUTS22] used a profiled attack based on
machine learning, targeting the secret signing nonce y for multiple signatures, followed by
least-square regression and integer programming to solve a noisy linear system and recover
the secret key.

The masking countermeasure. Side-channel attacks can be prevented by ensuring that
any computation, and consequently any leakage, is independent of any secret the algorithm
wields. At the simplest level, this can be achieved by splitting each secret variable x into
shares x = x1 ⊕ x2, where x1 is a uniform random mask and x2 = x⊕ x1. By processing
each share independently without recombining them, an attacker who probes only one
variable through side-channel attacks will learn nothing about the secret key, since both
x1 and x2 are uniformly distributed. More generally, [ISW03] introduced the t-probing
model, where an attacker can probe up to t variables. The authors showed how to protect
implementations using masks with n = 2t+ 1 shares, i.e., x = x1⊕· · ·⊕xn. More precisely,
they showed how any Boolean circuit C of size |C| can be transformed into an equivalent
circuit C̃ that is t-probing secure with size O(n2|C|). The number of shares was later
reduced to n = t+ 1 in [BBD+15]. The authors introduced the (Strong) Non-Interference
(SNI and NI) security notions and composability theorems so that the overall probing
security of a scheme can be broken down to the security of its elementary parts.

Although the generic conversion algorithm from [ISW03] can be used to make Dilithium
signature generation secure against side-channel attacks, the specific operations used in
lattice-based cryptography make this approach inefficient in practice. This is because lattice-
based cryptography uses both arithmetic and Boolean operations, and arithmetic masking
(x = x1 + · · ·+ xn mod q) is preferred for arithmetic computations, while Boolean masking
(x = x1 ⊕ · · · ⊕ xn) is used for Boolean operations, requiring frequent conversions between
the two masked representations. To address this issue, efficient high-order conversion
algorithms have been developed to work with any modulus q. The first high-order conversion
between arithmetic and Boolean masking was described in [CGV14] for a power-of-two
modulus q, for masking block-ciphers and hash functions that combine Boolean and
arithmetic operations, such as SHA-1. The conversion technique from [CGV14] was then
extended to any modulus q in [BBE+18]. Additionally, [SPOG19] presented an efficient
1-bit Boolean to arithmetic conversion modulo q with a complexity of O(n2). A generic
conversion algorithm between arithmetic and Boolean masking was proposed in [CGMZ22],
based on the randomized table countermeasure from [Cor14]. Furthermore, dedicated
gadgets have been developed to handle specific operations in lattice-based encryption
schemes more efficiently. For instance, [BDH+21] and [CGMZ23] proposed specialized
gadgets for masking the Kyber lattice-based encryption scheme when performing ciphertext
comparison. In general, the use of lattice-based cryptography has led to the development
of new dedicated gadgets to perform high-order masked computation more efficiently.

Masking Dilithium signatures. The first high-order masking of a lattice-based signature
scheme was presented in [BBE+18], which focused on masking the GLP signature scheme
[GLP12]. Dilithium is a more advanced version of GLP, using the compression technique
from [BG14] and additional optimizations. In [MGTF19], the authors demonstrated how to
perform high-order masking of Dilithium. Furthermore, the authors presented a simplified

112 Improved Gadgets for the High-Order Masking of Dilithium

version of Dilithium that used a power-of-two modulus q instead of a prime modulus,
resulting in significant performance improvements for their countermeasure.

In a signature generation algorithm, not all variables necessarily need to be masked.
For Dilithium, the authors of [ABC+22] revisited the sensitivity analysis presented in
[MGTF19] and identified some intermediate variables that were incorrectly left unmasked
in [MGTF19], which could potentially lead to the recovery of the private key. Conversely,
they also showed that some other variables in [MGTF19] were unnecessarily protected.
More specifically, the authors of [ABC+22] argue that the vector w = Ay must be masked,
as opposed to what was done in [MGTF19]. If left unmasked, since A is either a square
matrix or has more rows than columns, the variable y can be efficiently recovered from
w, which in turn enables the recovery of the secret key. On the other hand, the variable
r = w− cs2 = Az− ct can be considered public after the rejection sampling. Therefore,
the computation of the hint vector h can be performed in the clear and need not be masked,
as was done in [MGTF19]. In this paper, we follow the same approach as [ABC+22].

The authors of [ABC+22] have also proposed improved gadgets for the high-order
masking of Dilithium. Specifically, they have presented an efficient high-order algorithm
for performing the rejection sampling of the variables z and r̃, as well as an efficient
masking technique for the Decompose function. They have argued that the variable w1 in
(w1,w0)← Decomposeq(w) need not be masked since it is also publicly computed during
signature verification. Thus, the challenge c̃ = H(M‖w1) need not be masked, and the
Keccak hash function H need not be masked. However, this may not hold for an aborted
signature, where knowledge of w1 might reveal information to an attacker. The heuristic
assumption (also used in [BBE+18] and [MGTF19]) is that revealing the commitment
w1 of the aborted transcript does not compromise the security of the scheme. Recently,
this assumption has been analyzed in [DFPS23] and shown to hold unconditionally by
providing an efficient simulator for all transcripts, including aborted ones. Therefore, in
this work, we adopt the same approach.

Finally, the authors considered the masking of both deterministic Dilithium and
randomized Dilithium. In this paper, for simplicity we only consider the masking of
randomized Dilithium, since as demonstrated in [ABC+22] its masking is significantly
more efficient.

Our contributions. We describe improved high-order gadgets for the masking of Dilithium,
with a proof of security in the t-probing model. Additionally, we provide an implementation
to demonstrate the effectiveness of our countermeasures. More specifically:

• We introduce a new gadget called ShiftMod in Section 3.1 that allows for efficient
arithmetic shifts. Compared to previous works such as [CGMZ22], our ShiftMod
algorithm is more versatile since it can handle any integer modulus 2q instead of
just 2k. Our new gadget is particularly useful in the context of Dilithium, where
we utilize it to develop a fast Boolean-to-arithmetic modulo q conversion, as well
as a faster masking of the Decompose function (discussed below). Additionally, we
can replace the arithmetic shift gadgets (Shift1 and Shift2) from [CGMZ22] with
our ShiftMod algorithm, which is more efficient, to expedite the conversion from
arithmetic modulo 2k to Boolean masking.

• We propose a new algorithm to convert a µ-bit integer x from Boolean to arithmetic
masking modulo any integer q, which is used in Dilithium for generating an arithmetic
sharing of the random variable y modulo q. Unlike existing state-of-the-art methods,
our algorithm exhibits a complexity that is independent of both the bit-size µ and
the modulus q, assuming an arithmetic operation modulo q has a unit cost. Our
approach builds upon the work of [BCZ18], which was limited to power-of-two moduli,
and extends it to handle arbitrary moduli q. As in [BCZ18], the complexity of our

Jean-Sébastien Coron, François Gérard, Matthias Trannoy and Rina Zeitoun 113

algorithm is O(2n), which is exponential in the number of shares n but independent
of the modulus size. For small values of n and large enough µ, our method is also
significantly faster than alternative techniques such as [BBE+18] and [SPOG19].
Our technique first applies [BCZ18] for a well-chosen modulus 2k, and then performs
a modulus switching of the arithmetic shares from modulo 2k to modulo q. However,
such modulus switching can introduce a small error e. To address this, we utilize our
previous ShiftMod algorithm to remove the error e and obtain an exact conversion.

• For masking the Decompose algorithm of Dilithium, we improve the two existing
approaches introduced in [ABC+22]. Firstly, we expand on the first approach based
on the Compress function of Kyber, by providing an alternative description of the
Decompose procedure used in Dilithium, and a more efficient masking based on our
ShiftMod algorithm. We also extend the second approach to cover any α = (q− 1)/δ,
whereas in [ABC+22], a power-of-two δ was required. Furthermore, we compare the
two approaches and show that the first approach is more efficient in practice.

Finally, we present a complete high-order masked implementation of Dilithium, uti-
lizing the improved gadgets described above. We provide the practical results of a C
implementation and compare the performance improvement provided by our new gadgets
with those from [BBE+18], [SPOG19], and [ABC+22]. For a non-bitsliced implementation,
our techniques achieve a significant speedup compared to previous work. In particular,
our new Boolean-to-arithmetic masking algorithm leads to a substantial improvement
over the techniques presented in [SPOG19] and [BBE+18]. Our improved approaches for
masking the Decompose algorithm of Dilithium also provides better efficiency than the
ones presented in [ABC+22]. The plain C code is publicly available at

https://github.com/fragerar/Masked_Dilithium

Comparison with [ABC+22]. In the following, we provide a more detailed comparison
of our contributions with those of [ABC+22]. Note that [ABC+22] also describes a leveled
approach combining the shuffling countermeasure with masking, which offers significantly
better performances, but without the guarantee of t-probing security. Here we only consider
the fully masked implementation from [ABC+22]. As previously mentioned, we use the
same global masking strategy as in [ABC+22], which involves masking the same variables
and keeping the same variables unmasked.

Regarding the generation of the signing nonce y, the authors of [ABC+22] rely on the
Boolean to arithmetic conversion from [BBE+18], with the bitsliced implementation from
[BC22], while we use our new Boolean to arithmetic conversion algorithm from Section 4.
Although our algorithm has a complexity independent from the bit-size of y and q, it is
not compatible with bitslicing.

Similarly, for the masking of Decompose, we describe improved gadgets in Section 5,
which can leverage our more lightweight ShiftMod arithmetic shift algorithm. Our ShiftMod
gadget is more efficient compared to the heavier arithmetic to Boolean conversion from
[BBE+18] used in [ABC+22], but it is not compatible with bitslicing.

Moreover, the authors of [ABC+22] provide a complete benchmark for an ARM
Cortex-M4 microcontroller for the full signature generation, while we only provide a
C implementation for laptop execution. However, we provide a public implementation,
whereas the source code for [ABC+22] is not available.

In summary, the main difference with [ABC+22] is that we provide more efficient
gadgets for a non-bitsliced implementation, whereas [ABC+22] use more standard gadgets
for which they can leverage the state-of-the-art bitsliced implementation from [BC22]. We
provide in Section 7.1 a high-level comparison with the bitsliced approach of [BC22] for
the high-order Boolean to arithmetic conversion modulo q.

https://github.com/fragerar/Masked_Dilithium

114 Improved Gadgets for the High-Order Masking of Dilithium

2 Notations and security definitions
2.1 Notations
We adopt the same notations as the Dilithium specifications [BDK+21]. Let Zq denote
the ring of integers modulo q. We will use both the positive representation of elements
in Zq (i.e., Zq ' {0, . . . , q − 1}) and the centered representation (i.e., Zq ' {−(q −
1)/2, . . . , 0, . . . , (q− 1)/2} for odd q and Zq ' {−(q/2) + 1, . . . , 0, . . . , q/2} for even q). For
x ∈ Z, we denote by x mod+ q (resp. x mod± q) the positive (resp. centered) representative
of x modulo q.

We define the polynomial quotient rings R = Z[X]/(X256 +1) and Rq = Zq[X]/(X256 +
1). The infinity norm of an element z =

∑
z(i)Xi ∈ Rq is denoted by ‖z‖∞ and defined as

follows:

‖z‖∞ = max
0≤i<256

|z(i) mod± q|

We use bold lower-case letters to represent column vectors with coefficients in R or
Rq. For a vector of polynomials z = (z1, . . . , zk) ∈ Rkq , the infinity norm is defined as
‖z‖∞ = max1≤i≤k ‖zi‖∞.

The centered ball of radius η is denoted by Sη and consists of elements w ∈ R such
that ‖w‖∞ ≤ η, or equivalently, polynomials of R with coefficients in the range [−η, η].
Finally, we denote by S̃η the polynomials of R with coefficients in the range]− η, η].

2.2 Security definitions
In the following, we review the Non-Interference (NI) and Strong Non-Interference (SNI)
security notions proposed in [BBD+16], along with the stronger free-SNI notion introduced
in [CS21]. These security notions are particularly useful for demonstrating probing security
against attackers who can only probe a limited number of variables. In fact, by using
composition theorems established in [BBD+16], we can prove that an algorithm achieves
probing security by breaking it down into smaller gadgets for which we individually prove
either NI or SNI security.

Definition 1 (t-NI security). Let G be a gadget taking as input n shares (a1, . . . , an) and
outputting n shares (b1, . . . , bn). The gadget G is said to be t-NI secure if for any set of
t1 ≤ t probed variables there exists a subset of input indices I ⊂ [1, n] such that the t1
probed variables can be perfectly simulated from a|I , with |I| ≤ t1.

Definition 2 (t-SNI security). Let G be a gadget taking as input n shares (a1, . . . , an)
and outputting n shares (b1, . . . , bn). The gadget G is said to be t-SNI secure if for any
set of t1 intermediate variables and any subset O ⊂ [1, n] of output indices such that
t1 + |O| ≤ t, there exists a subset of input indices I ⊂ [1, n] such that the t1 intermediate
variables and the outputs b|O can be perfectly simulated from a|I , with |I| ≤ t1.

The NI and SNI notions differ in the number of input shares required for the simulation.
In the SNI case, this number is upper-bounded by the number of internal probes in the
gadget. In contrast, for the NI notion, it is only bounded by the total number of probes,
including the probes on the output shares. Finally, we also review the free-SNI notion
introduced in [CS21]. This notion is stronger than the SNI notion, as a subset of the
output shares can be perfectly simulated from a subset of the input shares, and all other
output shares, except one, can be simulated using fresh uniform randoms.

Definition 3 (Free-t-SNI security). Let G be a gadget taking as input n shares (ai)1≤i≤n
and outputting n shares (bi)1≤i≤n. The gadget G is said to be free t-SNI secure if for
any set of t1 ≤ t probed intermediate variables, there exists a subset I of input indices

Jean-Sébastien Coron, François Gérard, Matthias Trannoy and Rina Zeitoun 115

with |I| ≤ t1, such that the t1 intermediate variables and the output variables b|I can be
perfectly simulated from a|I , while for any O ([1, n] \ I the output variables in b|O are
uniformly and independently distributed, conditioned on the probed variables and b|I .

We recall in Appendix A.2 the mask refreshing algorithm RefreshMasks. The algorithm
was proven (n − 1)-SNI in [BBD+16]. The lemma below shows that it also satisfies the
stronger free-SNI property.

Lemma 1 ([CS21]). The RefreshMasks algorithm is free-(n− 1)-SNI.

For masking Dilithium, the shares must be eventually recombined to output the
signature in the clear. For this we use the extended notion of NI security from [BBE+18,
Definition 7], in which the output b of the gadget is given to the simulator.

Definition 4 (t-NIo security [BBE+18]). Let G be a gadget taking as input (xi)1≤i≤n
and outputting b. The gadget G is said t-NIo secure if for any set of t1 ≤ t intermediate
variables, there exists a subset I of input indices with |I| ≤ t1, such that the t1 intermediate
variables can be perfectly simulated from x|I and b.

To satisfy this definition when the output shares of a gadget need to be recombined
with a public output, as shown in [CGMZ23, Appendix B.2], one can apply the free-SNI
Refreshmasks algorithm and eventually recombine the shares.

3 Arithmetic shift and conversion from arithmetic to Boo-
lean masking

In this section, we introduce a novel gadget called ShiftMod that enables efficient arithmetic
shifts modulo any integer. The purpose of this gadget is to generate an arithmetic sharing
of bx/2c modulo q, given an arithmetic sharing of x modulo 2q. We provide a detailed
description of the properties of ShiftMod in Section 3.1.

Compared to the arithmetic shift gadgets introduced in [CGMZ22], our ShiftMod
algorithm is more versatile as it can operate modulo any integer 2q, not just 2k. This
enables the development of other gadgets for the masking of Dilithium, such as a fast
Boolean-to-arithmetic modulo q conversion algorithm, which is detailed in Section 4.
This conversion algorithm is crucial in generating an arithmetic sharing of the random
polynomial y modulo q in Dilithium. Moreover, we also utilize ShiftMod to improve the
masking of the Decompose function in Dilithium, as described in Section 5.

Additionally, we demonstrate that our ShiftMod algorithm can be applied to expedite
the conversion from arithmetic modulo 2k to Boolean masking, even though this conversion
is not directly used in our masking of Dilithium. For this, we utilize the same technique
presented in [CGMZ22]. We apply a sequence of arithmetic shifts starting from x modulo
2k, and extract the least significant bit of bx/2ic at each step. This ultimately yields a
Boolean masking of x. By employing our new ShiftMod gadget, we achieve significant
improvements in conversion efficiency compared to the two arithmetic shift gadgets (Shift1
and Shift2) proposed in [CGMZ22].

3.1 New arithmetic shift modulo 2q
We consider an arbitrary integer q. Given as input an arithmetic sharing of x = x1+· · ·+xn
(mod 2q), our new ShiftMod gadget high-order computes the shift:

a =
⌊x

2

⌋
= x− (x mod 2)

2 (mod q) (1)

116 Improved Gadgets for the High-Order Masking of Dilithium

and returns an arithmetic sharing of a = a1 + · · ·+an (mod q), without leaking information
about x.

Our ShiftMod algorithm relies on a 1-bit Boolean-to-arithmetic conversion gadget, with
the most efficient one being the 1bitB2A gadget from [SPOG19], which is proven SNI.
However, to use this gadget in our ShiftMod algorithm, we require a slightly stronger
property than SNI, namely free-SNI (see Definition 3). One approach to achieving free-SNI
is to compose the 1bitB2A gadget from [SPOG19] with the RefreshMasks algorithm, as it
achieves this property (see Lemma 1). However, we demonstrate that a minor modification
to the 1bitB2A gadget directly achieves the free-SNI property, eliminating the need for
RefreshMasks. This modification results in a more efficient ShiftMod algorithm.

To high-order compute (1), the first step is to obtain an arithmetic masking modulo
2q of y = (x mod 2). For this, we consider the least significant bits bi of xi for 1 ≤ i ≤ n,
and we perform a Boolean to arithmetic modulo 2q conversion of the shares bi, using the
1bitB2A algorithm from [SPOG19], which we recall in Section 3.2 (see Alg. 2). This gives:

y1 + · · ·+ yn = b1 ⊕ · · · ⊕ bn = (x mod 2) (mod 2q)

In the second step, we high-order compute z = x − (x mod 2) (mod 2q) by letting
zi = xi−yi mod 2q for all 1 ≤ i ≤ n. To high-order compute a = z/2 mod q, our technique
is to obtain a new arithmetic sharing of z such that zi = 0 (mod 2) for all 1 ≤ i ≤ n; then
we can simply divide by 2 each share zi independently. For this, we do a loop for i = 1
to n− 1, and we let zn ← zn + (zi mod 2) mod 2q, and zi ← zi − (zi mod 2) mod 2q. At
the end of the loop, the shares zi still encode the same integer z, and all the shares zi are
even. This is true by construction of the updated zi’s for 1 ≤ i ≤ n− 1, and this must also
be true for zn because z = 0 (mod 2). Therefore, we can eventually let ai = zi/2 for all
1 ≤ i ≤ n, which gives an arithmetic sharing modulo q of a = bx/2c (mod q). We obtain
the following ShiftMod algorithm depicted in Algorithm 1.

Note that the ShiftMod algorithm we propose can handle any integer q, including those
for which gcd(q, 2) 6= 1. As a result, computing a = z/2 mod q using high-order methods
is not as simple as multiplying the shares zi of z by 2−1 mod q. In particular, to perform
an arithmetic shift by k bits, we will use the ShiftMod gadget iteratively with moduli of
the form q = 2i · p for i decreasing from k to 1. Therefore, we cannot assume gcd(q, 2) = 1.

Algorithm 1 ShiftMod
Input: A modulus q′ = 2q and x1, . . . , xn ∈ Z2q
Output: a1, . . . , an ∈ Zq such that a1 + · · ·+ an = b(x1 + · · ·+ xn)/2c (mod q)

1: for i = 1 to n do bi ← xi & 1
2: (y1, . . . , yn)← 1bitB2A(2q, (b1, . . . , bn))
3: for i = 1 to n do zi ← xi − yi mod 2q
4: for i = 1 to n− 1 do
5: zn ← zn + (zi & 1) mod 2q
6: zi ← zi − (zi & 1) mod 2q
7: end for
8: for i = 1 to n do ai ← zi � 1
9: return a1, . . . , an

Complexity. We recall the 1bitB2A algorithm in Section 3.2, and show that its number of
elementary operations is T1bitB2A(n) = 2n2 + 4n− 6. The number of operations of ShiftMod
is then TShiftMod(n) = n+ T1bitB2A(n) + n+ 3(n− 1) + n = 2n2 + 10n− 9, assuming that
operations modulo q have unit cost. The complexity is therefore 2n2 + O(n), which is
significantly better than the previous Shift1 and Shift2 algorithms from [CGMZ22], which

Jean-Sébastien Coron, François Gérard, Matthias Trannoy and Rina Zeitoun 117

have complexity 2n3 and 20n2 respectively (neglecting low-order terms). Therefore, the
resulting arithmetic to Boolean conversion algorithm will be significantly more efficient
(see Section 3.3). Moreover, our ShiftMod gadget is more general, as it can work modulo
any integer 2q, instead of modulo 2k only for Shift1 and Shift2.

Security. To prove the t-NI property of the ShiftMod algorithm above, it is sufficient
to prove that after Line 3, we can perfectly simulate all variables (zi & 1) for 1 ≤ i ≤ n,
since the other operations (except 1bitB2A) compute the shares independently for each
i. For this, it is sufficient to show that after Line 3, all output shares zi except one can
be perfectly simulated; then, using the relation

∑n
i=1 zi = 0 (mod 2), we can perfectly

simulate all variables (zi & 1) for 1 ≤ i ≤ n as required. For this, we crucially use the
free-SNI property of 1bitB2A, which implies that for any subset O ([1, n] \ I, the variables
y|O are uniformly and independently distributed. Then such variables yi can play the role
of a one-time-pad at Line 3 with respect to the variables xi for i /∈ I, and therefore all
variables zi except one can be perfectly simulated, as required.

As required, we prove the free-SNI property of the 1bitB2A gadget from [SPOG19]
in Section 3.2. As explained previously, without the free-SNI property of 1bitB2A, a full
mask refreshing of the shares zi would have been required after Line 3, to get the free-SNI
property of the composition (see Lemma 1). This would have added a term 3n2/2 in the
number of operations of ShiftMod, which would then be 7n2/2 instead of 2n2 (neglecting
low order terms).
Theorem 1. The ShiftMod algorithm achieves the NI property, if the 1bitB2A algorithm
achieves the free-SNI property.
Proof. We provide a proof based on simulation, namely, given any set of t probes, one
constructs iteratively a subset I of indices of the input shares xi that are sufficient to
simulate the t probes. Then by ensuring |I| ≤ t, we will deduce that the simulation can be
performed without knowing the original variable x when t < n. We let t1 be the variables
probed everywhere in the algorithm apart from 1bitB2A and t2 the probed variables in
1bitB2A, such that t = t1 + t2. In the following, we assume that t < n, otherwise we can
trivially simulate all probes with I = [1, n], which amounts to knowing x.

We describe hereafter the construction of the set I ⊂ [1, n] initially empty. More
precisely, we let I = J ∪ U and we describe the construction of the sets J and U . For
every probed variable xi, bi, yi, zi or ai, we add i to J . For every probed variable zn,i
corresponding to the result variable zn at loop i, we add n to J . Furthermore, the set U is
constructed from the free-SNI property of 1bitB2A (Theorem 2) which allows to simulate
the t2 probed intermediate variables in 1bitB2A and the output variables y|U from a set U
of indices where |U | ≤ t2. By construction, since one has added at most one index per
probed variable in J , we have |J | ≤ t1. This gives |I| = |J ∪ U | ≤ t1 + t2 = t as required.

The simulation of the probed variables is done as follows: if xi or bi is probed, then it
can perfectly be simulated from the knowledge of xi since i ∈ J ⊂ I by construction. Then,
for i ∈ U , the output variables yi are simulated from the free-SNI property of 1bitB2A. In
the case where i /∈ U , because we have t < n, we know that there is at least one index
i? which does not belong to I. Therefore, the free-SNI property of 1bitB2A allows us to
construct a set of output indices O = [1, n] \ (U ∪ {i?}) ([1, n] \U such that the variables
y|O are uniformly and independently distributed. Therefore, the variables yi such that
i ∈ J \ U can be simulated by generating random values. The remaining variables yi,
namely with i /∈ I, can play the role of a one-time-pad at line 3 of ShiftMod with respect
to the variables xi for i /∈ I, and therefore all variables zi except zi? at Line 3 can be
perfectly simulated.

The simulation continues as follows: any probed variable zi or zi & 1 with 1 ≤ i ≤ n− 1
in the For loop, can be perfectly simulated as shown right above, since one has at most
n− 1 such probes.

118 Improved Gadgets for the High-Order Masking of Dilithium

It remains to perfectly simulate any probed intermediate variable zn,i for any i when
n ∈ I. To this aim, we use the fact that the only values which enter into the computation
of zn,i are the first zn value (namely zn,0), and the least significant bit of all zi’s (namely
zi & 1 for 1 ≤ i ≤ n). Since we can perfectly simulate n − 1 variables zi and because
we know that the sum of all zi’s is even, we can deduce the least significant bit of the
unknown value zi? , namely zi? & 1 =

⊕
i 6=i?(zi & 1). Thus, we have shown that we can

perfectly simulate any probed intermediate variable zn,i, including the output result zn at
the end of the For loop.

Eventually, the probed variable ai can also be directly computed from zi above since
i ∈ I by construction, which concludes the proof.

3.2 1-bit Boolean to arithmetic conversion from [SPOG19]
In this section, we recall the 1-bit Boolean to arithmetic conversion algorithm 1bitB2A from
[SPOG19], which is used in our ShiftMod algorithm above. This algorithm is currently the
most efficient of its kind and has the same asymptotic complexity O(n2) for n shares as
the table-based algorithm from [CGMZ22], but with a better concrete complexity. We will
demonstrate that with some minor modifications, the [SPOG19] algorithm can achieve the
free-SNI property required for our ShiftMod gadget.

For any integer q, the algorithm takes as input n shares xi ∈ {0, 1} and outputs n
arithmetic shares yi ∈ Zq such that y1 + · · · + yn = x1 ⊕ · · · ⊕ xn (mod q). It works as
follows. Assume that we have a n-shared encoding (y1, . . . , yn) modulo q of a bit b ∈ {0, 1},
that is b = y1 + · · ·+ yn (mod q). Then, we can easily compute an encoding of b̄ = 1− b,
simply by letting y1 ← 1 − y1 mod q and yi ← −yi mod q for all 2 ≤ i ≤ n. Using this
technique, starting from an encoding (y1, . . . , yn) of 0, we can iteratively process the input
bits xi, and eventually obtain an encoding (y1, . . . , yn) such that y1 +· · ·+yn = x1⊕· · ·⊕xn
(mod q) as required. For security, we must refresh the shares yj after the processing of
each xi. One uses a mask refreshing LinearRefresh that accumulates the randomness on
the last share; we recall its description in Appendix A.1. As an optimization, instead of
starting with n shares yj , it is actually more efficient to progressively increase the number
of shares, from a single share to n shares.

We recall the corresponding algorithm from [SPOG19] in Alg. 2 below. To facilitate
the writing of our security proof of the free-SNI property, we include a minor modification.
Namely, we start the processing of the input Boolean shares with x2, instead of x1; we then
process the remaining shares x3, . . . , xn, and eventually xn+1 = x1. Moreover, the last
LinearRefresh is performed with reversed inputs, so that the randomness is accumulated on
v1 instead of vn. This cyclic shift of the inputs is to ensure that after the processing of xi,
the randomness in LinearRefresh is always accumulated on the i-th column.

Algorithm 2 1bitB2A [SPOG19]
Input: x1, . . . , xn ∈ {0, 1}
Output: v1, . . . , vn ∈ Zq such that v1 + · · ·+ vn mod q = x1 ⊕ · · · ⊕ xn

1: xn+1 ← x1, v1 ← x2 . v1 = x2 (mod q)
2: for i = 2 to n do
3: (v1, . . . , vi)← LinearRefreshZq

(v1, . . . , vi−1, 0)
4: (v1, . . . , vi)← (1− 2xi+1) · (v1, . . . , vi) mod q
5: v1 ← v1 + xi+1 mod q .

∑i
j=1 vi = x2 ⊕ · · · ⊕ xi+1 (mod q)

6: end for
7: (vn, . . . , v1)← LinearRefreshZq

(vn, . . . , v1)
8: return (v1, . . . , vn)

Jean-Sébastien Coron, François Gérard, Matthias Trannoy and Rina Zeitoun 119

Complexity. The number of operations of LinearRefresh is 3i− 3 for i shares. Therefore,
the total number of operations is T1bitB2A(n) =

∑n
i=2(3i−3 + i+ 2) +3n−3 = 2n2 + 4n−6.

More generally, to convert k-bit of Boolean masking into arithmetic masking, the complexity
is TB2A(k, n) = k · (4n+ T1bitB2A(n)) = k · (2n2 + 8n− 6).

Security. Algorithm 2 is already proven SNI in [SPOG19]. With Theorem 2, we prove
a slightly stronger property, namely the free-SNI property (see Def. 3); we provide the
proof in Appendix B. As explained previously, this enables to obtain a better asymptotic
complexity for our ShiftMod algorithm.

Theorem 2 (free-SNI of 1bitB2A). For any set of t probes, there exists a subset I with
|I| ≤ t, such that those t probes and v|I can be perfectly simulated. Moreover the shares in
v|O are uniformly and independently distributed for any O ([1, n] \ I, even conditioned on
the probes and v|I .

3.3 Improved arithmetic to Boolean conversion

Finally, we show how to use our ShiftMod gadget for faster conversion from arithmetic
to Boolean masking. Namely, in [CGMZ22], the authors described the arithmetic to
Boolean conversion algorithm below, based on a generic high-order 1-bit arithmetic Shift,
working modulo 2k. Therefore, in the algorithm below, we can replace the Shift1 or Shift2
algorithms from [CGMZ22] by our improved ShiftMod gadget form Section 3.1. In that
case, the ShiftMod algorithm takes as input a modulus q′ = 2k−j = 2q.

Algorithm 3 ArithmeticToBoolean (ABoptiNI) [CGMZ22]
Input: k ∈ N+ and z1, . . . , zn ∈ Z2k

Output: s1, . . . , sn ∈ {0, 1}k such that s1 ⊕ · · · ⊕ sn = z1 + · · ·+ zn mod 2k

1: for i = 1 to n do si ← 0
2: for j = 0 to k − 1 do
3: for i = 1 to n do si ← si + ((zi & 1)� j)
4: (z1, . . . , zn)← ShiftMod(2k−j , (z1, . . . , zn))
5: end for
6: return s1, . . . , sn

Complexity. The complexity is TAB(n, k) = k · (3n + Tshift(n)). Therefore, with the
ShiftMod algorithm, the complexity is TAB(n, k) = k · (2n2 + 13n − 9). The complexity
is therefore 2kn2 +O(kn), instead of 2kn3 and 20kn2 with Shift1 and Shift2 respectively
(neglecting low-order terms). We provide a comparison in Table 1 below. We see that our
new algorithm outperforms [CGV14] for security order t ≥ 4.

Theorem 3 (t− NI security of ABoptiNI). For any set of t intermediate variables, there
exists a subset of input indices I ⊂ [1, n] such that the t intermediate variables can be
perfectly simulated from inputs z|I , with |I| ≤ t.

Proof. The proof is straightforward as Algorithm 3 is the composition of the t−NI ShiftMod
algorithm with sharewise operations.

120 Improved Gadgets for the High-Order Masking of Dilithium

Table 1: Operation count for arithmetic modulo 2k to k-bit Boolean conversion algorithms,
up to security order t = 12, with n = t+ 1 shares and k = 32.

A mod 232 → B Security order t
1 2 3 4 5 6 8 10 12

Goubin [Gou01] 165
[CGV14] 32→ 32 1 132 2 070 4 030 6 218 8 597 15 053 23 655 33 572
Alg. 3 with Shift1 2 496 5 248 9 600 15 936 24 640 50 688 90 816 148 096
Alg. 3 with Shift2 3 872 7 520 12 448 18 656 26 144 44 960 68 896 97 952
Alg. 3 with ShiftMod 1 536 2 400 3 392 4 512 5 760 8 640 12 032 15 936

4 Boolean to arithmetic conversion modulo q with size-
independent complexity

In this section, we introduce a new algorithm that converts a µ-bit integer x from Boolean
to arithmetic masking modulo any integer q. This conversion is used in Dilithium to
generate an arithmetic sharing of the variable y modulo q. Currently, the state of the
art method involves applying the 1-bit Boolean to arithmetic conversion algorithm from
[SPOG19] µ times, resulting in a complexity of O(n2 · µ). Alternatively, one can use the
Boolean to arithmetic conversion algorithm from [BBE+18], which has a complexity of
O(n2 · log q), or even O(n2 · log log q) using the Kogge-Stone adder as in [CGTV15].

Our contribution is to describe a Boolean to arithmetic conversion algorithms with
complexity independent of both the bitsize µ and the modulus q. We assume that an
arithmetic operation modulo q has a unit cost. We build on the work of [BCZ18], which
described a µ-bit Boolean to arithmetic modulo 2k conversion algorithm with complexity
O(2n), exponential in the number of shares n, but independent of the bitsize µ and the
register size k. For small values of n, this method is at least one order of magnitude faster
than alternative techniques. We generalize this algorithm to any modulus q, and as in
[BCZ18], we obtain a significant improvement for small n values, for large enough µ as in
Dilithium.

We start with an approximate algorithm that can induce a small error e in the conversion,
based on modulus switching. For this, we first apply the conversion of [BCZ18] from a
µ-bit Boolean masking into an arithmetic modulo 2k masking, for a certain parameter
k ≥ µ. In a second step, we convert from arithmetic masking modulo 2k to modulo q, using
modulus switching, with complexity O(n). To obtain an exact algorithm, we show how to
remove the small error e from the approximate algorithm, using our ShiftMod gadget from
Section 3.1, with additional complexity O(n2 logn). The total complexity remains O(2n)
and is independent of the modulus size as in [BCZ18]. In summary, our new algorithm
works for any modulus q, whereas [BCZ18] only worked for a power-of-two modulus.

In the context of Dilithium, we must generate an arithmetically masked polynomial y
modulo q, with randomly distributed coefficients in]− γ1, γ1], with γ1 = 217 for security
level 2. Therefore, for each coefficient, we first generate a random µ-bit Boolean masked x,
simply by generating n uniformly random µ-bit Boolean shares. By applying our exact
conversion algorithm, we obtain an arithmetically masked x modulo q, with uniform
distribution in [0, 2µ[. Therefore, we set µ = 18, and we subtract γ1 − 1 = 217 − 1 from
the first share to obtain the required uniform distribution in]− γ1, γ1].

4.1 Tool: modulus switching
We begin by introducing our primary method: modulus switching over arithmetic shares.
This technique was already used in [CGMZ23] to mask the Compress function of Kyber.

Jean-Sébastien Coron, François Gérard, Matthias Trannoy and Rina Zeitoun 121

In this section, we provide an analysis of the fundamental modulus switching approach.
Specifically, we examine the error that arises when n arithmetic shares are switched from
a modulus p1 to a modulus p2. We demonstrate that the error e is confined within the
range of 0 ≤ e ≤ n− 1.

Algorithm 4 Modulus switching (ModSwitch)
Input: p1, p2 ∈ N, an arithmetic masking x1, . . . , xn ∈ Zp1 such that x = x1 + · · ·+ xn

(mod p1).
Output: y1, . . . , yn ∈ Zp2 such that y1 + · · ·+ yn = bx · p2/p1c+ e mod p2, for 0 ≤ e < n.

1: for i = 1 to n do yi ← bxi · p2/p1c mod p2
2: y1 ← y1 + (n− 1) mod p2
3: return (y1, . . . , yn)

Lemma 2. Let p1 and p2 be two positive integers. Let xi ∈ Zp1 for 1 ≤ i ≤ n and let
x = x1 + · · ·+ xn (mod p1). Let y1, . . . , yn be the output of ModSwitch. Then:

y1 + · · ·+ yn =
⌊
x · p2

p1

⌋
+ e (mod p2) (2)

for some 0 ≤ e ≤ n− 1.

Proof. We write x = x1 + · · ·+ xn − λ · p1 for some λ ∈ Z, so we can write:

x · p2

p1
=

n∑
i=1

xi · p2

p1
− λ · p2

For 1 ≤ i ≤ n, we can write by Euclidean division xi · p2 = p1 · bxi · p2/p1c + ri with
0 ≤ ri < p1, and similarly x · p2 = p1 · bx · p2/p1c+ r with 0 ≤ r < p1. This gives:⌊

x · p2

p1

⌋
=

n∑
i=1

⌊
xi · p2

p1

⌋
+

n∑
i=1

ri
p1
− r

p1
− λ · p2

Moreover, since x =
∑n
i=1 xi (mod p1), we must have r =

∑n
i=1 ri (mod p1), and therefore

r =
∑n
i=1 ri − e′ · p1 for some e′ ∈ Z, with 0 ≤ e′ ≤ n− 1. This gives:⌊

x · p2

p1

⌋
=

n∑
i=1

⌊
xi · p2

p1

⌋
+ e′ − λ · p2

= y1 + · · ·+ yn − (n− 1) + e′ − λ · p2

Finally, by letting e = (n− 1)− e′ and after reduction modulo p2, we obtain (2).

4.2 Approximate conversion using modulus switching
In the following we describe an approximate conversion algorithm based on modulus
switching that can induce a small error e in the conversion. More precisely, we are given
as input a Boolean masking of x, such that 0 ≤ x < 2µ, with x = u1 ⊕ · · · ⊕ un. Our
goal is to obtain an arithmetic masking of x+ e modulo q, for a small error e ∈ Z with
0 ≤ e ≤ n− 1:

y1 + · · ·+ yn = x+ e (mod q)
We assume that µ and the modulus q are fixed (for example, µ = 18 and q = 223 − 213 + 1
in Dilithium). Note that we can get a centered error by letting y′1 := y1 − bn/2c, which
gives |e′| ≤ bn/2c.

122 Improved Gadgets for the High-Order Masking of Dilithium

We first apply the [BCZ18] Boolean to arithmetic conversion algorithm, which gives
x = x1 + · · · + xn (mod 2k), for a parameter k that will be determined later. We then
apply Lemma 2 by performing a modulus switching from the modulus p1 = 2k to a new
modulus p2 = a · q, for some integer a that will also be determined later, and we reduce
the shares yi directly modulo q. More precisely, given as input the shares xi modulo 2k
such that x = x1 + · · ·+ xn (mod 2k), we compute for 1 ≤ i ≤ n:

yi =
⌊xi · a · q

2k
⌋

mod q

and y1 ← y1 + (n− 1), as in Lemma 2. After reduction modulo q, from (2) we obtain for
some 0 ≤ e ≤ n− 1:

y1 + · · ·+ yn =
⌊x · a · q

2k
⌋

+ e (mod q) (3)

Equation (3) is not sufficient for our purposes as, due to the modulus switching, it only
gives us an arithmetic sharing modulo q of bx · a · q/2kc instead of x. To address this issue,
we use a trick: we select an integer a such that a · q is very close to 2k, which allows us to
obtain the correct value of x.

More precisely, our goal is now to ensure that for any 0 ≤ x < 2µ, we have⌊x · a · q
2k

⌋
= x (4)

which using (3) will give y1 + · · ·+ yn = x+ e (mod q). This is as required an arithmetic
sharing of x modulo q, up to some small error e. The following lemma ensures that when
the integer a · q is sufficiently close to 2k, Equality (4) holds as the modulus switching does
not change the value of x.

Lemma 3. Let k := dlog2 qe + µ and a := d2k/qe. Then for any 0 ≤ x < 2µ, we have
bx · a · q/2kc = x.

Proof. We must ensure that for any 0 ≤ x < 2µ, we have 0 ≤ x ·a · q/2k−x < 1. It suffices
to ensure that this holds for the upper-bound x = 2µ, that is 0 ≤ 2µ · a · q/2k − 2µ < 1,
which gives the sufficient condition 0 ≤ a · q − 2k < 2k−µ. From a := d2k/qe, we get
2k = q · a− r for 0 ≤ r < q, which gives 0 ≤ q · a− 2k < q. From k := dlog2 qe+ µ, we get
2k ≥ q · 2µ, which gives 0 ≤ q · a− 2k < q ≤ 2k−µ as required.

This gives the following BtoAqApprox algorithm depicted in Algorithm 5. We denote by
BtoAExp the Boolean to arithmetic algorithm from [BCZ18]. For Dilithium with Security
Level 2, with q = 223 − 213 + 1 and µ = 18, we obtain k = 41 and a = 262 401.

Algorithm 5 Boolean to Arithmetic conversion (BtoAqApprox)
Input: A modulus q, a µ-bit Boolean masking u1, . . . , un such that u1 ⊕ · · · ⊕ un = x
Output: An arithmetic sharing y1, . . . , yn such that y1 + · · ·+ yn = x+ e (mod q), for

0 ≤ e < n.
1: k ← dlog2 qe+ µ
2: a← d2k/qe
3: x1, . . . , xn ← BtoAExpµ,2k (u1, . . . , un)
4: for i = 1 to n do yi ← bxi · a · q/2kc mod q
5: y1 ← y1 + (n− 1) mod q
6: return (y1, . . . , yn)

Jean-Sébastien Coron, François Gérard, Matthias Trannoy and Rina Zeitoun 123

Complexity. The values k and a can be computed prior to the execution of the al-
gorithm and are therefore not considered in the complexity. The number of opera-
tions of BtoAExpµ,2k using [BCZ18] is TBtoAExp = 10 · 2n − 6n − 13. Furthermore,
the For loop in Algorithm 5 costs 3n operations. Therefore the overall complexity is
TBtoAqApprox = 10 · 2n − 6n− 13 + 3n = 10 · 2n − 3n− 13 and asymptotically the number
of operation is O(2n). As in [BCZ18], this number of operations is exponential in n, but
independent from the size of the modulus q.

Lemma 4. The BtoAqApprox algorithm is (n− 1)-SNI.

Proof. The BtoAqApprox algorithm is the composition of the BtoAExp algorithm which is
(n− 1)-SNI, followed by independent operations on each shares. The resulted algorithm is
therefore (n− 1)-SNI.

4.3 Exact conversion using modulus switching
The drawback of the previous approach is that we get an error e in the arithmetic masking
of x modulo q. In this section, we show how to get rid of the error e, by using the ShiftMod
algorithm from Section 3.1.

As previously, we consider a µ-bit Boolean masking of x with x = u1 ⊕ · · · ⊕ un, and
our goal is to obtain an arithmetic masking of x modulo q, but with no error:

z1 + · · ·+ zn = x (mod q)

As previously, we assume that the bit-size µ and the modulus q are fixed.
We let α := dlog2 ne. Starting from the Boolean shares ui of x, we consider the shifted

shares u′i := ui � α of x′ = 2α · x, of bit-size µ′ = µ+ α. We also consider the modulus
q′ := 2α · q. We apply the previous BtoAqApprox algorithm (Alg. 5) with parameters µ′
and q′, with the shares u′i as input. This provides an arithmetic masking of x′ = 2α · x
modulo q′, with an error 0 ≤ e ≤ n− 1:

y1 + · · ·+ yn = 2α · x+ e (mod q′)

Since we are working modulo q′ = 2α · q, we can then iterate the ShiftMod algorithm (Alg.
1) α times, and since by definition 0 ≤ e ≤ n− 1 < 2α, we get rid of the error e and obtain
an arithmetic masking of x modulo q as required:

z1 + · · ·+ zn =
⌊
y1 + · · ·+ yn

2α

⌋
= x (mod q)

This gives the following BtoAqExact algorithm depicted in Algorithm 6.

Algorithm 6 Boolean to Arithmetic conversion (BtoAqExact)
Input: A modulus q, a µ-bit Boolean masking x1, . . . , xn such that u1 ⊕ · · · ⊕ un = x
Output: An arithmetic sharing y1, . . . , yn such that y1 + · · ·+ yn = x mod q

1: α← dlog2 ne, k ← dlog2 qe+ µ+ α, q′ ← 2α · q, a← d2k/qe.
2: x1, . . . , xn ← BtoAExpµ,2k (u1, . . . , un)
3: for i = 1 to n do yi ←

⌊
(xi · a · q)/2k−α

⌋
mod q′

4: y1 ← y1 + n− 1
5: for i = 0 to α− 1 do (y1, . . . , yn)← ShiftMod(2α−i · q, (y1, . . . , yn))
6: return (y1, . . . , yn)

Note that for simplicity, in the algorithm above, we actually run the initial BtoAExp
algorithm from [BCZ18] directly with the input Boolean shares ui instead of u′i, to get

124 Improved Gadgets for the High-Order Masking of Dilithium

an arithmetic sharing of x = x1 + · · · + xn (mod 2k), and then use x′i = 2α · xi for all
i, which gives an arithmetic sharing of x′ = 2α · x modulo 2k+α. Therefore we must
have k′ = k + α, where k′ = dlog2 q

′e+ µ′ is the parameter used in Alg. 5, which gives
k = k′ − α = dlog2 qe+ µ+ α. We then work with a = d2k′

/q′e = d2k/qe. The modulus
switching is then performed with yi = b(x′i · a · q′)/2k

′c = b(xi · a · q)/2k−αc mod q′.

Complexity. The values α, k, q′ and a can be computed prior to the execution of the
algorithm and are therefore not considered in the complexity. The number of operations of
BtoAExpµ,2k using [BCZ18] is TBtoAExp = 10 · 2n − 6n− 13. Furthermore, the For loop at
Line 3 costs 3n operations. Eventually, the cost of Line 5 is α(2n2 + 10n− 9) operations,
with α = dlog2 ne. Therefore the overall complexity is TBtoAqExact = 10 · 2n− 6n− 13 + 3n+
α(2n2 + 13n− 9) = 10 · 2n − 3n− 13 + α(2n2 + 13n− 9) and asymptotically the number
of operation is O(2n + α · n2) = O(2n + n2 logn) which is still O(2n) in total.

Lemma 5. The BtoAqExact algorithm is (n− 1)-NI.

Proof. The BtoAqExact algorithm is the composition of the BtoAExp algorithm which
is (n− 1)-SNI, followed by independent operations on each shares and by the ShiftMod
algorithm which is also (n− 1)-NI. The resulting algorithm is therefore (n− 1)-NI.

4.4 Comparison
We provide a comparison between the various Boolean to arithmetic conversion algorithms
in Table 2. We see that for µ = 18 as in Dilithium with Security Level 2, the new algorithms
BtoAqApprox and BtoAqExact outperform the state of the art algorithms for security order
t ≤ 8. The approximate conversion BtoAqApprox performs better than BtoAqExact, but
with the drawback of a small error in the conversion. However, we show in Appendix C
that it can still be safely used in the masking of Dilithium by employing slightly restrictive
rejection sampling. While this modification results in perfectly valid Dilithium signatures,
the signature algorithm would not fully conform to the standardized algorithm. Therefore,
for the high-order masking of Dilithium in sections 6 and 7, we only consider the exact
conversion algorithm BtoAqExact. We also show in Appendix D that BtoAqApprox and
BtoAqExact consume much less randomness than [SPOG19].

Table 2: Operation count for 18-bit Boolean to arithmetic modulo q conversion algorithms,
up to security order t = 12, with n = t+ 1 shares, for prime q = 223 − 213 + 1.

B → A mod q
Security order t

2 3 4 5 6 8 10 12
[BBE+18] 18→ mod q 2 841 5 215 8 782 12 897 17 825 30 235 46 012 64 776
[SPOG19] 18→ mod q 804 1 414 2 186 3 120 4 216 6 894 10 220 14 194
[CGMZ22] 18→ mod q 993 1 885 3 065 4 533 6 289 10 665 16 193 22 873
BtoAqApprox 58 135 292 609 1 246 5 080 20 434 81 868
BtoAqExact 154 285 610 1 032 1 786 6 160 21 938 83 860

5 Masking the Decompose function
In Dilithium, the Decompose function is used at signature generation to extract the high
and low order bits of w = Ay mod q, with (w0,w1) := Decomposeq(w, 2γ2). We recall
the function below, for a single element r ∈ Zq.

Jean-Sébastien Coron, François Gérard, Matthias Trannoy and Rina Zeitoun 125

Algorithm 7 Decomposeq(r, α)

1: r := r mod+ q
2: r0 := r mod± α
3: if r − r0 = q − 1 then r1 := 0, r0 := r0 − 1
4: else r1 = (r − r0)/α
5: return (r1, r0)

Existing work. In [ABC+22], the authors describe two distinct approaches for masking
the Decomposeq(r, α) function, depending on the value of α. In both cases, the input r is
arithmetically masked modulo q, the value r1 is returned in the clear, while r0 remains
arithmetically masked modulo q. For NIST security level 2, where α = (q − 1)/44, the
authors show that r1 can be computed using the Compress function from Kyber, which
can be masked using a technique described in [CGMZ23]. Although their approach is
heuristic, the correctness of their method can be exhaustively verified for all possible
values of r modulo q, since q is relatively small. For NIST security levels 3 and 5, with
α = (q − 1)/16, the authors describe a second approach using an arithmetic modulo q to
Boolean conversion, taking advantage that 16 is a power-of-two, so that it suffices to keep
the 4 least significant bits of the output.

Our contribution. In this section, we present an extension of the two approaches from
[ABC+22], so that each approach can cover all NIST security levels. Firstly, we expand on
the first approach based on the Compress function, by providing an alternative description
of the Decompose procedure used in Dilithium. This alternative method is proven to
be equivalent to the original Decompose and can work for any α = (q − 1)/δ, not just
for α = (q − 1)/44. We then describe the masking of the resulting algorithm based on
our new ShiftMod algorithm, which is more efficient than the full arithmetic to Boolean
conversion used in [ABC+22] and [CGMZ23]. The masking complexity of this approach is
O(n2 log qn).

Secondly, we extend the second approach of [ABC+22] to cover any α = (q − 1)/δ, by
providing an alternative description of the Decompose procedure used in Dilithium. This
alternative method is straightforward to mask with an arithmetic to Boolean conversion,
including NIST security level 2 with α = (q − 1)/44, whereas the initial approach in
[ABC+22] only worked for a power-of-two δ. The masking complexity of this approach is
O(n2 log q).

Finally, we provide a comparison of the two approaches. Although the second approach
is asymptotically faster, with a complexity of O(n2 log q) instead of O(n2 log qn), the first
approach tends to be faster in practice. This is because the second approach requires a full
arithmetic modulo q to Boolean conversion, which is more costly than the first approach
that can employ our more lightweight ShiftMod algorithm from Section 3.1.

5.1 First alternative Decompose algorithm
Algorithm 7 would be difficult to mask directly, because of the test at Line 3. Therefore,
we consider the following alternative algorithm for Decompose, and prove that the two
algorithms actually compute the same function. This corresponds to the first approach in
[ABC+22], which the authors used for security level 2 with α = (q − 1)/δ where δ = 44.
The authors computed the output r1 using the Compress function from Kyber, which in
turn can be masked using a technique described in [CGMZ23]. Although their approach
was heuristic, the correctness of their method can be exhaustively verified for all possible
values of r modulo q, since q is relatively small in Dilithium.

126 Improved Gadgets for the High-Order Masking of Dilithium

Using the DecomposeComp algorithm below, we extend this approach to any δ, and
prove that the original Decompose and our DecomposeComp algorithms compute the same
function. We then provide a more efficient masking technique than in [CGMZ23], based
on our ShiftMod algorithm from Section 3.1.

Algorithm 8 DecomposeCompq(r, α)

1: δ := (q − 1)/α
2: r1 := bδ · r/qe mod+ δ
3: r0 := r − r1 · α mod± q
4: return (r1, r0)

Lemma 6. Let δ ∈ Z and α = (q − 1)/δ, and assume α = 0 (mod 2). The algorithms
Decompose and DecomposeComp compute the same function.

Proof. We can assume wlog that 0 ≤ r < q. We first consider the original Decompose
algorithm, with (r1, r0)← Decomposeq(r, α). We write:

r = r′1 · α+ r′0 (5)

with −α/2 < r′0 ≤ α/2, so that r′0 = r mod± α. Therefore r′0 corresponds to the variable r0
at Step 2 of Decompose. Note that since 0 ≤ r ≤ q−1, we must have 0 ≤ r′1 ≤ (q−1)/α = δ.

For 0 ≤ r < (q − 1) − α/2, we have 0 ≤ r′1 < δ, so that r − r′0 = r′1 · α < q − 1, and
therefore by definition of Decompose, we have r0 = r′0 and r1 = r′1. On the other hand, for
q − 1− α/2 ≤ r < q, we have r′1 = δ, which gives r − r′0 = q − 1, and therefore r1 = 0 and
r0 = r′0 − 1. Therefore, we always have r1 = r′1 mod+ δ.

We now consider (r′′1 , r′′0)← DecomposeComp(r, α). We have using (5):

r′′1 =
⌊
δ · r
q

⌉
=
⌊
δ · (r′1 · α+ r′0)

q

⌉
(mod δ)

=
⌊
δ · r′0 + (q − 1) · r′1

q

⌉
= r′1 +

⌊
δ · r′0 − r′1

q

⌉
(mod δ) (6)

Using −α/2 < r′0 ≤ α/2 and 0 ≤ r′1 ≤ δ, we have δ · r′0 − r′1 ≤ δ · α/2 ≤ (q − 1)/2, and
similarly δ · r′0 − r′1 ≥ δ · (−α/2 + 1)− δ ≥ −(q − 1)/2. Therefore |δ · r′0 − r′1| ≤ (q − 1)/2,
which from (6) implies r′′1 = r′1 mod+ δ and therefore r′′1 = r1.

Finally, since for both Decompose and DecomposeComp we have r = r0 + r1 ·α (mod q)
and r = r′′0 + r′′1 · α (mod q), and moreover r1 = r′′1 , we obtain r0 = r′′0 (mod q), and
from −(q − 1)/2 ≤ r0 ≤ (q − 1)/2 and −(q − 1)/2 ≤ r′′0 ≤ (q − 1)/2, we must have
r′′0 = r0.

Masking DecomposeComp. Starting from an arithmetic masking of r modulo q, the main
challenge is to mask the computation of r1 = br · δ/qe mod+ δ at Step 2. Our approach is
captured by Equation (7) in the lemma below. It shows that the high-order computation
of bx · p/qe can be written as the composition of two high-order computations. Firstly we
apply a modulus switching from modulo q to modulo p · 2ρ for a large enough ρ, using
the ModSwitch algorithm from Section 4.1. Such algorithm can induce an error 0 ≤ e < n
(see Lemma 2), but since Equation (7) is valid for any such e, we are guaranteed to get
the correct result after Euclidean division by 2ρ. Secondly, from the arithmetic masking
modulo p · 2ρ, we perform a sequence of ρ ShiftMod to compute the arithmetic division by
2ρ, and eventually we get the desired result modulo p. We obtain Algorithm 9 below.

Jean-Sébastien Coron, François Gérard, Matthias Trannoy and Rina Zeitoun 127

Lemma 7. For any odd positive integer q, any positive integer p, any n ≥ 2, any integer
x ∈ Zq, any integer 0 ≤ e < n and any integer ρ such that 2ρ ≥ 2q · n, the following holds:⌊

x · p
q

⌉
=
⌊(⌊

x · p · 2ρ
q

⌋
+ 2ρ−1 + e

)
/2ρ
⌋

(mod p) (7)

Proof. We can assume 0 ≤ x < q. We write x ·p = y ·q+r with −(q−1)/2 ≤ r ≤ (q−1)/2,
and y = bx · p/qe. This gives:⌊

x · p · 2ρ
q

⌋
+ 2ρ−1 + e = y · 2ρ +

⌊
r · 2ρ
q

⌋
+ 2ρ−1 + e

Therefore, to get (7), it suffices to ensure that 0 ≤ br · 2ρ/qc + 2ρ−1 + e < 2ρ. From
2ρ ≥ 2q · n, we have 2ρ−1/q ≥ n, and therefore d2ρ−1/qe ≥ n, which implies using
−(q − 1)/2 ≤ r ≤ (q − 1)/2 and 0 ≤ e < n:⌊

−(q − 1) · 2ρ−1

q

⌋
+ 2ρ−1 ≤

⌊
r · 2ρ
q

⌋
+ 2ρ−1 + e <

⌊
(q − 1) · 2ρ−1

q

⌋
+ 2ρ−1 + n

0 ≤
⌊
r · 2ρ
q

⌋
+ 2ρ−1 + e < 2ρ −

⌈
2ρ−1

q

⌉
+ n ≤ 2ρ

Algorithm 9 SecDecomposeComp
Input: x1, . . . , xn ∈ Zq, with r = x1 + · · ·+ xn mod q
Output: r1 and y1, . . . , yn ∈ Zq, such that (r1, r0) = Decomposeq(r, α), with r0 = y1 +
· · ·+ yn (mod q)

1: Let ρ← dlog2(q · n)e+ 1
2: for i = 1 to n do zi := bxi · δ · 2ρ/qc mod (δ2ρ)
3: z1 ← z1 + (n− 1) + 2ρ−1 mod (δ2ρ)
4: for i = 0 to ρ− 1 do z1, . . . , zn ← ShiftMod(2ρ−i · δ, (z1, . . . , zn))
5: (z1, . . . , zn)← RefreshMasksδ(z1, . . . , zn)
6: r1 :=

∑
i zi mod+ δ

7: (y1, . . . , yn) := (x1, . . . , xn)
8: y1 := y1 − α · r1 mod q
9: return r1, (y1, . . . , yn)

Complexity. To do the masking with DecomposeComp, we first perform the modulus
switching with δ · 2ρ for ρ = dlog2 qne+ 1. This requires 2n operations. Then we perform
a sequence of ρ ShiftMod. Then we do a refresh, and compute the sum to recover r1. The
complexity is T (q, n) = 2n+ ρ · TshiftMod(n) + TRefresh(n) + n− 1 + 2 = O(n2 log qn).

Security. We claim our algorithm achieves the t − NI security when the output r1 is
public.

Theorem 4 (t − NIo of SecDecomposeComp). For any set of t intermediate variables,
there exists a subset I with |I| ≤ t such that the t intermediate variables can be perfectly
simulated from inputs x|I when r1 is given to the simulator.

Proof. Assuming r1 is public, Algorithm 9 until Line 4 is the composition of the NI gadget
ShiftMod with sharewise computations and therefore is NI. Moreover, the shares zi of r1
are securely recombined due to the free-SNI of RefreshMasks.

128 Improved Gadgets for the High-Order Masking of Dilithium

5.2 Second alternative Decompose algorithm
We consider the following second alternative algorithm for Decompose, and prove that
the two algorithms actually compute the same function. This corresponds to the second
approach in [ABC+22], which initially worked for α = (q − 1)/δ for a power-of-two δ, as
in NIST security levels 3 and 5 with δ = 16. Using the DecomposeMod algorithm below,
we extend this approach to any δ, including δ = 44 as for NIST security level 2.

Algorithm 10 DecomposeModq(r, α)

1: δ := (q − 1)/α
2: s := (−δ · r + (q − 1)/2) mod+ q
3: r1 := s mod+ δ
4: r0 := r − r1 · α mod± q
5: return (r1, r0)

Lemma 8. Let δ ∈ Z and α = (q − 1)/δ, and assume α = 0 (mod 2). The algorithms
Decompose and DecomposeMod compute the same function.

Proof. As in the proof of Lemma 6, we write r = r′1 · α+ r′0 with −α/2 < r′0 ≤ α/2. We
consider (r′′1 , r′′0)← DecomposeMod(r, α). Using δ · α = q − 1, we obtain:

s = −δ · r + (q − 1)/2 = −δ · r′0 + r′1 + (q − 1)/2 (mod q)

From −α/2 < r′0 ≤ α/2 and 0 ≤ r′1 ≤ δ, we must have 0 ≤ −δ·r′0+r′1+(q−1)/2 ≤ q−1, and
therefore s = −δ · r′0 + r′1 + (q− 1)/2 over Z. From r′′1 = s mod+ δ, we get r′′1 = r′1 mod+ δ,
which implies r′′1 = r1.

The above DecomposeMod algorithm is relatively easy to mask. Starting from an
arithmetic masking of r modulo q, we easily obtain an arithmetic masking of s modulo q
at Step 2. Then, to high-order compute s mod+ δ at Step 3, we first convert the masking
of s from arithmetic modulo q to Boolean. One must be careful to use a Boolean masking
of a representative of s ∈ Zq such that 0 ≤ s < q, which is the case in the arithmetic to
Boolean conversion from [BBE+18]. Then one can convert back from Boolean masking
to arithmetic masking modulo δ of s mod+ δ. Using the BtoAδ algorithm from [SPOG19]
which achieves the free-SNI property, one can directly recombine the shares to get r1 in the
clear. Eventually, we obtain an arithmetic sharing modulo q of r0 simply by subtracting
α · r1 to the first share x1 of the input r. We obtain the SecDecomposeMod algorithm
below.

Algorithm 11 SecDecomposeMod
Input: x1, . . . , xn ∈ Zq, with r = x1 + · · ·+ xn mod q
Output: r1 and y1, . . . , yn ∈ Zq, such that (r1, r0) = Decomposeq(r, α), with r0 = y1 +
· · ·+ yn (mod q)

1: for i = 1 to n do si := −δ · xi mod q
2: s1 := s1 + (q − 1)/2 mod q . s =

∑
i si (mod q)

3: s′1, . . . , s
′
n := AtoBq(s1, . . . , sn) . s′1 ⊕ · · · ⊕ s′n = s

4: s′′1 , . . . , s
′′
n := BtoAδ(s′1, . . . , s′n) .

∑
i s
′′
i = s (mod δ)

5: r1 :=
∑
i s
′′
i mod+ δ

6: (y1, . . . , yn) := (x1, . . . , xn)
7: y1 := y1 − α · r1 mod q
8: return r1, (y1, . . . , yn)

Jean-Sébastien Coron, François Gérard, Matthias Trannoy and Rina Zeitoun 129

Remark 1. When δ is a power-of-two, as in NIST security levels 3 and 5, there is no need
to perform a Boolean to arithmetic conversion at Step 4, as one can simply recombine the
last 4 bits of the Boolean shares s′i of s after a full mask refreshing, as in [ABC+22].

Complexity. We use the arithmetic modulo q to Boolean conversion AtoBq from [BBE+18]
and the Boolean to arithmetic BtoAδ conversion from [SPOG19]. The number of operation
is therefore:

TSecDecomposeMod(n, q) = n+ 1 + TAtoB(n, q) + TBtoA(n, dlog2 qe) + (n− 1) + 2
= O(log(q)n2)

Security. We claim our algorithm achieves the t − NI security when the output r1 is
public. The proof is similar to the proof of Theorem 4 and is therefore omitted.

Theorem 5 (t−NIo of SecDecomposeMod). For any set of t intermediate variables, there
exists a subset I with |I| ≤ t such that the t intermediate variables can be perfectly simulated
from inputs x|I when r1 is given to the simulator.

5.3 Comparison
In Table 3, we compare different techniques used for masking the Decompose function in
the Dilithium signature scheme. Our SecDecomposeComp algorithm is shown to be faster
than SecDecomposeMod and [ABC+22] for all security levels. Specifically, for security level
2, our SecDecomposeComp algorithm is faster than [ABC+22] because the latter uses a
full arithmetic to Boolean conversion to mask the Compress function, moreover with a non
power-of-two modulus, whereas we use our more lightweight ShiftMod algorithm. Likewise,
for security levels 3 and 5, our SecDecomposeComp algorithm outperforms [ABC+22],
which is equivalent to SecDecomposeMod, as both require a full arithmetic modulo q to
Boolean conversion, which is more computationally expensive than our ShiftMod algorithm.

Table 3: Operation count for masking Decompose with n = t + 1 shares, for prime
q = 223 − 213 + 1.

Security order t
2 3 4 5 6 8 10

Sec. Level 2
[ABC+22] 2 886 5 365 9 719 14 399 20 040 35 410 54 365
SecDecomposeComp 1 033 1 669 2 503 3 385 4 378 6 940 9 803
SecDecomposeMod 3 261 5 952 10 065 14 751 20 359 34 492 52 464

Sec. Level 3 & 5 [ABC+22], SecDecomposeMod 2 196 4 082 7 177 10 632 14 796 25 402 38 995
SecDecomposeComp 1 033 1 669 2 503 3 385 4 378 6 940 9 803

6 Application to masking Dilithium
Dilithium [BDK+21] is a lattice-based signature scheme based on the MLWE (Module
Learning With Errors) and the SelfTargetMSIS (Module Short Integer Solution) problems
[LS15]. It was selected by NIST as the primary standard for quantum safe digital signatures.
In this section, we describe the complete high-order masking of Dilithium, utilizing the
improved gadgets described in the previous sections. We provide the practical results
of a C implementation and compare the performance of our new gadgets with those
from [BBE+18], [SPOG19], and [ABC+22]. For simplicity, we focus on the randomized
version of Dilithium, since as shown in [ABC+22] it leads to a significantly faster masked

130 Improved Gadgets for the High-Order Masking of Dilithium

implementation than the deterministic version. We recall in Table 4 the parameters of
Dilithium for NIST security levels 2, 3 and 5.

Table 4: Dilithium parameters for different NIST security levels

Level q γ1 γ2 (k, l) η β ω Repetitions
2 8380417 217 (q − 1)/88 (4, 4) 2 78 80 4.25
3 8380417 219 (q − 1)/32 (6, 5) 4 196 55 5.1
5 8380417 219 (q − 1)/32 (8, 7) 2 120 75 3.85

6.1 Pseudo-code of Dilithium

We first recall the pseudo-code of Dilithium in Fig. 1, using the version from the reference
implementation, and formally described in [ABC+22]. Namely, one can distinguish two
equivalent versions of Dilithium signatures, the r-version and the r̃-version [ABC+22].
The Dilithium specification [BDK+21, Fig. 4] provides the pseudo-code description
of the r-version. In this version, one computes w1 := HighBitsq(w, 2γ2) and r0 :=
LowBitsq(w− cs2, 2γ), and performs the rejection sampling on r0. On the other hand, the
r̃-version comes from the reference implementation, as discussed in [BDK+21, Section 5.1],
and formally described in [ABC+22, Appendix A]. We recall its pseudo-code description
in Fig. 1.

In this r̃-version, one first computes (w0,w1) ← Decomposeq(w, 2γ2) at Line 5, and
then computes r̃ := w0 − cs2 at Line 9. Finally, one performs the rejection sampling
on r̃ at Line 10. In the rest of this paper, as in [ABC+22], we consider this r̃-version
because it is easier to mask. We refer to [BDK+21] for the definition of the UseHint and
MakeHint algorithms. Given (w0,w1) ← Decomposeq(w, 2γ2), as in [BDK+21] we write
HighBitsq(w, 2γ2) := w1 and LowBitsq(w, 2γ2) := w0.

We now show that signature verification works. Using

Az− ct = A(y + cs1)− c(As1 + s2) = Ay− cs2

and from w = Ay = w1 · α+ w0 (mod q), we have:

h = MakeHintq(−ct0,w0 − cs2 + α ·w1 + ct0, 2γ2)
= MakeHintq(−ct0,w− cs2 + ct0, 2γ2)
= MakeHintq(−ct0,Az− ct + ct0, 2γ2) (8)

Using Az− ct1 · 2d = Az− ct + ct0, we have w′1 = UseHintq(h,Az− ct + ct0, 2γ2). From
(8) and using ‖ct0‖∞ < γ2, this enables to recover the high bits of Az− ct from the hint
h, using [BDK+21, Lemma 1]:

w′1 = UseHintq(h,Az− ct + ct0, 2γ2)
= HighBitsq(Az− ct, 2γ2) = HighBitsq(w− cs2, 2γ2)

Moreover, using [BDK+21, Lemma 3], from ‖w0− cs2‖∞ < γ2−β, we have HighBitsq(w−
cs2, 2γ2) = HighBitsq(w, 2γ2) and therefore w′1 = w1, which gives c̃ = H(M ‖w′1) as
required.

Jean-Sébastien Coron, François Gérard, Matthias Trannoy and Rina Zeitoun 131

KeyGen
1: A← Rk×`q

2: (s1, s2)← S`η × Skη
3: t := As1 + s2
4: (t1, t0) := Power2Roundq(t, d)
5: return (pk = (A, t1), sk = (A, t1, s1, s2, t0))

Sign(sk,M)
1: (z,h) := ⊥
2: while (z,h) = ⊥ do
3: y← S̃`γ1
4: w := Ay
5: (w0,w1) := Decomposeq(w, 2γ2)
6: c̃ := H(M ‖w1)
7: c := SampleInBall(c̃)
8: z := y + cs1
9: r̃ := w0 − cs2

10: if ‖z‖∞ ≥ γ1 − β or ‖r̃‖∞ ≥ γ2 − β, then (z,h) := ⊥
11: else
12: h := MakeHintq(−ct0, r̃ + α ·w1 + ct0, 2γ2)
13: if ‖ct0‖∞ ≥ γ2 or the # of 1’s in h is greater than ω, then (z,h) := ⊥
14: end while
15: return σ = (c̃, z,h)

Verify(pk,M, σ = (c̃, z,h))
1: c := SampleInBall(c̃)
2: w′1 := UseHintq(h,Az− ct1 · 2d, 2γ2)
3: return J‖z‖∞ < γ1 − βK and Jc̃ = H(M ‖w′1)K and J# of 1’s in h is ≤ ωK

Figure 1: Template of Dilithium with r̃-version (reference implementation).

6.2 Masking Dilithium key generation

In the key generation of Dilithium, the private-key elements s1 and s2 must be returned as
arithmetically masked modulo q. As shown in Figure 1, the variables s1 and s2 are sampled
uniformly from S`η and Skη respectively, i.e, vectors of polynomials with each coefficient
uniformly and independently distributed in [−η, η]. To obtain a masked generation, since
η is a small value (e.g., η = 2, 4, and 2 for NIST security levels 2, 3, and 5, respectively),
we proceed by first generating n arithmetic shares s1,i and s2,i uniformly in the range
[0, 2η + 1[. This corresponds to an arithmetic sharing modulo 2η + 1 of s1 and s2.

Next, we convert this arithmetic sharing modulo 2η + 1 into an arithmetic masking
modulo q using the table-based countermeasure from [CGMZ22], which has a complexity
of O(n2). Specifically, the table has 2η + 1 rows for −η ≤ i ≤ η, and initially, the row of
index i is an encoding of i modulo q. The rows of the table are randomly rotated and
refreshed n times, resulting in an n-encoding modulo q of a uniform random in [−η, η].
The same operation is repeated for each coefficient of s1 and s2.

With the arithmetic sharing modulo q of s1 and s2, we can then high-order compute
t = As1 + s2 using the linearity over Zq. Since the security proof of Dilithium considers t
to be public [BDK+21], we can securely recombine the shares by applying a full refresh.
The overall complexity of the masked key-generation algorithm is O(n2), as summarized
in Figure 2.

132 Improved Gadgets for the High-Order Masking of Dilithium

KeyGen
1: A← Rk×`q

2: for i = 1 to n do
3: s1,i ← [0, 2η + 1[256`, s2,i ← [0, 2η + 1[256k . sj =

∑
i sj,i mod± 2η + 1

4: end for
5: s1,1, . . . , s1,n ← A2η+1toAqTable(s1,1, . . . , s1,n)
6: s2,1, . . . , s2,n ← A2η+1toAqTable(s2,1, . . . , s2,n)
7: for i = 1 to n do ti := As1,i + s2,i mod q
8: t1, . . . , tn = Refresh(t1, . . . , tn)
9: t :=

∑
i ti mod q

10: (t1, t0) := Power2Roundq(t, d)
11: return (pk = (A, t1), sk = (A, t1, (s1,1, . . . , s1,n), (s2,1, . . . , s2,n), t0))

Figure 2: Masked Dilithium key generation

6.3 Masking Dilithium signature generation
Our masking strategy for Dilithium signature generation is similar to that of [ABC+22].
Specifically, we mask the same variables and leave unmasked the same variables. The first
step is to mask the random vector of polynomials y, since its knowledge would directly
lead to the computation of s1 = (z − y)/c, given that z and c are public. Similarly, we
need to mask w = Ay, as A is full rank with high probability and could allow one to
retrieve y from w.

As explained in introduction, following [ABC+22], the variable w1 in (w1,w0) ←
Decomposeq(w) need not be masked since it is also publicly computed during signature
verification. Thus, the challenge c̃ = H(M‖w1) need not be masked, and the Keccak hash
function H need not be masked. However, w0 must remain masked, as using w1 would
allow one to recover w = w1 · α+ w0 mod q and eventually y and s1.

We stress that the variables z and r̃ must remain masked until the rejection sampling has
been performed. If the value z is rejected due to an out-of-bounds coefficient |zi| ≥ γ1 − β,
then the knowledge of zi would leak information about the secret s1. The same holds for
r̃. Therefore, the variables z and r̃ must remain masked until the rejection sampling has
been completely performed, and the rejection sampling must be done in a masked way
so that whenever a polynomial coefficient is rejected, the adversary does not learn more
about the rejected coefficient.

Lastly, after the rejection sampling of z and r̃, one can then securely recombine the
shares of z. Namely, without the public-key compression, z would have been returned as
a valid Dilithium signature. Note that we cannot recombine the shares of z before the
rejection sampling of r̃, as knowing z would enable to compute:

r̃ = w0 − cs2 = w− αw1 − cs2 = Az− ct− αw1

and assuming heuristically that the coefficients of w0 are uniformly distributed in]−γ2, γ2],
an out-of-bound coefficient of r̃ would leak information about s2. Eventually, after the
rejection sampling of z and r̃, once the shares of z have been recombined, as in [ABC+22] the
hint h can be computed in the clear, by computing h = MakeHint(−ct0,Az−ct+ct0, 2γ2).

In the following, we describe in more details the high-order masking of Dilithium
signature generation, following each step of Fig. 1. The globally masked algorithm is
formally described in Figure 3 below.

Generation of y ∈ S̃`γ1
. In order to generate y ∈ S̃`γ1

at Step 3 in Fig. 1, we first
generate an n-shared Boolean masking of each coefficient of y, which is then converted
into an arithmetic masking using the technique described in Section 4.3.

Jean-Sébastien Coron, François Gérard, Matthias Trannoy and Rina Zeitoun 133

More precisely, in the signature generation of Dilithium, each coefficient of y must be
uniformly distributed in]− γ1, γ1]. For this, we can first generate each share uniformly
in [0, 2γ1[and then subtract γ1 − 1. Since γ1 is a power-of-two (γ1 = 217, 219, 219 for
levels 2, 3, 5 respectively), the uniform generation in [0, 2γ1[corresponds to the uniform
generation of a (log2 γ1 + 1)-bit integer, so we generate the n Boolean shares as random
(log2 γ1 + 1)-bit integers.

We then convert the Boolean masking into an arithmetic masking modulo q, using the
exact conversion method described in Section 4.3. This gives an arithmetic sharing modulo
q of y ∈ [0, 2γ1[256` that can eventually be translated into] − γ1, γ1]256` by subtracting
γ1 − 1 to each coefficient of the first share. We obtain an arithmetic masking y1, . . . ,yn
modulo q of the signing nonce y.

Computation of w = Ay. From the linearity of matrix multiplication in Zq, the vector
w can be computed share by share. In Fig. 3, we denote by Wi = A · yi mod q the
arithmetic shares of w modulo q. As explained above, we cannot unmask the shares Wi

into w, as this would lead to y since A is public and full rank with high probability.

Computation of (w0,w1) = Decomposeq(w, 2γ2). As explained previously, we can
compute w1 in the clear, but the Decompose function must be high-order computed, and
w0 must remain arithmetically masked, as in [ABC+22]. Such masking of Decompose is
described in Section 5.2, with two possible approaches. In Fig. 3, we denote by w0,i the n
arithmetic shares modulo q of w0.

Computation of z and r̃. The vector z is computed share by share from the shares yi
and s1,i of y and s1 respectively. The same holds for r̃ = w0 − cs2.

Sign(sk,M)
1: (z,h) := ⊥
2: while (z,h) = ⊥ do
3: for i = 1 to n do yi ← [0, 2γ1[256`

4: y1, . . . ,yn := BtoAqExact(y1, . . . ,yn)
5: y1 := y1 − (γ1 − 1) . y =

∑
i yi mod± q

6: for i = 1 to n do Wi := Ayi . w =
∑
i Wi (mod q)

7: w1, (w0,1, . . . ,w0,n) := SecDecompose((W1, . . . ,Wn), 2γ2) . w0 =
∑
i w0,i (mod q)

8: c̃ := H(M ‖w1)
9: c := SampleInBall(c̃)

10: for i = 1 to n do zi := yi + cs1,i . z =
∑
i zi (mod q)

11: if SecRejectionSampling((z1, . . . , zn), γ1, β) then (z,h) = ⊥
12: else
13: for i = 1 to n do r̃i := w0,i − cs2,i mod q . r̃ =

∑
i r̃i (mod q)

14: if SecRejectionSampling((r̃1, . . . , r̃n), γ2, β), then (z,h) := ⊥
15: else
16: z1, . . . , zn := RefreshMasks(z1, . . . , zn)
17: z =

∑
i zi mod q

18: r := Az− ct mod q
19: h := MakeHintq(−ct0, r + ct0, 2γ2)
20: if ‖ct0‖∞ ≥ γ2 or the # of 1’s in h is greater than ω, then (z,h) := ⊥
21: end while
22: return σ = (c̃, z,h)

Figure 3: Template of Masked Dilithium signature generation.

Rejection sampling of z and r̃. We implement the rejection sampling of z and r̃ using
the method described in [ABC+22]. The test is conducted on the arithmetic shares zi of z

134 Improved Gadgets for the High-Order Masking of Dilithium

and the arithmetic shares r̃i of r̃. We perform the rejection sampling iteratively on the
masked coefficients of z and r̃, and the result of the test is computed in the clear for each
coefficient. If any coefficient fails the test, the vectors z and r̃ are rejected immediately.
To perform the masked rejection sampling of each coefficient, we utilize the method from
[ABC+22] based on the SecA2BModp and SecLeq gadgets. This method is more efficient
than the technique presented in [BBE+18].

Recombining the shares of z and computing the hint. As explained above, after the
rejection sampling of z and r̃, one can securely recombine the shares of z, after a full mask
refreshing, and then compute h = MakeHint(−ct0,Az − ct + ct0, 2γ2) in the clear. We
summarize the fully masked Dilithium signature generation in Fig. 3 above.

Complexity. Based on the individual complexities of the gadgets, we can conclude that
the overall complexity of signature generation is O(2n+n2 log q) when using the BtoAqExact
algorithm from Section 4 for generating y, and the SecDecomposeComp algorithm from
Section 5.1. As shown in Section 4.4, our BtoAqExact algorithm has exponential complexity
O(2n), but is much faster than other algorithms for small values of n. To guarantee a
polynomial-time complexity in n, one can use the algorithm proposed in [SPOG19] instead.
In that case, the overall complexity of signature generation reduces to O(n2 log q).

Security. Given that each gadget processing sensitive variable achieves at least t − NI
security and the public variables are securely recombined, the whole signing procedure
achieves, by composition, t-NIo security when the output signature σ is public.

Theorem 6 (t−NIo security of Sign). For any set of t intermediate variables, there exists
a subset I ⊂ [1, n], with |I| ≤ t, such that these t intermediate variables can be perfectly
simulated from s1,|I and s2,|I when the output σ is given to the simulator.

7 Implementation results
We have implemented the gadgets introduced in the previous sections in C and inte-
grated them into the reference implementation of Dilithium, resulting in a fully masked
implementation of Dilithium in C. We provide below the benchmark results obtained on
a laptop with an Intel(R) Core(TM) i7-1065G7 @1.30GHz CPU. We observe that the
performance of each gadget is similar to the operation count provided in the previous
sections. However, we emphasize that our implementation is only a proof-of-concept and
the actual performance in a real-life product would depend on the specific device targeted.
To achieve optimal performance, an optimized implementation of the gadgets for the
targeted architecture and mitigation of micro-architectural leakage would be necessary,
but these steps are beyond the scope of this work. The plain C code is publicly available at

https://github.com/fragerar/Masked_Dilithium

7.1 Performance of individual gadgets
We provide below the performance results of individual gadgets. The randomness used is
fetched from a simple XorShift PRNG. In practice, this would need to be replaced by a
TRNG in a secure environment.

Arithmetic mod 2k to Boolean conversion. Table 5 presents the performance of the
arithmetic mod 2k to Boolean conversion using the new ShiftMod gadget proposed in
Section 3.1. The table shows that the empirical results are consistent with the theoretical

https://github.com/fragerar/Masked_Dilithium

Jean-Sébastien Coron, François Gérard, Matthias Trannoy and Rina Zeitoun 135

operation counts in Table 1, although in practice, ShiftMod outperforms [CGV14] for
orders slightly higher than expected.

Table 5: Cycle counts for a full arithmetic to Boolean conversion on 32-bit masked values.

A mod 232 → B Security order t
1 2 3 4 5 6 7 8 9

[Gou01]/[CGV14] 50 1067 1649 3225 5176 6324 7392 10360 13248
Alg. 3 with ShiftMod 1262 2099 3179 4339 5375 6404 7655 9099 10650

Boolean to arithmetic mod q conversion. Table 6 compares various approaches for
converting Boolean to arithmetic mod q to generate the coefficients of y within a given
range, showing similar results to the operation counts presented in Table 2. The table
shows that the newly proposed BtoAqApprox and BtoAqExact algorithms outperform the
previously proposed algorithm in [SPOG19] for small orders. However, for higher orders,
the main bottleneck arises from the Boolean to arithmetic conversion modulo 2k proposed
in [BCZ18], which has exponential complexity. As expected, the overhead for BtoAqApprox
is lower than that for BtoAqExact.

Table 6: Cycle counts for a µ-bit Boolean to arithmetic mod q conversion for µ = 18 and
q = 223 − 213 + 1.

Security order t
1 2 3 4 5 6

B → A mod 2k B2Amod2k [BCZ18] 23 79 308 516 906 1961

B → A mod q
[SPOG19] 694 1307 2275 3395 4288 6251
BtoAqApprox 24 80 310 518 908 1963
BtoAqExact 351 445 979 1270 2133 3537

Comparison with the bitsliced approach. We provide a high-level comparison with the
bitsliced approach of [BC22] for the high-order Boolean to arithmetic conversion modulo q.
For such conversion, the authors of [BC22] provide a comparison between their bitsliced
implementation of the Boolean to arithmetic conversion algorithm from [BBE+18], and
the non-bitsliced implementation of the [SPOG19] conversion algorithm. We denote by k
the bitsize of the modulus q, and by µ the input Boolean size. The complexity of [BC22] is
O(k) and independent of µ, while the complexity of [SPOG19] is O(µ) and independent of
k. In [BC22, Fig. 6], for k = 12 and µ = 1, bitsliced [BC22] is 2.5 as slow as non-bitsliced
[SPOG19], for security order t = 2. Based on this, we can estimate that for k = 23 and
µ = 18, as in Dilithium, bitsliced [BC22] would be 3.7 times faster than non-bitsliced
[SPOG19]. On the other hand, from Table 6 above, we observe that for security order
t = 2, our non-bitsliced implementation is 2.9 times faster than [SPOG19]. Therefore, for
the Boolean to arithmetic modulo q conversion, we expect [BC22] to be 1.3 times faster
than our non-bitsliced implementation (and 2.4 times faster for security order t = 6).

However, the timing estimates above do not take into account the change of represen-
tation required for a bitsliced implementation, from the canonical representation where
the inputs bits are stored contiguously in a given register, to the bitsliced representation
where each input bit is stored in a different register for parallel evaluation, and vice versa
(see Section 2.6 in [BC22]). While this change of representation has a linear complexity in
the number of shares, it can impact the overall efficiency of a bitsliced approach for the
full Dilithium algorithm.

136 Improved Gadgets for the High-Order Masking of Dilithium

Table 7: Cycle counts for the Decompose gadgets, for security level 2 with γ2 = (q− 1)/88,
and security levels 3 and 5 with γ2 = (q − 1)/32.

Security order t
1 2 3 4 5 6

γ2 = (q − 1)/88 DecomposeComp 1814 2967 5425 8468 10859 13847
DecomposeMod 2280 7594 12862 20514 25689 34012

γ2 = (q − 1)/32 DecomposeComp 1660 2459 3619 5171 7348 8912
DecomposeMod ([ABC+22]) 1173 2787 4662 7285 10345 13602

Masking of Decompose. Table 7 compares the two methods proposed in Section 5.2 for
performing the Decompose operation. As expected, the DecomposeComp approach is more
efficient than the alternative DecomposeMod approach, since it only requires a sequence
of arithmetic shifts using the ShiftMod operation instead of a full arithmetic mod q to
Boolean conversion. However, when γ2 = (q − 1)/32, which applies to security levels 3
and 5, the difference in efficiency between the two approaches is slightly smaller because
the Boolean to arithmetic conversion can be avoided in Algorithm 11. We also provide in
Appendix D the randomness consumption of the main gadgets.

7.2 Performance of fully-masked Dilithium

Table 8 presents the cycle counts for the full signature generation at security levels 2, 3, and
5, along with the time spent in each signature component for security level 3. The running
time corresponds to the average total time spent in each component during multiple
executions of the signature generation, including restarts due to rejection sampling.

The table highlights a common feature of high-order implementations of lattice-based
schemes that were not initially designed with masking in mind: the slowest operations
are often the ones that are trivial to compute in the unmasked case. We can see that the
majority of the time is spent in Decompose and Reject, which are simple operations in the
absence of masking. In contrast, polynomial arithmetic, which is the primary optimization
target for unprotected implementations, only takes a small fraction of the runtime in
masked implementations as it is a linear operation.

Table 8: Cycle counts for a full implementation of randomized Dilithium, with a breakdown
of the time taken by each signature component for security level 3. Values are expressed
in thousands of cycles. Average over 1000 executions of the signature at each order.

Security order t
0 1 2 3 4 5 6

Dilithium2 506 26602 (×53) 54945 (×109) 101020 (×200) 155025 (×306) 231265 (×457) 296200 (×585)
Dilithium3 853 36986 (×43) 83696 (×98) 130590 (×153) 205473 (×241) 273446 (×321) 395518 (×464)
Dilithium5 989 38069 (×38) 87809 (×89) 137034 (×139) 201838 (×204) 315249 (×319) 404769 (×409)
NTTs - 304 451 598 732 838 1037
Sample y - 3034 5135 7890 13127 19805 35884
Compute Ay - 616 916 1121 1515 1704 2182
Decompose - 13088 32963 52030 84131 110119 158275
z = y + c · s1 - 355 528 641 872 981 1245
Reject - 18956 42856 67281 103840 138584 195207
w − c · s2 - 262 390 487 635 746 932

Jean-Sébastien Coron, François Gérard, Matthias Trannoy and Rina Zeitoun 137

8 Conclusion
In this work, we presented improved high-order gadgets for the masking of Dilithium,
a post-quantum lattice-based signature scheme standardized by NIST. Our new gadget
called ShiftMod enables efficient arithmetic shifts modulo any integer 2q, which we used as
a component in other masking gadgets. We also proposed a fast Boolean-to-arithmetic
modulo q conversion algorithm that leverages ShiftMod, which is used in Dilithium for
masking the generation of the random variable y modulo q.

Additionally, we described improved techniques for masking the Decompose function in
Dilithium, and we demonstrated the effectiveness of our countermeasures with a complete
high-order masked implementation of Dilithium. We provided practical results of a C
implementation and compared the performance improvement provided by the new gadgets
with those from previous work.

A Mask refreshing
A.1 Linear mask refreshing
We recall the LinearRefresh algorithm from [RP10], working in any finite abelian group
(G,+):

Algorithm 12 LinearRefresh
Input: x1, . . . , xn ∈ G
Output: y1, . . . , yn ∈ G such that y1 + · · ·+ yn = x1 + · · ·+ xn

1: yn ← xn
2: for j = 1 to n− 1 do
3: rj ← G
4: yj ← xj + rj
5: yn ← yn − rj
6: end for
7: return y1, . . . , yn

A.2 Full mask refreshing
We recall the RefreshMasks algorithm, where the operations are performed in any group G,
for example the additive group Zq for any integer q. The algorithm was proven (n− 1)-SNI
in [BBD+16].

Algorithm 13 RefreshMasks
Input: a1, . . . , an
Output: c1, . . . , cn such that

∑n
i=1 ci =

∑n
i=1 ai

1: For i = 1 to n do ci ← ai
2: for i = 1 to n do
3: for j = i+ 1 to n do
4: r ← G, ci ← ci + r, cj ← cj − r
5: end for
6: end for
7: return c1, . . . , cn

The algorithm has complexity O(n2), with a number of operations

Trefresh(n) = 3n(n− 1)/2

138 Improved Gadgets for the High-Order Masking of Dilithium

B Proof of Theorem 2

0

x2

0
LR×

×

x3

×

xn

LR

0

LR
0

× LR

x1

P1 P2 Pn−1

Figure 4: 1bitB2A algorithm

In order to prove the free SNI 1bitB2A we split the algorithm in several part corresponding
to the process of each share. As shown in Fig. 4, we denote by Pi the core part of Alg. 2
that processes share xi+1. More precisely, Pi is an algorithm that takes as input i shares,
processes xi+1, and then applies a LinearRefresh on i+ 1 shares with the last input share
equal to 0. Eventually, the algorithm processes x1, and applies a LinearRefresh on the n
shares, but by accumulating the randomness on the first column. The proof will focus first
on proving by induction that the composition Pn−1 ◦ · · · ◦ P1 achieves free SNI. Then we
will prove that the last iteration, processing x1, preserves the free SNI property.

We want to prove by induction that Pi ◦ · · · ◦ P1, taking as input x1, . . . , xi+1 and
outputting v1, . . . , vi+1, satisfies the free-SNI property. This is initially true for P1. We
assume that this is the case for Pi−1 ◦ · · · ◦P1, for i ≤ n−1. We now prove that Pi ◦ · · · ◦P1
satisfies free-SNI. We use the following notations (see Fig. 5):

• (vj)1≤j≤i: output of previous part Pi−1 ◦ · · · ◦ P1,

• (uj)1≤j≤i: result after processing xi+1 on vj ,

• (rj)1≤j≤i: randomness used in LinearRefresh,

• (wj)1≤j≤i+1: output of LinearRefresh.

We have u1 = (1− 2xi+1)v1 + xi+1 and uj = (1− 2xi+1)vj for 2 ≤ j ≤ i. We also have
wj = uj + rj (mod q) for 1 ≤ j ≤ i. We also denote by (wj,i+1)1≤j≤i the accumulated
randoms on the i+ 1-th column of LinearRefresh, with wj,i+1 = −(r1 + · · ·+ rj) (mod q)
for 1 ≤ j ≤ i, with eventually the last output share wi+1 = −(r1 + · · ·+ ri) (mod q).

Let W be any set of t intermediate variables in Pi ◦ · · · ◦ P1. We split W in W1 ∪W2,
corresponding to t1 variables from Pi−1 ◦ · · · ◦P1 and t2 variables from Pi, with t = t1 + t2.
We can assume t < i. Otherwise, if t ≥ i, then we can let I = [2, i+ 1]; in that case, we
have |I| = i ≤ t and we can simulate all intermediate variables from inputs x|I since x1
does not appear in any computation; additionally, any O ([1, i + 1] \ I is empty and
therefore the free-SNI property is satisfied.

Jean-Sébastien Coron, François Gérard, Matthias Trannoy and Rina Zeitoun 139

P
i−

1
◦
··
·◦

P
1

xi

(1
−

2x
i+

1)
v j

xi+1

xi−1

x2

x1

0

r1

w1,i+1

rj

wj,i+1

ri

w1

w2

wi−1

wi

wi+1

LinearRefresh

wj

v1

v2

vi−1

vi

u1

u2

ui−1

ui

xj vj uj

Figure 5: Core part of 1bitB2A

From the free-SNI property of Pi−1 ◦ · · · ◦ P1 with t1 probes, we can construct a set
U ⊂ [1, i], with |U | ≤ t1, such that the intermediate variables W1 and outputs v|U can
be perfectly simulated from inputs x|U . Additionally, for any subset O′ ([1, i] \ U , the
outputs v|O′ are uniformly and independently distributed, even conditioned on W1 and
v|U . We now extend the set U of input indices to a superset I ⊃ U to allow simulation of
the remaining intermediate variables W2 from Pi.

We initially set I = U . If xi+1, 1− 2xi+1 or any wj,i+1 belong to W2, we add i+ 1 to
to I; note that for the variables wj,i+1 this corresponds to a probe on the i+ 1-th column.
For 1 ≤ j ≤ i, if at least two variables in the j-th column belong to W2, namely any of
(1− 2xi+1)vj , vj + xi+1, uj + rj or rj , we add both i+ 1 and j to I. If a single variable in
the j-th column has been probed, we add j to I if j /∈ U , otherwise we add i+ 1 to I. By
construction we must have |I| ≤ |U |+ t2 ≤ t1 + t2 = t. We consider any O ([1, i+ 1] \ I,
and we now show that:

1. We can perfectly simulate W and outputs w|I from inputs x|I ,
2. The outputs w|O are uniformly and independently distributed, even conditioned on
W and w|I .

For this, we distinguish 2 cases, depending on whether i+ 1 ∈ I or i+ 1 /∈ I:
i+ 1 ∈ I. Since we know xi+1, the t2 variables of W2 and outputs w|I can be perfectly
simulated from v|I\{i+1} and xi+1, by propagating the simulation column by column. From
the free-SNI of Pi−1 ◦ · · · ◦ P1, we know outputs v|U can be perfectly simulated from x|U ,
and therefore from x|I . It remains to show how to simulate the outputs v|I\(U∪{i+1}), and
to prove that the output variables w|O of Pi ◦ · · · ◦ P1 are uniformly distributed.

For this, we construct a subset O′ ([1, i] \ U of indices on which we apply induction
hypothesis, namely the free-SNI of Pi−1 ◦ · · · ◦P1, such that the outputs v|O′ are uniformly
distributed. We let:

O′ = O ∪ I \ (U ∪ {i+ 1})
To apply the induction hypothesis, we must verify that O′ ([1, i] \ U . We have O ⊂
[1, i] \ I ⊂ [1, i] \ U and I \ (U ∪ {i+ 1}) ⊂ [1, i+ 1] \ {i+ 1} \ U ⊂ [1, i] \ U , which gives
O′ ⊂ [1, i] \ U . To show the inclusion is strict, we show that [1, i] \ U \O′ is non-empty:

([1, i] \ U) \O′ = [1, i] \ (U ∪O′)
= [1, i] \ (U ∪O ∪ (I \ (U ∪ {i+ 1})))
= [1, i] \ (O ∪ (I \ {i+ 1})) U ⊂ I
= ([1, i] \ (I \ {i+ 1})) \O
= [1, i+ 1] \ I \O i+ 1 ∈ I

140 Improved Gadgets for the High-Order Masking of Dilithium

Since by assumption O ([1, i + 1] \ I, the set [1, i + 1] \ I \ O is non-empty and so is
[1, i] \ U \O′. Hence from the free-SNI of Pi−1 ◦ · · · ◦ P1, the outputs v|O′ are uniformly
and independently distributed. Therefore, we can perfectly simulate v|I\(U∪{i+1}) with
fresh randoms, and therefore all variables v|I\{i+1} can be simulated. As explained above,
knowing xi+1, the simulation can then be propagated to Pi, and finally the intermediate
variables W and outputs w|I can be perfectly simulated from inputs x|I .

We now show that the outputs w|O are uniformly and independently distributed, where
wj is the result of uj + rj for j ∈ O, for 1 ≤ j ≤ i; note that since i + 1 ∈ I, we must
have i+ 1 /∈ O. We already know that the outputs v|O are uniformly and independently
distributed and we remark that for j ∈ O, uj is a bijective transformation of vj . Namely
uj = (1− 2xi+1)vj for j ≥ 1 and u1 = (1− 2xi+1)v1 + xi+1. Therefore u|O are uniformly
and independently distributed. Eventually uj acts as a one-time pad on wj = uj + rj and
we conclude that the variables w|O are uniformly distributed, even conditioned on w|I and
W.

i+ 1 /∈ I. We first simulate outputs w|I and intermediate variables W . We consider j ∈ I.
If j ∈ U , then by construction none of (1 − 2xi+1)vj , uj , rj , wj , wj,i+1 belongs to W2,
otherwise we would have i+ 1 ∈ I. In particular, since rj is a fresh uniform random and
not involved in the computation of any intermediate variable from W , it acts as a one-time
pad on the value uj + rj . Therefore all outputs w|U can be perfectly simulated uniformly
and independently.

We now simulate outputs w|I\U . For this, we let O′ = I \ U . We have O′ ([1, i] \ U .
Indeed, we have assumed t < i, and from |I| ≤ t < i, we have I ([1, i]; from U ⊂ I, we
deduce O′ = I \ U ([1, i] \ U . From the induction hypothesis, we know that v|O′ = v|I\U
are uniformly and independently distributed. Since the application v 7→ (1 − xi+1)v is
a bijection, then (1 − 2xi+1)vj is uniformly distributed. Moreover, for j ∈ I \ U , then
by construction of I only one of (1− 2xi+1)vj , rj , uj + rj belongs to W2. Hence, we can
perfectly simulate (1−2xi+1)vj with uniform random without knowledge of xi+1, since the
distribution of vj is independent of W \{(1− 2xi+1)vj}. Simulation of any of rj or uj + rj
can also be made with fresh uniform random since rj acts as a one-time pad. Eventually,
once the variable from W in the j-th column has been simulated, the simulation can be
propagated in the rest of the column and eventually to wj . Therefore, we can perfectly
simulate variables W and outputs w|I from inputs x|U ⊂ x|I .

It remains to show that the outputs w|O are uniformly and independently distributed.
For 1 ≤ j ≤ i, wj = uj + rj (mod q), where rj acts as a one-time pad (neither rj
nor wj−1,i+1 − rj belongs to W). If i + 1 ∈ O, since O ([1, i + 1] \ I, there exists j? ∈
[1, i+1]\(I∪O). We have that rj? a uniform random independent from any of intermediate
variable W and outputs w|I∪(O\{i+1}). Therefore the output wi+1 = −

∑
j 6=j? rj − rj? is

uniformly distributed, even conditioned on W ∪ w|I∪(O\{i+1}). Eventually, the outputs
w|O are uniformly and independently distributed.

We conclude that Pi ◦ · · · ◦ P1 is free-SNI, which achieves the induction. Therefore we
have that Pn−1 ◦ · · · ◦ P1 is free-SNI.

It remains to show that the last part that processes x1 preserves the free-SNI property.
As previously, let W be any set of t intermediate variables, we split W = W1 ∪ W2
corresponding to variables from Pn−1 ◦ · · · ◦ P1 and the last part respectively, where
|W1| = t1 and |W2| = t2. If t2 = 0, then there is nothing left to prove since Pn−1 ◦ · · · ◦ P1
is free−SNI and any set of ≤ n − 1 outputs is uniformly and independently distributed
from the LinearRefreshMasks procedure. Hence, we assume t2 > 0. Additionally, we assume
t < n. Otherwise, we can take I = [1, n] and we can perfectly simulate all variables since
we provide all inputs to the simulator.

The proof is very similar to the previous part. First, from the free-SNI of Pn−1 ◦ · · · ◦P1,
we deduce that there exists U ⊂ [1, n], with |U | ≤ t1, such that the intermediate variables
W1 and Pn−1 ◦ · · · ◦ P1 outputs v|U can be perfectly simulated from inputs x|U . Moreover

Jean-Sébastien Coron, François Gérard, Matthias Trannoy and Rina Zeitoun 141

for any subset O ([1, n] \ U , outputs v|O are uniformly and independently distributed.
We extend the set U as previously. Initially, we set I = U . As previously, we denote by

(wj,1)1≤j≤i the accumulated randoms on the first column of the last LinearRefresh. If any
of x1, 1− 2x1, wj,1 belongs to W2, we add 1 to I. Otherwise, for 2 ≤ j ≤ n, if at least two
of vj , rj , wj belong to W2, we add both 1 and j to I. If only one of vj , rj , wj belongs to
W2, we add j to I if j /∈ U or 1 to I if j ∈ U . By construction, |I| ≤ |U |+ t2 ≤ t1 + t2 = t.

Let O ([1, n] \ I. We now show how to simulate variables W and outputs w|I from
inputs x|I , and we show that outputs w|O are uniformly and independently distributed.
We distinguish two cases whether 1 ∈ I or 1 /∈ I:
1 ∈ I. By construction, any intermediate variable fromW2 and outputs w|I can be perfectly
simulated from v|I , using the knowledge of x1. We let O′ := O∪(I \U). Using O ([1, n]\I,
and since [1, n] \ I and I \ U have empty intersection, we deduce O′ = O ∪ (I \ U) (
([1, n]\I)∪(I\U) = [1, n]\U . Therefore, from the free-SNI of Pn−1◦· · ·◦P1, the outputs v|O′

are uniformly and independently distributed. Hence, v|I\U can be perfectly simulated with
fresh randoms. Additionally, v|U and variables W1 can be perfectly simulated from inputs
x|U . Therefore, by propagating the simulation, we can perfectly simulate intermediate
variables W and outputs w|I from inputs x|U ⊂ x|I . Eventually, following the same
argument as above, the outputs w|O = u|O + r|O are uniformly distributed, following the
fact that u|O are bijective transformation of the uniformly distributed v|O.

1 /∈ I. We first simulate variables W and outputs w|I . For j ∈ U , by construction none
of the variables (1− 2x1)vj , uj , rj , wj , wj,1 belongs to W2, since otherwise we would have
1 ∈ I. In particular, rj is a uniform random independent from W and acts as a one time
pad on wj = uj + rj (mod q). Hence, the output wj can be perfectly simulated with
uniform random.

As previously, to simulate the output variables w|I\U , we let O′ := I \ U ([1, n] \ U ,
as we assumed t < n. From the free-SNI of Pn−1 ◦ · · · ◦ P1, we have that the outputs v|O′

are uniformly distributed. For j ∈ I \ U , then only one of (1− 2x1)vj , rj , uj + rj belongs
to W2. As previously, we can simulate any intermediate variables in column j ∈ I \ U
with fresh uniform random and propagate the simulation to the output wj . Eventually,
we conclude that intermediate variables and outputs w|I can be perfectly simulated from
inputs x|U ⊂ x|I .

It remains to show that outputs w|O have the uniform distribution. This holds because
for j ∈ O and 2 ≤ j ≤ n, we have wj = uj + rj (mod q), where rj is a fresh uniform
random independent from W and therefore acts as a one time pad. Finally, if 1 ∈ O, there
exists j? ∈ [1, n] \ (O ∪ I), and we can write w1 = (v1 −

∑
j 6=j? rj)− rj? (mod q), where

rj? is a fresh uniform random independent from W and other outputs; therefore it acts as
a one-time-pad for w1.

Eventually, we have shown that the whole algorithm achieves free-SNI security.

C Nonce generation with approximate Boolean to arith-
metic conversion

In Section 4.2, we have described an approximate Boolean to arithmetic conversion
algorithm such that

y1 + · · ·+ yn = x+ e (mod q)

for some centered error |e| ≤ emax, with emax = bn/2c. We can ensure that x is uniformly
distributed in the interval]−γ1, γ1], where γ1 is a power-of-two. Therefore, the distribution
of x′ = x+ e, conditioned on x′ ∈]− γ1 + emax, γ1 − emax], is uniform. This implies that
the faster approximate Boolean to arithmetic conversion can also be used in the signature
generation of Dilithium, by using a slightly stricter rejection sampling.

142 Improved Gadgets for the High-Order Masking of Dilithium

More precisely, instead of performing the rejection sampling on z = y + cs1 with
‖z‖∞ ≥ γ1 − β, we perform the slightly stricter rejection sampling ‖z‖∞ ≥ γ1 − β − emax.
We show below that the conditional probability distribution of each coefficient of z remains
uniform in an interval, which implies that no information is leaked about the secret-key.
We also show that this induces only a very small increase in the number of repetitions to
generate a valid signature.

Analysis without error. We start with no error (e = 0), following the reasoning in
[BDK+21, Section 3.4]. The probability that ‖z‖∞ < γ1 − β is computed by considering
each coefficient separately. For each coefficient σ of cs1, the corresponding coefficient
z = y + σ of z = y + cs1 will be in the interval [−γ1 + β + 1, γ1 − β − 1] whenever
the corresponding coefficient y of y is in [−γ1 + β + 1 − σ, γ1 − β − 1 − σ]. Since y
is uniformly distributed in [−γ1 + 1, γ1] and |σ| ≤ β, this happens with probability
(2(γ1 − β) − 1)/(2γ1 − 1), and moreover the conditional distribution of z is uniform in
[−γ1 + β + 1, γ1 − β − 1], as required. Therefore the probability that every coefficient of y
is in the good range is:

(
2(γ1 − β)− 1

2γ1 − 1

)256·`
=
(

1− β

γ1 − 1/2

)256·`
' exp(−256 · β`/γ1)

Similarly, the authors provide a (heuristic) estimate that ‖r0‖∞ < γ2 − β, and obtain a
probability exp(−256 · βk/γ2), so that the probability that the two conditions are satisfied
is ' exp(−256 · β(`/γ1 + k/γ2)) where (k, `) are the dimensions of A.

Analysis with centered error. We now consider the case of a centered error |e| ≤ emax,
with emax = bn/2c, where we obtain for each coefficient z = y+σ+ e, instead of z = y+σ.
We now consider the stricter condition ‖z‖∞ < γ1 − β′ with β′ = β + emax. As previously,
a coefficient z = y + σ + e will be in the interval [−γ1 + β′ + 1, γ1 − β′ − 1] whenever
y is in [−γ1 + β′ + 1 − σ − e, γ1 − β′ − 1 − σ − e]. Since y is uniformly distributed in
[−γ1 + 1, γ1] and |σ + e| ≤ β′, this happens with probability (2(γ1 − β′)− 1)/(2γ1 − 1),
and moreover the conditional distribution of z is still uniform in [−γ1 + β′+ 1, γ1− β′− 1],
as required. As previously, the probability that every coefficient of y is in the good
range is ' exp(−256 · β′`/γ1) = exp(−256 · (β + emax)`/γ1) and therefore the probability
that the two conditions are satisfied is ' exp (−256 · ((β + emax)`/γ1 + βk/γ2)) where
emax = bn/2c. We obtain the following number of repetitions, which show only a very
small increase with the security order.

Table 9: Number of repetitions for security level 2, with n = t+ 1 shares

Security order t 0 2 3 4 5 6 8 10 12
Repetitions 4.25 4.29 4.32 4.32 4.36 4.36 4.39 4.42 4.46

Jean-Sébastien Coron, François Gérard, Matthias Trannoy and Rina Zeitoun 143

D Randomness consumption

Table 10: Randomness usage for the gadgets in number of calls to rand32().

Security order t
1 2 3 4 5 6

CGV14 1 99 198 424 684 975
Alg. 3 with ShiftMod 64 160 288 448 640 864
DecomposeComp 52 154 306 508 760 1062
DecomposeMod 78 284 568 1030 1570 2238
[SPOG19] 18 54 108 180 270 378
BtoAqApprox 2 7 18 41 88 183
BtoAqExact 6 19 42 81 148 267
B2A mod 2k [BCZ18] 2 7 18 41 88 183

References
[ABC+22] Melissa Azouaoui, Olivier Bronchain, Gaëtan Cassiers, Clément Hoffmann,

Yulia Kuzovkova, Joost Renes, Markus Schönauer, Tobias Schneider, François-
Xavier Standaert, and Christine van Vredendaal. Leveling dilithium against
leakage: Revisited sensitivity analysis and improved implementations. Cryp-
tology ePrint Archive, Paper 2022/1406, 2022. https://eprint.iacr.org/
2022/1406.

[BBD+15] Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Ben-
jamin Grégoire, and Pierre-Yves Strub. Verified proofs of higher-order masking.
In Advances in Cryptology - EUROCRYPT 2015 - Proceedings, Part I, pages
457–485, 2015.

[BBD+16] Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Ben-
jamin Grégoire, Pierre-Yves Strub, and Rébecca Zucchini. Strong non-
interference and type-directed higher-order masking. In Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications Security,
Vienna, Austria, October 24-28, 2016, pages 116–129, 2016. Publicly available
at https://eprint.iacr.org/2015/506.pdf.

[BBE+18] Gilles Barthe, Sonia Belaïd, Thomas Espitau, Pierre-Alain Fouque, Benjamin
Grégoire, Mélissa Rossi, and Mehdi Tibouchi. Masking the GLP lattice-based
signature scheme at any order. In Advances in Cryptology - EUROCRYPT
2018 - Proceedings, Part II, pages 354–384, 2018.

[BC22] Olivier Bronchain and Gaëtan Cassiers. Bitslicing arithmetic/boolean masking
conversions for fun and profit with application to lattice-based kems. IACR
Trans. Cryptogr. Hardw. Embed. Syst., 2022(4):553–588, 2022. https://ia.
cr/2022/158.

[BCZ18] Luk Bettale, Jean-Sébastien Coron, and Rina Zeitoun. Improved high-order
conversion from boolean to arithmetic masking. IACR Trans. Cryptogr. Hardw.
Embed. Syst., 2018(2):22–45, 2018.

[BDE+18] Jonathan Bootle, Claire Delaplace, Thomas Espitau, Pierre-Alain Fouque, and
Mehdi Tibouchi. LWE without modular reduction and improved side-channel
attacks against BLISS. In Thomas Peyrin and Steven D. Galbraith, editors,

https://eprint.iacr.org/2022/1406
https://eprint.iacr.org/2022/1406
https://eprint.iacr.org/2015/506.pdf
https://ia.cr/2022/158
https://ia.cr/2022/158

144 Improved Gadgets for the High-Order Masking of Dilithium

Advances in Cryptology - ASIACRYPT 2018 - 24th International Conference on
the Theory and Application of Cryptology and Information Security, Brisbane,
QLD, Australia, December 2-6, 2018, Proceedings, Part I, volume 11272 of
Lecture Notes in Computer Science, pages 494–524. Springer, 2018.

[BDH+21] Shivam Bhasin, Jan-Pieter D’Anvers, Daniel Heinz, Thomas Pöppelmann,
and Michiel Van Beirendonck. Attacking and defending masked polynomial
comparison for lattice-based cryptography. IACR Trans. Cryptogr. Hardw.
Embed. Syst., 2021(3):334–359, 2021. https://eprint.iacr.org/2021/104.

[BDK+21] Shi Bai, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyuba-
shevsky, Peter Schwabe, Gregor Seiler, and Damien Stehlé. Crystals-
dilithium algorithm specifications and supporting documentation
(version 3.1), 2021. https://pq-crystals.org/dilithium/data/
dilithium-specification-round3-20210208.pdf.

[BG14] Shi Bai and Steven D. Galbraith. An improved compression technique for
signatures based on learning with errors. In Josh Benaloh, editor, Topics in
Cryptology – CT-RSA 2014, pages 28–47, Cham, 2014. Springer International
Publishing.

[CGMZ22] Jean-Sébastien Coron, François Gérard, Simon Montoya, and Rina Zeitoun.
High-order table-based conversion algorithms and masking lattice-based en-
cryption. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2022(2):1–40, 2022.
https://ia.cr/2021/1314.

[CGMZ23] Jean-Sébastien Coron, François Gérard, Simon Montoya, and Rina Zeitoun.
High-order polynomial comparison and masking lattice-based encryption. IACR
Trans. Cryptogr. Hardw. Embed. Syst., 2023(1):153–192, 2023. https://ia.
cr/2021/1615.

[CGTV15] Jean-Sébastien Coron, Johann Großschädl, Mehdi Tibouchi, and Praveen Ku-
mar Vadnala. Conversion from arithmetic to boolean masking with logarithmic
complexity. In Proceedings of FSE 2015, pages 130–149, 2015.

[CGV14] Jean-Sébastien Coron, Johann Großschädl, and Praveen Kumar Vadnala.
Secure conversion between boolean and arithmetic masking of any order. In
Proceedings of CHES 2014, pages 188–205, 2014.

[Cor14] Jean-Sébastien Coron. Higher order masking of look-up tables. In Proceedings
of EUROCRYPT 2014, pages 441–458, 2014.

[CS21] Jean-Sébastien Coron and Lorenzo Spignoli. Secure wire shuffling in the probing
model. In Tal Malkin and Chris Peikert, editors, Advances in Cryptology -
CRYPTO 2021 - 41st Annual International Cryptology Conference, CRYPTO
2021, Virtual Event, August 16-20, 2021, Proceedings, Part III, volume 12827
of Lecture Notes in Computer Science, pages 215–244. Springer, 2021.

[DFPS23] Julien Devevey, Pouria Fallahpour, Alain Passelègue, and Damien Stehlé. A
detailed analysis of fiat-shamir with aborts. Cryptology ePrint Archive, Paper
2023/245, 2023. https://eprint.iacr.org/2023/245.

[GLP12] Tim Güneysu, Vadim Lyubashevsky, and Thomas Pöppelmann. Practical
lattice-based cryptography: A signature scheme for embedded systems. In
Emmanuel Prouff and Patrick Schaumont, editors, Cryptographic Hardware
and Embedded Systems – CHES 2012, pages 530–547, Berlin, Heidelberg, 2012.
Springer Berlin Heidelberg.

https://eprint.iacr.org/2021/104
https://pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf
https://pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf
https://ia.cr/2021/1314
https://ia.cr/2021/1615
https://ia.cr/2021/1615
https://eprint.iacr.org/2023/245

Jean-Sébastien Coron, François Gérard, Matthias Trannoy and Rina Zeitoun 145

[Gou01] Louis Goubin. A sound method for switching between boolean and arithmetic
masking. In Çetin Kaya Koç, David Naccache, and Christof Paar, editors,
Cryptographic Hardware and Embedded Systems - CHES 2001, Third Interna-
tional Workshop, Paris, France, May 14-16, 2001, Proceedings, volume 2162 of
Lecture Notes in Computer Science, pages 3–15. Springer, 2001.

[ISW03] Yuval Ishai, Amit Sahai, and David A. Wagner. Private circuits: Securing
hardware against probing attacks. In CRYPTO 2003, Proceedings, pages
463–481, 2003.

[LS15] Adeline Langlois and Damien Stehlé. Worst-case to average-case reductions
for module lattices. Des. Codes Cryptogr., 75(3):565–599, 2015.

[Lyu09] Vadim Lyubashevsky. Fiat-shamir with aborts: Applications to lattice and
factoring-based signatures. In Advances in Cryptology–ASIACRYPT 2009:
15th International Conference on the Theory and Application of Cryptology
and Information Security, Tokyo, Japan, December 6-10, 2009. Proceedings 15,
pages 598–616. Springer, 2009.

[LZS+21] Yuejun Liu, Yongbin Zhou, Shuo Sun, Tianyu Wang, Rui Zhang, and Jingdian
Ming. On the security of lattice-based fiat-shamir signatures in the presence of
randomness leakage. IEEE Trans. Inf. Forensics Secur., 16:1868–1879, 2021.

[MGTF19] Vincent Migliore, Benoît Gérard, Mehdi Tibouchi, and Pierre-Alain Fouque.
Masking Dilithium - efficient implementation and side-channel evaluation. In
Applied Cryptography and Network Security - 17th International Conference,
ACNS 2019, Bogota, Colombia, June 5-7, 2019, Proceedings, pages 344–362,
2019.

[MUTS22] Soundes Marzougui, Vincent Ulitzsch, Mehdi Tibouchi, and Jean-Pierre Seifert.
Profiling side-channel attacks on dilithium: A small bit-fiddling leak breaks it
all. Cryptology ePrint Archive, Paper 2022/106, 2022. https://eprint.iacr.
org/2022/106.

[RP10] Matthieu Rivain and Emmanuel Prouff. Provably secure higher-order masking
of AES. In CHES 2010, Proceedings, pages 413–427, 2010.

[SPOG19] Tobias Schneider, Clara Paglialonga, Tobias Oder, and Tim Güneysu. Effi-
ciently masking binomial sampling at arbitrary orders for lattice-based crypto.
In PKC 2019, Proceedings, Part II, pages 534–564, 2019.

https://eprint.iacr.org/2022/106
https://eprint.iacr.org/2022/106

	Introduction
	Notations and security definitions
	Notations
	Security definitions

	Arithmetic shift and conversion from arithmetic to Boolean masking
	New arithmetic shift modulo 2q
	1-bit Boolean to arithmetic conversion from SPOG19
	Improved arithmetic to Boolean conversion

	Boolean to arithmetic conversion modulo q with size-independent complexity
	Tool: modulus switching
	Approximate conversion using modulus switching
	Exact conversion using modulus switching
	Comparison

	Masking the Decompose function
	First alternative Decompose algorithm
	Second alternative Decompose algorithm
	Comparison

	Application to masking Dilithium
	Pseudo-code of Dilithium
	Masking Dilithium key generation
	Masking Dilithium signature generation

	Implementation results
	Performance of individual gadgets
	Performance of fully-masked Dilithium

	Conclusion
	Mask refreshing
	Linear mask refreshing
	Full mask refreshing

	Proof of Theorem 2
	Nonce generation with approximate Boolean to arithmetic conversion
	Randomness consumption

