
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2023, No. 4, pp. 80–109. DOI:10.46586/tches.v2023.i4.80-109

MMM: Authenticated Encryption with Minimum
Secret State for Masking

Yusuke Naito1, Yu Sasaki2, and Takeshi Sugawara3

1 Mitsubishi Electric Corporation, Kanagawa, Japan,
Naito.Yusuke@ce.MitsubishiElectric.co.jp

2 NTT Social Informatics Laboratories, Tokyo, Japan, yusk.sasaki@ntt.com
3 The University of Electro-Communications, Tokyo, Japan, sugawara@uec.ac.jp

Abstract. We propose a new authenticated encryption (AE) mode MMM that achieves
the minimum memory size with masking. Minimizing the secret state is the crucial
challenge in the low-memory AE suitable for masking. Here, the minimum secret
state is s + b bits, composed of s bits for a secret key and b bits for a plaintext block.
HOMA appeared in CRYPTO 2022 achieved this goal with b = 64, but choosing a
smaller b was difficult because b = s/2 is bound to the block size of the underlying
primitive, meaning that a block cipher with an unrealistically small block size (e.g.,
8 bits) is necessary for further improvement. MMM addresses the issue by making
b independent of the underlying primitive while achieving the minimum (s + b)-bit
secret state. Moreover, MMM provides additional advantages over HOMA, including
(i) a better rate, (ii) the security under the multi-user model, (iii) and a smaller
transmission cost. We instantiate two variants, MMM-8 (with b = 8) and MMM-64
(with b = 64), using the standard tweakable block cipher SKINNY-64/192. With a
(d + 1)-masking scheme, MMM-8 (resp. MMM-64) is smaller by 56d + 184 (resp. 128)
bits compared with HOMA. As a result of hardware performance evaluation, MMM-8
and MMM-64 achieved smaller circuit areas than HOMA with all the examined
protection orders d ∈ [0, 5]. MMM-8’s circuit area is only 81% of HOMA with d = 5,
and MMM-64 achieves more than ×3 speed-up with a smaller circuit area.
Keywords: Authenticated Encryption · Mode of Operation · Side-Channel Attack
· Masking · Multi-User Security

1 Introduction
Resistance against side-channel attacks (SCAs) [KJJ99] is an important challenge in
secure embedded systems, and masking is intensively studied as a viable countermeasure
against SCAs. Masking schemes encode the intermediate values into a redundant and
randomized representation called shares and implement cryptographic algorithms with
shares, in the same way as multi-party computation. The security of masking is based on
the probing model [ISW03], and a protection order d specifies the maximum number of
probes the implementation is protected. However, large performance overhead is the most
significant drawback of masking, and researchers are tackling the issue from several different
directions, including more efficient masking schemes [NRR06,RBN+15,GMK16,CGLS21],
randomness optimization [BBP+16], masking-friendly S-box [GGNS13,ARS+15,GJK+20],
and leakage-resilient cryptography [DP08,PSV15,DEM+20,BGP+20,DM21].

Among them, some low-memory authenticated encryption with associated data schemes
(AEADs) aim at minimizing the memory size after masking [NS20, IKMP20,NSS22]. They
are useful in compact hardware implementations because memory elements, e.g., registers,
consume considerable hardware resources. The modes exploit the asymmetry between the

Licensed under Creative Commons License CC-BY 4.0.
Received: 2023-04-15 Accepted: 2023-06-15 Published: 2023-08-31

https://doi.org/10.46586/tches.v2023.i4.80-109
mailto:Naito.Yusuke@ce.MitsubishiElectric.co.jp
mailto:yusk.sasaki@ntt.com
mailto:sugawara@uec.ac.jp
http://creativecommons.org/licenses/by/4.0/

Yusuke Naito, Yu Sasaki, and Takeshi Sugawara 81

Table 1: Comparison of Memory Size after Masking with Protection Order d with 128-bit
security. MMM is evaluated with general variables with a rate of b bits and a security level
of s bits, where the rate denotes the number of encrypted bits per primitive call.

Scheme Rate Memory Size Security Ref.

PFB, Romulus, PFB_Plus 128 256(d + 1) + 128 Single-User† [NS20, IKMP20,NSS20]
HOMA 64/3 192(d + 1) + 256 Single-User† [NSS22]

MMM b (s + b)(d + 1) + s Multi-User This Work
MMM-8 8 136(d + 1) + 128 Multi-User This Work
MMM-64 64 192(d + 1) + 128 Multi-User This Work

† The proofs are given only in the su-setting, while there is no efficient attack in the mu-setting.

secret and public values; a secret value needs a large memory size to store its redundant
representation. At least d+ 1 shares are needed to provide the protection order d, so secret
data expands d+ 1 times after masking. On the other hand, a public value does not need
such redundant representation. Hence, reducing the size of the secret value can reduce the
memory size after masking.

First, tweakable block cipher (TBC)-based modes, such as PFB [NS20], Romu-
lus [IKMP20], and PFB_Plus [NSS20], were found to be effective because TBCs effectively
handle public values as tweaks, in contrast to permutation-based modes that handle the
entire state with a single permutation. The state-of-the-art in this category is HOMA
appeared in CRYPTO 2022 [NSS22], which further reduced the size of the secret value.

Table 1 summarizes the memory sizes of those modes. PFB, Romulus, and PFB_Plus
are essentially the same in terms of memory size after masking. For achieving 128-bit
security, those modes use a 128-bit internal state and a 128-bit key that should be protected
with masking. Besides, they use a 128-bit public value, including a nonce, a block counter,
and domain separation bits, which requires no SCA protection. As a result, PFB, Romulus,
and PFB_Plus use 2s(d+ 1) + s bits of memory with s-bit security and (d+ 1)-masking,
i.e., 256(d + 1) + 128 bits with 128-bit security. Since the memory size depends on the
security parameter s, these modes cannot reduce the memory any further, and reducing
the memory size without sacrificing the the security level has become the new challenge.
Then, HOMA successfully addressed the limit, achieving a new memory-area trade-off.
HOMA also uses a 128-bit internal state and a 128-bit key, however, it does not protect a
half of the 128-bit state, which reduces the secret state size to 192 bits. Meanwhile, the
public state size increases to 256 bits as a drawback. As a result, the total state size of
HOMA is 192(d+ 1) + 256 bits; successfully reducing the coefficient on d.

However, HOMA has several limitations to achieving this goal, as shown below.

Needs for Specialized Primitive. HOMA needs a TBC with a small block size and a large
tweakey, a combination of a tweak and a key, i.e., 64-bit block and 384-bit tweakey for
128-bit security. No existing primitive satisfies this requirement, thus the designers
developed a new primitive called SKINNYee [NSS22]. It was mentioned that the
memory could be further improved if a TBC with an even smaller block size, e.g.,
8 bits, with the same tweaky size, i.e. 384 bits, exists. However, looking at past
designs, no primitive supports such configuration, and it was observed that efficiently
constructing such a TBC is difficult [QDW+22].

Inflexible Speed-Area Trade-Off. Ideally, the memory size and the speed should have
some trade-off so that users can flexibly choose the suitable one for a performance
requirement. However, HOMA only enables the fixed relationship; the secret size of
1.5s bits and a rate of s/6 bits by using a TBC with a 0.5s-bit block.

82 MMM: Authenticated Encryption with Minimum Secret State for Masking

Inefficient Rate. PFB/Romulus requires only a single primitive call to process a 128-bit
plaintext block. In contrast, HOMA needs 3 primitive calls for each 64-bit plaintext
block, which results in an inefficient rate as a drawback.

Multi-User Security. The multi-user security considers a stronger adversary who can make
query to multiple users with distinct keys [BT16,HTT18,LMP17]. Recently, the
real-world protocols determine the AES-GCM’s rekeying frequencies based on the
mu-security [Res18,RTM21,TT21]. HOMA’s security proof only gives a single-user
bound, and a new mode ensuring high mu-security is desired.1 Hereafter, “single-user”
and “multi-user” are abbreviated to “su” and “mu,” respectively.

Additional Transmission Cost. HOMA requires the use of random IVs that are updated
with each query. The random IV must be transmitted as a part of a ciphertext. This
increases the data transmission over the network, which can be a problem for IoT
devices with power constraints and limited bandwidths.

Another notable mode-level approach for efficient SCA countermeasure is leveled
implementations [PSV15,BBC+20], including leakage-resilient (LR) schemes [BGP+20,
BBB+20]. They use both SCA-protected and SCA-unprotected primitives to ensure
security while minimizing the use of costly protected primitives. Besides the difference in
the security models, low-memory AEADs and leveled implementations aim at different
performance goals; leveled implementations aim at speed, not memory size. Masking is
required to realize the SCA-protected primitive [DM21] in leveled implementations, which
determines the minimum memory size. Hardware cost is likely prioritized over speed with
resource-constrained devices, especially when the speed is restricted by other aspects, such
as a limited wireless power supply or slow wired/wireless communication. In those cases, a
smaller circuit area, i.e., lower per-chip cost, is more important.

In summary, further reducing the memory size of HOMA is an important challenge.
Moreover, there are other desirable properties, such as (i) compatibility with existing
primitives, including standardized ones, (ii) flexibility to choose speed-area trade-off, (iii)
improved speed, (iv) mu-security, and (v) reducing data transmission cost of random IV.

However, reducing the memory size of HOMA is difficult. Let b be the plaintext block
size, that is, the message size to be processed in one iteration, n be the block size of the
block cipher, and s be the bits of security. HOMA has b = n, n = s/2, and requires an
s-bit secret key. Then, not only the s-bit key but also the n-bit internal state of the block
cipher (BC) must be protected as secret. This is because, in many designs, if state values
during a BC operation are leaked, an s-bit key can be derived by a simple operation such
as XOR. Hence, HOMA requires at least 1.5s bits of the secret state. This is equal to the
size of a BC with an s-bit key and an n-bit block, implying that HOMA as a whole does
not use any more secret state than the one required to implement the primitive. Therefore,
with HOMA’s approach, the only possible direction is to make n smaller, i.e., going to
primitives with smaller block sizes, but as mentioned above, this seems difficult.

Our Contributions
In this paper, we propose a new mode MMM that outperforms HOMA in the memory size
and addresses the aforementioned limitations of HOMA. Then, MMM is instantiated with
SKINNY [BJK+16] for two plaintext block sizes b = 8 and b = 64, called MMM-8 and
MMM-64. We benchmark those instances by implementing them in hardware to show that
MMM-8 outperforms HOMA in terms of the memory size after masking. MMM-64 with
the same plaintext block size as HOMA can also provide a better performance.

1 Note that the proofs of HOMA, PFB, PFB_Plus and Romulus are given only in the su-setting, while
there is no efficient attack on these schemes in the mu-setting.

Yusuke Naito, Yu Sasaki, and Takeshi Sugawara 83

E ⊕

fR(dA,N,i-1)⊕

E

fR(dA,N,i)⊕

Ci

K3 ⊕

Mi

zpn

⊕

g

k1

n

b

K2||K3

K1

initial state

k1 k1

Figure 1: Encryption of MMM. zpn appends zeros until n bits. For l ∈ {k1, b}, X ⊕l Y is
an XOR operation for most significant l bits.

New Approach to Achieve Minimum Secret State (Section 3 and 4). The crucial idea
of MMM is to update the whole s-bit secret state by iterating an n-bit block BC, where
n ≤ s, and to encrypt a b-bit plaintext block by using the b-bit part of the s-bit state, as
shown in Fig. 1. A k-bit key K of MMM is partitioned into a k1-bit key K1, a k2-bit key
K2, and a b-bit key K3 such that n = k2 + b, k1 ≤ n, k = s and k = k1 + k2 + b.2 The
s-bit state is initialized by K, and is partitioned into n-bit and k1-bit states. Then, the
n-bit state is updated by a BC and the remaining k1-bit state is updated by XORing with
the BC’s output. In the encryption, the b-bit part of the state for encrypting a plaintext
block is XORed with K3, preventing the b-bit part from leaking to maintain the secret
state size s bits. Hence, MMM achieves the optimal secret size of s+ b bits. The size b can
be flexibly chosen from 1 to n, and MMM’s secret state becomes smaller than HOMA by
choosing b < s/2. In Fig. 1, a linear state-update function g is introduced to randomize
each BC’s input by the previous BC’s output during the decryption, ensuring the s-bit
authenticity. For each BC call, an s-bit public value consisting of a domain separation, a
nonce, and a counter is input as its key element via an encoding function fR as well as the
k1-bit state. These ensure that the BC’s key elements in the encryption are all distinct
for each user, ensuring that the BC’s outputs are independent and the s-bit privacy is
achieved. Due to s+ b and s bits of the secret and public states, respectively, the memory
size after masking is (s+ b)(d+ 1) + s bits, as shown in Table 1. b can be chosen by a user
and can change without replacing the BC, which offers a flexible speed-area trade-off.

We prove that MMM is a secure AE in the ideal cipher (IC) model and in both su-
and mu-settings. To prove the security, we use the z-bound model [HTT18] that was first
proposed to prove mu-security of GCM.3 In the z-bound model, it is assumed that the
number of collisions of nonces (or pairs of nonce and counter in MMM) between different
users is at most z. We prove that the bound is O(zσE+σD+zp

2k) where σE (resp. σD) is
the number of BC calls in the encryption (resp. decryption) of MMM, p is the number
of offline queries, and the tag size is k bits. In the su-setting, z = 1 is ensured from its
definition, hence the k-bit security is ensured without introducing randomness. In the
mu-setting, randomness is necessary to reduce z, but this random number does not need
to be updated during the lifetime and does not need to be sent to the communication
partner. By ensuring that the randomized nonce/counter size is long enough, z is bounded
to be small and the k-bit security is ensured.4

Regarding the underlying BC, if k1 > 0, both the k1-bit secret value and s-bit public
value are input to the BC’s key element. If the public value is updated by the secret value,
the updated value needs to be treated as secret, resulting in an increase of the memory

2Note that k1 ≥ 0, and if k1 = 0, the k1-bit state is removed.
3It was originally called the d-bound model [HTT18]. This paper uses z instead of d to avoid ambiguity

with the protection order d of masking.
4One specific implementation of the z-bound model is a randomized nonce, in which each user determines

one random number at the beginning, and each time a nonce is generated, that random number is XORed
to the nonce. In MMM, a counter is also randomized in addition to a nonce to further reduce z.

84 MMM: Authenticated Encryption with Minimum Secret State for Masking

Table 2: Comparison of primitive requirements

Mode Underlying primitive type Unnecessity of independent Availability in
key schedule update for international

optimized implementation standard

HOMA standard-model secure TBC − −
PFB/Romulus standard-model secure TBC − X

MMM with k1 ≥ 1 ideal cipher − X
MMM with k1 = 0 ideal cipher X X

size. To avoid it, we have a condition for the BC that the k1-bit secret part and s-bit
public part must be independently updated in the key schedule function. Note that many
BCs satisfy this condition. In particular, in lightweight ciphers, the key schedule has a lot
of independence because the amount of data mixing is reduced to a minimum for small
implementations. Specifically, key schedules of Midori [BBI+15] and GIFT [BPP+17]
discussed in Sect. 6 have such properties. If k1 = 0, the condition is not required.

MMM does not use random IVs, which reduces the transmission cost compared with
HOMA. The reason why HOMA needs random IVs comes from its design nature, which
leaves the half of its secret state unprotected. Without randomness, this reveals the
information that a collision occurred during decryption. To avoid this problem, HOMA
introduced random IVs that are updated with each query, so that the collided pair in the
past cannot be used in future decryption attempts. Unlike HOMA, the entire s-bit state
of MMM is protected, so the occurrence of a collision during decryption is not detected
even without randomness.

HOMA uses unprotected states without SCA protection, expressed as a leakage oracle
in the security notion. In contrast, MMM/PFB/Romulus’ notion doesn’t include a leakage
oracle simply because they have no unprotected state. MMM’s security is proved with
the IC model, unlike HOMA/PFB/Romulus with the standard model, as summarized in
Table 2. The IC model requires stronger assumptions on BC, which enables more flexible
use of BC, enabling MMM’s better performances. The omission of the condition on the
key schedule function of the underlying primitive is only applied to MMM with k1 = 0.
HOMA cannot be instantiated with existing TBCs, while PFB/Romulus and MMM can
be instantiated with SKINNY. Those requirements on the underlying primitive by each
mode is compared in Table 2.

Instantiation and Hardware Performance Evaluation (Section 5). The BC’s key size
in MMM is k1 + s bits, which is only 192 bits for s = 128 and n = 64. This enables us to
instantiate MMM with the ISO-standard cipher SKINNY-64/192 [ISO22]. We benchmark
two instances with different b, namely MMM-8 and MMM-64, and compare them with
HOMA. SKINNY’s tweakey schedule function allows users to choose the size of the public
value, tweak, and the secret value, key, and to update each independently. This property
fully satisfies the condition on the underlying cipher.

We evaluate the hardware performance of MMM-8 and MMM-64 by implementing them
using the high-order masking scheme HPC2, which provides composable security under the
glitch-robust probing model [CS20]. We use the fullVerif verification tool [Cas21] to verify
the SCA resistance of our implementations. As a result, MMM-8 and MMM-64 outperform
HOMA with the protection orders d ∈ [0, 5] (see Table 3 in Section 5). With d = 5, for
example, MMM-8 achieves 14,039 GE, which is only 81% of HOMA with 17,261 GE. This
advantage comes from the smaller memory; MMM-8 is smaller by 56d + 184 bits than
HOMA (see Table 1). MMM-64 achieves 16,526 GE at d = 5, which is still smaller than
HOMA, while achieving more than ×3 speed-up because of the better rate.

Yusuke Naito, Yu Sasaki, and Takeshi Sugawara 85

ER(ν,N,A,M)
if ν > u then return ε
return ΠE

Kν
.Enc(N,A,M)

DR(ν,N,A,C, T ′)
if ν > u then return reject
return ΠE

Kν
.Dec(N,A,C, T ′)

EI(ν,N,A,M)
if ν > u then return ε
return $ν(N,A,M)

DI(ν,N,A,C, T ′)
return reject

Figure 2: Encryption and decryption oracles in the real (left) and ideal (right) worlds.

2 Preliminaries
Notations. For integers 0 ≤ i ≤ j, let [i, j] := {i, i+1, . . . , j}, [j] := [1, j], and [j]0 := [0, j].
If i > j then [i, j] := ∅. Let ε be an empty string, ∅ an empty set, and {0, 1}∗ be the set of
all bit strings. For an integer n ≥ 0, let {0, 1}n be the set of all n-bit strings, {0, 1}0 := {ε},
and {0, 1}≤n := ∪i∈(n]{0, 1}i. Let 0i be the bit string of i-bit zeros. For X ∈ {0, 1}j , let
|X| := j. The concatenation of two bit strings X and Y is written as X‖Y or XY when
no confusion is possible. For a non-empty set T , T $←− T means that an element is chosen
uniformly at random from T and assigned to T .

A block cipher (BC) is a set of permutations indexed by a key. Throughout this paper,
block and key bit-lengths of BC are denoted by n and t, respectively. An encryption
of BC is denoted by E : {0, 1}t × {0, 1}n → {0, 1}n, and its decryption is denoted by
E−1 : {0, 1}t × {0, 1}n → {0, 1}n. Let BC be the set of all encryptions of n-bit block and
t-bit key BC.

Authenticated Encryption. An authenticated encryption (AE) scheme based on a BC
E, denoted by ΠE

K , is a pair of encryption and decryption algorithms (ΠE
K .Enc,ΠE

K .Dec).
K, N , M, C, A, and T are the sets of keys, nonces, plaintexts, ciphertexts, associated
data (AD), and tags, respectively. The encryption algorithm takes a tuple (N,A,M) ∈
N×A×M, and returns, deterministically, a pair (C, T) ∈ C×T . The decryption algorithm
takes a tuple (N,A,C, T ′) ∈ N × A × C × T and returns, deterministically, either the
distinguished invalid symbol reject 6∈ M or a plaintext M ∈ M. We require that for
any (N,A,M), (N ′, A′,M ′) ∈ N × A ×M, |ΠE

K .Enc(N,A,M)| = |ΠE
K .Enc(N,A,M ′)| is

satisfied if |M | = |M ′|. We also require that ΠE
K .Dec(N,A,ΠE

K .Enc(N,A,M)) = M for
any N ∈ N , A ∈ A, and M ∈M.

Multi-User AE Security in the Ideal Cipher Model. We evaluate multi-user-AE (mu-AE)
security of our AE scheme in the ideal cipher (IC) model, where an adversary has access to
multiple users and the underlying IC. mu-AE-security is the indistinguishability between
the real and ideal worlds.

Let u be the number of users. Let A be an adversary in the mu-AE-security game. A
has access to either real-world oracles (ER,DR, E,E−1) or ideal-world ones (EI ,DI , E,E−1).
An IC’s encryption is defined as E $←− BC. The pairs of encryption and decryption oracles
(ER,DR) and (EI ,DI) are defined in Fig. 2. A has access to the ν-th user’s encryption
(resp. decryption) oracle by making queries to EW (resp. DW) with a user number ν ∈ [u]
where W ∈ {R, I}. User’s keys Ki are defined as Ki

$←− K where i ∈ [u]. $ν(N,A,M) is a
random-bit oracle of the ν-th user and has the same interface as ΠE

Kν
.Enc. For a query

(ν,N,A,M), the response is defined as (C, T) $←− {0, 1}|Π
E
Kν

.Enc(N,A,M)| . At the end of
this game, A return a decision bit in {0, 1}. Let AEW ,DW ,E,E−1 ∈ {0, 1} be an output of
A with access to oracles (EW ,DW , E,E−1) where W ∈ {R, I}, Then, the mu-AE-security

86 MMM: Authenticated Encryption with Minimum Secret State for Masking

K2||K3

K1

ozpn(Aa)
⊕

A1

E ⊕

A2

fR(0,N,0) ⊕

E

fR(0,N,1) ⊕

E ⊕

fR(0,N,a-2)
⊕

⊕
Aa-1

H1

H2

E ⊕

fR(dA,N,0)⊕

E

fR(dA,N,1)⊕H1

H2

C1

K3 ⊕

S1

S2

E

fR(dM,N,0)⊕

E

fR(dM,N,1)⊕S1

S2

T1

⊕

E

fR(dM,N,w-1)

Tw-1

⊕

Tw

⊕

M1

zpn

⊕

E

fR(dA,N,m-1)
⊕

Cm-1

K3 ⊕

Mm-1

zpn

⊕

⊕

Cm

K3 ⊕ zpn ozpb

⊕

⊕

Mm

g g g

K3 K3 K3

MMM.Hash

MMM.Main

MMM.TagGen

k1 k1 k1

k1 k1 k1

b b

b b b

k1 k1

|Mm|

Figure 3: Structure of encryption of MMM.

advantage function of A is defined as

Advmu-ae
Π (A) := Pr

[
AER,DR,E,E

−1
= 1
]
− Pr

[
AEI ,DI ,E,E

−1
= 1
]
.

A is nonce-respecting, that is, all nonces in queries to the encryption oracle with the
same-user number are distinct. In this game, making a trivial query (ν,N,A,C, T ′) to
the decryption oracle is forbidden, which was received by some previous query to the
encryption oracle. For W ∈ {R, I}, we refer the particular queries to as follows:

• offline queries: queries to E or E−1,

• forward queries: queries to E,

• inverse queries: queries to E−1,

• online queries: queries to EW or DW ,

• encryption queries: queries to EW , and

• decryption queries: queries to DW .

3 AE with Minimum Secret State: Design and Security
In this section, we first give a specification of our mode MMM and explain how to design
MMM. We then show the security bound of MMM. Finally, we give an overview of the
security proof.

Yusuke Naito, Yu Sasaki, and Takeshi Sugawara 87

Algorithm 1 MMM.EncEK
Input: N,A,M
Output: C, T
1: (H1, H2, dA)← MMM.HashEK(N,A) . Algorithm 3
2: (C, T)← MMM.MainEK(enc, N, dA, H1, H2,M) . Algorithm 4
3: return (C, T)

Algorithm 2 MMM.DecEK
Input: N,A,C, T ′
Output: RV
1: (H1, H2, dA)← MMM.HashEK(N,A) . Algorithm 3
2: (M,T)← MMM.MainEK(dec, N, dA, H1, H2, C) . Algorithm 4
3: if T ′ = T then RV ←M ; else RV ← reject
4: return RV

Algorithm 3 MMM.HashEK
Input: N,A,
Output: H1, H2, dA
1: (A1, . . . , Aa) n←− A; S1 ← K1; S2 ← (K2‖K3)⊕ ozpn(A1)
2: if A 6= ε and |Aa| mod n = 0 then dA ← 1 else dA ← 2 end if
3: for i = 2, . . . , a do
4: S2 ← E(S1‖fR(0, N, i− 2), S2); S1 ← S1 ⊕k1 S2; S2 ← S2 ⊕ ozpn(Ai)
5: end for
6: H1 ← S1; H2 ← S2; return (H1, H2, dA)

Algorithm 4 MMM.MainEK
Input: flag, N, dA, H1, H2, D
Output: D′, T

. If flag = enc, then D is a plaintext M and D′ is the ciphertext C.

. If flag = dec, then D is a ciphertext C and D′ is the plaintext M .
1: S1 ← H1; S2 ← H2; (D1, . . . , Dm) b←− D
2: if D 6= ε and |Dm| mod b = 0 then dM ← 3 else dM ← 4 end if
3: for i = 1, . . . ,m do
4: S2 ← EK(S1‖fR(dA, N, i− 1), S2); S1 ← S1 ⊕k1 S2; D′i ← Di ⊕|Di| K3 ⊕|Di| S2
5: if flag = enc then S2 ← g(S2)⊕ zpn ◦ ozpb(Di) end if
6: if flag = dec then S2 ← g(S2)⊕ zpn ◦ ozpb(D′i) end if
7: end for
8: D′ ← D′1‖ · · · ‖D′m; T ← MMM.TagGenEK(N, dM , S1, S2) . Algorithm 5
9: return (D′, T)

Algorithm 5 MMM.TagGenEK
Input: N, dM , S1, S2
Output: T
1: for i = 1, . . . , w do
2: S2 ← EK(S1‖fR(dM , N, i− 1), S2); S1 ← S1 ⊕k1 S2; Ti ← S2 ⊕b K3
3: end for
4: T ← msbτ (T1‖ · · · ‖Tw); return T

88 MMM: Authenticated Encryption with Minimum Secret State for Masking

3.1 Specification of MMM

The specification of MMM.Enc which is an encryption of MMM is given in Figure 3 and
Algorithm 1. The specification of MMM.Dec which is a decryption of MMM is given in
Figure 2. Algorithms 3, 4 and 5 are subroutines of MMM.Enc and MMM.Dec. Algorithm 3
shows MMM.Hash that processes AD. Algorithm 4 shows MMM.Main that encrypts (resp.
decrypts) a plaintext (resp. a ciphertext). Algorithm 5 shows MMM.TagGen that generates
a tag.

Let b be the size of plaintext and tag blocks, w the block size of tags, and τ := wb
the tag size. Let k be the key size of MMM such that n ≤ k ≤ 2n. Let K ∈ {0, 1}k be a
key of MMM. In MMM, the key is partitioned into three keys: first k1-bit key K1, second
k2-bit key K2, and third b-bit key K3 such that k = k1 + k2 + b, n = k2 + b, and k1, k2 ≥ 0.
Let v be the size of a counter space. Then, the sets of MMM are defined as K := {0, 1}k,
A := {0, 1}≤nv,M = C := {0, 1}≤b(v−1), and T := {0, 1}τ .

For an integer i ≥ 0 and X ∈ {0, 1}j , let msbi(X) (resp. lsbi(X)) be the most (resp.
least) significant i-bit part of X. For an integer l ≥ 0 and bit strings X,Y such that |X| ≥ l
and |Y | ≥ l, let X⊕lY := msbl(X)⊕msbl(Y). Note that if |X| = |Y | = l, then l is omitted.
Let ozpi and zpi be respectively one-zero and zero padding functions where forX ∈ {0, 1}≤i
ozpi(X) = X and zpi(X) = X if |X| = i; ozpi(X) = X‖10i−|X|−1 and zpi(X) = X‖0i−|X|
if |X| < i. Let “◦” be a function composition where zpi ◦ ozpj(X) = zpi(ozpj(X)). For
an integer l ≥ 0 and a bit string X, (X1, . . . , X`)

l←− X means the parsing into fixed-length
l-bit strings, where if X 6= ε then X = X1‖ · · · ‖X`, |Xi| = l for i ∈ [`−1], and 0 < |X`| ≤ l;
if X = ε then ` = 1 and X1 = ε.

Let g : {0, 1}n → {0, 1}n be a state-update function such that for the equation
X ⊕ g(X) = Y with two n-bit variables X and Y , if Y is fixed, then the equation offers a
unique solution for X. Let fR : [4]0 ×N × [v − 1]0 → {0, 1}t−k1 be an injective function
parameterized by a value R that takes a tuple of domain separation, nonce, and counter,
where R is uniquely fixed for each user. Hence, fR requires the condition 2t−k1 ≥ 5×|N |×v.
An example of the function is that for a domain separation ds, a nonce N , and a counter
ctr such that |(N‖ctr)| = |R|, fR(ds,N, ctr) := ds‖((N‖ctr)⊕R), where each value is seen
as a bit-string. In the single-user setting, R can be fixed to a constant such as all 0 bits. In
the multi-user setting, R is chosen uniformly at random from {0, 1}|R|. The definitions of
domain separation are given in step 2 of MMM.Hash and step 2 of MMM.Main. In step 2
of MMM.Hash, a domain separation value dA is defined as dA = 1 if A 6= ε and the last
AD block satisfies |Aa| mod n = 0; dA = 2 else. In step 2, a domain separation value dM
is defined as dA = 3 if M 6= ε and the last plaintext (resp. ciphertext) block satisfies
|Mm| mod n = 0 (resp. |Cm| mod n = 0); dA = 4 else.

MMM keeps a secret state of k bits and a secret value of b bits. The k-bit state is
divided into two parts: k1-bit part and n-bit one, where n = k2 + b. The k1-bit (resp.
n-bit) part is initialized by the first key K1 (resp. the second and third keys K2‖K3).
Then the state is updated by iterating a BC and taking a data block. Each BC call takes
a state value and a tuple of domain separation, nonce, and counter via the function fR.

In MMM.Enc (resp. MMM.Dec), (1) AD A is processed by the hash function MMM.Hash,
where A is partitioned into n-bit blocks and each data block is injected into the n-bit
secret state, (2) a plaintext M (resp. a ciphertext C) is processed by the main function
MMM.Main, where M/C is partitioned into b-bit blocks, each data block is injected into
the n-bit state and encrypted (resp. decrypted), and (3) a tag is defined by the tag
generation function MMM.TagGen. In MMM.Dec, the generated tag T is compared with
the inputted tag T ′. If T = T ′ then it returns the plaintext and otherwise reject.

In Appendix A, we give a figure of MMM with the conditions k1 = n, b = n, and
τ = 2n, which MMM-64 satisfies.

Yusuke Naito, Yu Sasaki, and Takeshi Sugawara 89

3.2 Design of MMM
This section describes our design approach for MMM. Let s be the bit-security goal.

MMM is defined to have the minimum memory size keeping secret values. The minimum
size is s+ b bits, where the s-bit and b-bit secret memories are respectively required to
ensure s-bit security and to encrypt a b-bit plaintext block. Our mode is designed to
iterate a BC sequentially to achieve the minimum memory size. In particular, it uses no
memory other than that required for BC computations.

In MMM, the s-bit secret state is initialized by the secret key and then updated by
iterating the BC. The BC’s block size n must be less than or equal to MMM’s key size
k (= s) as the state of the BC’s round function is secret. If k1(= k − n) > 0, then each
BC call takes the remaining k1-bit secret as a part of the key element. For preventing an
attack using a collision of the secret state, the k1-bit secret state is updated by using the
BC’s output. Hence, for each BC call, MMM updates the k-bit state.

In the hash function MMM.Hash that processes AD blocks, no state is outputted, and
the whole of BC’s output block can be used for processing AD blocks Ai. Thus the length of
AD blocks is n bits. In the main procedure MMM.Main that processes plaintext/ciphertext
blocks, a b-bit value of BC’s output is used to encrypt/decrypt a plaintext/ciphertext block
Mi/Ci. To keep the whole s-bit state secret, the b-bit value is hidden by XORing with a
b-bit part of the secret key K3. Similarly, in the tag-generation procedure MMM.TagGen,
each tag block Ti is defined by XORing the b-bit part of BC’s output with K3. Hence, K3
is kept in these procedures, and the total secret memory size of MMM is s+ b bits.

In MMM.Main, each BC’s output is updated by using the state-update function g. If
the function is not used, i.e., g is an identity map, then for each BC call, the b-bit part of
BC’s input block is Ci ⊕K3 and is unaffected by the previous BC’s output. As ciphertext
blocks are under the adversary’s control, one cannot rely on the b-bit part for ensuring the
authenticity of MMM, reducing the security level to s − b bits. On the other hand, the
function g ensures that for each BC call, the BC’s input block is affected by the previous
(randomized) BC’s output, ensuring the s-bit security regarding authenticity.

Finally, in MMM, each BC call takes a tuple of domain separation, nonce, and counter.
The tuple ensures that BC’s key elements defined in the encryption of MMM are all distinct.
Thus, one can ensure that ciphertext and tag blocks defined in the encryption are all
independently drawn and the s-bit privacy is ensured.

3.3 mu-AE Security of MMM in the z-Bound Model
We first define the z-bound model [HTT18].

Definition 1 (z-bound model). Let L(ν) be the set of the least significant (t−k1)-bit parts
of key element of BC defined in encryption queries to the ν-th user. For V ∈ {0, 1}t−k1 ,
if V ∈ L(ν) then L(ν)[V] := 1; otherwise L(ν)[V] := 0. We say that an adversary is
z-repeating if ∀V ∈ {0, 1}t−k1 :

∑
α∈[ν] L

(ν)[V] ≤ z. This means that the same (t− k1)-bit
key element of BC is repeated at most z times in encryption queries to different users. We
stress that the bound only holds for encryption queries and there is no such restriction on
decryption queries. The single-user setting corresponds to z = 1. �

We then show the mu-AE-security of MMM in the z-bound and ideal cipher models.

Theorem 1 (mu-AE-Security of MMM). For any nonce-respecting and z-repeating adver-
sary A, we have

Advmu-ae
MMM(A) ≤ 4zσE

2k + 4(z + k)σD
2τ + 10w2zp

2k ,

where σE is the number of IC calls in encryption queries, σD is the number of IC calls in
decryption queries, p is the number of offline queries, and w is be the block size of tags. �

90 MMM: Authenticated Encryption with Minimum Secret State for Masking

The bound shows that when τ = k, k and z are negligible in the bound,5 the bound
shows that MMM is mu-AE-secure up to 2k query complexity, meaning the security is
ensured as long as σE � 2k, σD � 2k, and p� 2k.

3.4 Overview of Proof of Theorem 1
In this proof, we consider the following bad events.

• bad1: a collision occurs in IC’s inputs defined by encryption queries.
• bad2: a collision occurs between IC’s inputs in encryption and decryption queries.
• bad3: a collision occurs between offline query-response tuples and IC’s input-output

tuples defined by encryption queries.
• bad4: a tag is forged at some decryption query.

We first assume that these bad events do not occur. Regarding the privacy of MMM.Enc,
i.e., the indistinguishability between the encryption oracles in the real and ideal worlds, bad1
ensures that IC’s outputs in encryption queries are independently defined. bad3 ensures
that the outputs are defined independently of offline query-response tuples. Hence, b-bit
output blocks of MMM.Enc can be seen as random values. Consequently, the encryption
oracles in the real and ideal worlds are indistinguishable. Regarding the authenticity of
MMM.Dec, i.e., the indistinguishability between the decryption oracles in the real and
ideal worlds, bad4 ensures that all responses from MMM.Dec are reject, and thus the
decryption oracles are indistinguishable. Hence, the real-world and ideal-world oracles are
indistinguishable. Note that the bad2 is not used in the above evaluation but is used for
evaluating Pr[bad4]. Therefore, the mu-AE-security advantage of MMM is bounded by the
sum of the probabilities for the bad events.

Regarding bad1, bad2, and bad3, these events consider collisions with IC’s inputs defined
in online queries. Each IC’s input is defined by the previous state in MMM, which is
randomized by the previous IC’s outputs and the user’s key. Hence, the k-bit part of each
IC’s input is a random value. Using the randomness and the parameter z, we obtain the
upper-bounds Pr[bad1] ≤ O(zσE/2k), Pr[bad2] ≤ O(zσE/2k), and bad3 ≤ O(zp/2k).

Regarding bad4, assuming bad2 does not occur, an adversary cannot use outputs from
the encryption oracles. Then, for each decryption query, we have only to consider the two
cases: (1) a tag is defined independently of offline query-response tuples; (2) a tag depends
on some offline query-response tuples. In case (1), each tag can be seen as an (almost) τ -bit
random value, and the probability of forging some tag is O(qD/2τ) where qD is the number
of decryption queries. In case (2), fixing a decryption query, an adversary recovered the
tag before the decryption query, and the probability of forging the tag is bounded by that
of recovering the tag by offline queries. The probability can be upper-bounded by using a
multi-collision technique for tag candidates obtained from offline query-response tuples.
Using the technique, the probability of forging a tag in some decryption query is bounded
by O(kσD/2τ).

Combining these bounds, we obtain the upper-bound of the advantage function
O(zσE/2k + kσD/2τ + zp/2k).

4 Proof of Theorem 1
Without loss of generality, we assume that an adversary is deterministic, makes no repeated
online query to the same user, and makes no repeated offline query.

5If the whole part of N‖ctr is randomized such as fR(ds, N, ctr) := ds‖((N‖ctr)⊕R) and |N‖ctr| is
about k bits, we can have z = O(k/ log2 k) by using the multi-collision analysis such as [JLM+19].

Yusuke Naito, Yu Sasaki, and Takeshi Sugawara 91

4.1 Deriving the Upper-Bound using Coefficient H Technique
Our proof uses the coefficient H technique [Pat08]. In this technique, we can analyze bad
events in the ideal world, and thus make proofs simple. Let TR be a transcript in the real
world obtained by random samples of user’s keys and an IC. Let TI be a transcript in
the ideal world obtained by random samples of random-bit oracles, an IC, and additional
values defined later. For a transcript τ , an adversary’s view (or information obtained)
in the security game, we call τ a valid transcript if Pr[TI = τ] > 0. Let T be the set of
all valid transcripts such that ∀τ ∈ T : Pr[TR = τ] ≤ Pr[TI = τ]. Then, the advantage
function Advmu-ae

MMM(A) is upper-bounded by the statistical distance SD(TR,TI) as follows.

Advmu-ae
MMM(A) ≤ SD(TR,TI) :=

∑
τ∈T

(Pr[TI = τ]− Pr[TR = τ]) .

Using the following lemma, we can derive the upper-bound of Advmu-ae
MMM(A).

Lemma 1. Let Tgood and Tbad be respectively the sets of good transcripts and of bad
ones into which T is partitioned. For good transcripts Tgood and bad transcripts Tbad, if
∀τ ∈ Tgood : Pr[TR=τ]

Pr[TI=τ] ≥ 1− ε s.t. 0 ≤ ε ≤ 1, then SD(TR,TI) ≤ Pr[TI ∈ Tbad] + ε. �

In the following proof, we (1) partition T into Tgood and Tbad (Sect. 4.7); (2) upper-
bound Pr[TI ∈ Tbad] (Eq. (1) in Sect. 4.8); and (3) lower-bound Pr[TR=τ]

Pr[TI=τ] for any τ ∈ Tgood

(Eq. (8) in Sect. 4.9). We finally obtain the mu-AE-security bound in Theorem 1.

4.2 Lazy Sampling for IC.
In this proof, an IC’s encryption E and decryption E−1 are realized by lazy sampling. Let
E be a table that is initially empty and keeps query-response tuples of E or E−1. Let
Ec[Z] := {Y | (Z,X, Y) ∈ E} and Ep[Z] := {X | (Z,X, Y) ∈ E} be tables that respectively
keep ciphertext (resp. plaintext) elements in tuples with the key element Z defined in E.
For a forward query (Z,X) to E (resp. inverse query (Z, Y) to E−1), the response Y (resp.
X) is defined as Y $←− {0, 1}n\Ec[Z] (resp. Y $←− {0, 1}n\Ep[Z]), and the query-response
tuple (Z,X, Y) is added to E: E ∪←− {(Z,X, Y)}.

4.3 Definition
Let u be the maximum number of users. Let q, qE , and qD be the total number of online,
forward, and inverse queries, respectively. The 1st through qE -th (resp. (qE +1)-th through
q-th) online queries are assigned to encryption (resp. decryption). Hence, α-th encryption
(resp. decryption) query is said to be the α-th (resp. (qE + α)-th) online query. Note
that this assignment defines just online-query numbers, and does not restrict the order of
adversary’s queries.

For α ∈ [q], values defined at the α-th online query are denoted by using the superscript
of (α), and the lengths a and m at the α-th online query are denoted by aα and mα. Let
`α := aα +mα + w − 1 be the number of IC calls in the α-th online query. Let να be the
user number of the α-th online query. Note that K(α) = Kνα . Let (W (α)

i , U
(α)
i , V

(α)
i) be

an input-output tuple of an i-th IC call defined in an α-th online query.
For β ∈ [p], the β-th offline query-response tuple is denoted by (Z(β), X(β), Y (β)), where

Y (β) = E(Z(β), X(β)) for a forward query and X(β) = E−1(Z(β), Y (β)) for an inverse query.
Let Qoff be the set of offline query-response tuples.

Hereafter, We call a period from the start of the game to the end of A’s queries “query
phase”, and a phase after finishing A’s queries “decision phase”. In the decision phase,
dummy internal values are defined in the ideal world (defined below).

92 MMM: Authenticated Encryption with Minimum Secret State for Masking

E

fR(dM,N,0) ⊕

E

fR(dM,N,i-1)⊕

E

fR(dM,N,w-1)

E

fR(dM,N,i-2)⊕

E

fR(dM,N,i) ⊕

X(α) Y(α)

Z(α)

defined by inverse queries defined by forward queries

Figure 4: Tag-search queries. (Z(α), X(α), Y (α)) is the input-output tuple at the i-th IC
call. The input-output tuples from the (i − 1)-th down to 1st (resp. from (i + 1)-th to
w-th) IC calls are defined by inverse (resp. forward) queries. Note that if i = 1 (resp.
i = w) then the input-output tuples are defined by only forward (resp. inverse) queries.

4.4 Additional Queries
In this proof, we allow A to obtain the following offline query-response tuples in addition
to the standard offline query-response ones.

• Full-block queries. To ensure the randomnesses of the outputs of E or E−1, we
use the technique given in [AFK+11]. In the query stage, for a key element Z of
E, after making s offline queries with Z, we permit A to obtain the remaining
input-output tuples of E with Z, i.e., A obtains all input-output tuples with Z.
The additional queries, which we call full-block queries, ensure that the outputs
of E or E−1 are chosen uniformly at random from roughly 2n − s elements in
{0, 1}n. Specifically, fixing Y ∗, for a full-block query (Z,X), the probability that
the output Y is equal to Y ∗ is (2n − s− 1)!/(2n − s)! = 1/(2n − s). Without loss of
generality, the full-block queries are forward ones. We choose the parameter s such
that (s+ 1)/2n = 1/(w + 1) (⇔ s = 2n/(w + 1)− 1).

• Tag-search queries. In the query stage, we permit A to obtain offline query-
response tuples with the structure of MMM.TagGen. After an offline query-response
tuple (Z(α), X(α), Y (α)) is defined, if for some dM ∈ [3, 4] and i ∈ [w], lsbt−k1(Z(α)) =
fR(dM , N, i− 1), then it is regarded as the i-th input-output block of MMM.TagGen
and A obtains the remaining w− 1 input-output blocks defined by forward or inverse
queries. See Fig. 4. The tag-search queries are useful for evaluating the probability
of forging a tag. By the tag-search queries, for each decryption query, we have only
to consider two cases that all input-output tuples that defines the tag are in Qoff or
not.

Let pfb be the number of offline queries including the full-block ones, and padd the total
number of offline query-response pairs including the full-block and tag-search queries.
Then, we have pfb ≤ (w + 1)p and padd ≤ w(w + 1)p.

4.5 Revealing User’s Keys and Internal Values
In the decision phase, the proof permits A to obtain all user’s keys and all BC’s outputs
defined by online queries. In the ideal world, these values are defined by Algorithm 6.
In the algorithm, firstly, dummy user’s keys K1, . . . ,Ku are defined. Secondly, for each
α ∈ [qE], dummy internal input-output tuples for the α-th online (or encryption) query are
defined so that the tuples are consistent with the ciphertext and tag. Dummy input-output
tuples corresponding with A(α) are defined by performing MMM.HashEK(α)(N (α), A(α)).
Then input-output tuples corresponding with C(α) are defined in Steps 9-14. In these steps,
the most significant b-bit part of (aα + i − 1)-output block V (α)

aα+i−1 is defined by using
K

(α)
3 , M (α)

i , and C(α)
i according to the structure of MMM.Main and the remaining n−b-bit

Yusuke Naito, Yu Sasaki, and Takeshi Sugawara 93

Algorithm 6 Dummy Internal Values in the Ideal World
Input:

• Online query-response tuples (N (α), A(α),M (α), C(α), T (α)) where α ∈ [qE]
• Online query-response tuples (N (α), A(α), C(α), T ′(α), RV (α)) where α ∈ [qE+1, q]

and RV (α) ∈ {reject,M (α)}
Output:

• Dummy user’s keys Ki where i ∈ [u]

• Dummy input-output tuples of IC in online queries (W (α)
i , U

(α)
i , V

(α)
i) where

α ∈ [q], i ∈ [`α]
1: // Dummy keys
2: for i ∈ [u] do Ki

$←− {0, 1}k
3: // Dummy internal values of MMM.Enc
4: for α ∈ [qE] do
5: (S1, S2)← MMM.HashEK(α)(N (α), A(α))
6: for i ∈ [aα − 1] do
7: (W (α)

i , U
(α)
i , V

(α)
i)← the input-output tuple at the i-th IC call of

MMM.HashEK(α)(N (α), A(α))
8: end for
9: for i ∈ [mα] do
10: U

(α)
aα+i−1 ← S2; W (α)

aα+i−1 ← S1‖fR(d(α)
A , N (α), i− 1)

11: Tmp
$←− {0, 1}n−|M

(α)
i
|; S2 ← V

(α)
aα+i−1 ←

(
K

(α)
3 ⊕|M(α)

i
|M

(α)
i ⊕ C(α)

i

)
‖Tmp

12: E ∪←− {(W (α)
aα+i−1, U

(α)
aα+i−1, V

(α)
aα+i−1)}

13: S1 ← S1 ⊕k1 S2; S2 ← g(S2)⊕ zpn ◦ ozpb(M
(α)
i)

14: end for
15: for i ∈ [w] do
16: U

(α)
aα+mα+i−1 ← S2; W (α)

aα+mα+i−1 ← S1‖fR(d(α)
M , N (α), i− 1)

17: Tmp
$←− {0, 1}n−b; S2 ← V

(α)
aα+mα+i−1 ←

(
K

(α)
3 ⊕|T (α)

i
| T

(α)
i

)
‖Tmp

18: E ∪←− {(W (α)
aα+mα+i−1, U

(α)
aα+mα+i−1, V

(α)
aα+mα+i−1)}; S1 ← S1 ⊕k1 S2

19: end for
20: end for
21: // Dummy internal values of MMM.Dec
22: for α ∈ [qE + 1, q] do
23: for i ∈ [`α] do
24: (W (α)

i , U
(α)
i , V

(α)
i)← the input-output tuple at the i-th IC call

of MMM.DecEK(α)(N (α), A(α), C(α), T ′(α))
25: end for
26: end for
27: return (K1, . . . ,Ku, (W (1)

1 , U
(1)
1 , V

(1)
1), . . . , (W (q)

`q
, U

(q)
`q
, V

(q)
`q

))

94 MMM: Authenticated Encryption with Minimum Secret State for Masking

value is randomly chosen, and the obtained tuple is added to the IC’s table E in Step 12.
Thirdly, input-output tuples corresponding with T (α) are defined in Steps 15-19 according
to the structure of MMM.TagGen. Finally, dummy input-output values for decryption
queries are defined by performing MMM.DecEK(α)(N (α), A(α), C(α), T ′(α)) in Steps 22-26.

4.6 Adversary’s View
The adversary’s view is summarized in a transcript τ , which consists of

• user’s keys Ki where i ∈ [u],

• online query-response tuples (N (α), A(α),M (α), C(α), T (α)) where α ∈ [qE],

• online query-response tuples (N (α), A(α), C(α), T ′(α), RV (α)) where α ∈ [qE + 1, q]
and RV (α) ∈ {reject,M (α)} is the response to the α-th online query,

• (dummy) input-output tuples of IC in online queries (W (α)
i , U

(α)
i , V

(α)
i) where α ∈

[q], i ∈ [`α], and

• offline query-response tuples (Z(α), X(α), Y (α)) where α ∈ [padd].

4.7 Good and Bad Transcripts
We define the following four bad events. bad1 is that a collision in IC’s inputs defined by
encryption queries occurs. bad2 is that a collision between IC’s inputs in encryption and
decryption queries occurs. bad3 is that a collision between primitive and encryption queries
occurs.6 bad4 is that a tag is forged at some decryption query. The formal definitions of
the bad events are given below.

• bad1: ∃α, β ∈ [qE], i ∈ [`α], j ∈ [`β] s.t. (α, i) 6= (β, j)∧
(

(W (α)
i , U

(α)
i) = (W (β)

j , U
(β)
j)∨

(W (α)
i , V

(α)
i) = (W (β)

j , V
(β)
j)

)
.

• bad2: ∃α ∈ [qE], β ∈ [qE + 1, q], i ∈ [`α], j ∈ [`β] s.t. (α, i) 6= (β, j) ∧ (W (α)
i , U

(α)
i) 6=

(W (β)
j , U

(β)
j) ∧ (W (α)

i+1, U
(α)
i+1) = (W (β)

j+1, U
(β)
j+1).

• bad3: ∃α ∈ [qE], β ∈ [p], i ∈ [`α] s.t. (W (α)
i , U

(α)
i) = (Z(β), X(β)) ∨ (W (α)

i , V
(α)
i) =

(Z(β), Y (β)).

• bad4: ∃α ∈ [qD + 1, q] s.t. T (α) = T ′(α).

Let bad := bad1 ∨ bad2 ∨ bad3 ∨ bad4. We define bad transcripts Tbad that satisfy one of
the above events and good ones by Tbad := T \Tbad.

4.8 Analysis for Bad Transcripts
Without loss of generality, assume that an adversary aborts if one of the bad events occurs.
Hence, for i ∈ [4], Pr[badi] is the probability that badi occurs as long as the other events
have not occurred. Then, Pr[TI ∈ Tbad] is upper-bounded as follows.

Pr[TI ∈ Tbad] ≤ Pr[bad1] + Pr[bad2] + Pr[bad3] + Pr[bad4] .

6Note that a collision between decryption and primitive queries is evaluated in an evaluation of bad4.

Yusuke Naito, Yu Sasaki, and Takeshi Sugawara 95

These probabilities are upper-bounded by Eqs. (2), (3), (4), and (5), as we will evaluate in
the following subsections. Using these bounds, we have

Pr[TI ∈ Tbad] ≤ 4zσE
2k + 4zσD

2k + 2w(w + 1)zp
2k + 6wp

2k + 2kσD
2τ

≤ 4zσE
2k + 4(z + k)σD

2τ + 10w2zp

2k . (1)

4.8.1 Bounding Pr[bad1]

For any α, β ∈ [qE], i ∈ [`α], and j ∈ [`β] such that να = νβ and i 6= j, W (α)
i 6= W

(β)
j

is satisfied due to tuples of domain separation, nonce, and counter. We thus consider
α, β ∈ [qE] such that α < β and να 6= νβ .

Fix α, β ∈ [qE], i ∈ [`α], and j ∈ [`β] such that α < β, να 6= νβ , and lsbt−k1(W (α)
i) =

lsbt−k1(W (β)
j). As msbk1(W (α)

i) and msbk1(W (β)
j) are respectively defined by using K(α)

1

and K(β)
1 which are independent, we have Pr[msbk1(W (α)

i) = msbk1(W (β)
j)] ≤ 1/2k1 . For

some data block D ∈ {0, 1}n U (β)
j = g(V (β)

j−1) ⊕ D is satisfied, and by the randomness
of V (β)

i−1 that is chosen from at least 2n − s elements in {0, 1}n, we have Pr[U (α)
i =

U
(β)
j] ≤ 1/(2n − s) ≤ 2/2n. Similarly, we have Pr[V (α)

i = V
(β)
j] ≤ 1/(2n − s) ≤ 2/2n.

In the z-bound model, the number of pairs (β, j) ∈ [qE] × [`β] such that να 6= νβ and
lsbt−k1(W (α)

i) = lsbt−k1(W (β)
j) is at most z. We thus have

Pr[bad1] ≤
∑
α∈[qE]

∑
i∈[`α]

4z
2n+k1

= 4zσE
2k . (2)

4.8.2 Bounding Pr[bad2]

Fix α ∈ [qE], β ∈ [qE + 1, q], i ∈ [`α], j ∈ [`β] s.t. (α, i) 6= (β, j) ∧ (W (α)
i , U

(α)
i) 6=

(W (β)
j , U

(β)
j). Then we evaluate the collision probability Pr[(W (α)

i+1, U
(α)
i+1) = (W (β)

j+1, U
(β)
j+1)].

(W (α)
i+1, U

(α)
i+1) and (W (β)

j+1, U
(β)
j+1) are defined by using the previous output blocks. In the

β-th online query, the previous output blocks of (W (β)
j+1, U

(β)
j+1) are chosen uniformly at

random from at least 2n − s− 1 elements in {0, 1}n. Using the randomness, we have

Pr[U (α)
i+1 = U

(β)
j+1] ≤ 1

2n − s− 1 ≤
1

2n(1− (s+ 1)/2n ≤
1

2n(1− 1/(w + 1)) ≤
2
2n ,

Pr[W (α)
i+1 = W

(β)
j+1] ≤ 2n−k1

2n − s− 1 ≤
2 · 2n−k1

2n = 2
2k1

.

Hence, we have

Pr[(W (α)
i+1, U

(α)
i+1) = (W (β)

j+1, U
(β)
j+1)] ≤ 2

2n ·
2

2k1
= 4

2k .

Since A is a nonce-respecting and z-repeating adversary, for each β ∈ [qE + 1, q], the
number of such α ∈ [qE] is at most z. Using the bound, we have

Pr[bad2] ≤
∑

α∈[qE+1,q]

∑
i∈[`α]

4z
2k ≤

4zσD
2k . (3)

96 MMM: Authenticated Encryption with Minimum Secret State for Masking

4.8.3 Bounding Pr[bad3]

Fix α ∈ [qE], i ∈ [`α] and β ∈ [padd] such that lsbt−k1(W (α)
i) = lsbt−k1(Z(β)), and evaluate

the collision probability Pr[(W (α)
i , U

(α)
i) = (Z(β), X(β)) ∨ (W (α)

i , V
(α)
i) = (Z(β), Y (β))].

Then we have Pr[msbk1(W (α)
i) = msbk1(Z(β))] ≤ 1/2k1 as msbk1(W (α)

i) is defined by using
K

(α)
1 ; Pr[U (α)

i = X(β)] ≤ 1/2n by using the randomness of V (α)
i−1 (chosen from {0, 1}n) and

the relation U (α)
i = g(V (α)

i−1)⊕D for the i-th data block D; and Pr[V (α)
i = Y (β)] ≤ 1/2n

by using the randomness of V (α)
i (chosen from {0, 1}n). In the z-bound model, for each

β ∈ [padd], the number of pairs (α, i) such that lsbt−k1(W (α)
i) = lsbt−k1(Z(β)) is at most z.

Hence we have

Pr[bad3] ≤
∑

β∈[padd]

2z
2n+k1

= 2zpadd
2k ≤ 2w(w + 1)zp

2k . (4)

4.8.4 Bounding Pr[bad4]

We first give the following definition. The definition considers sequences of offline-query
response tuples relevant to MMM.TagGen. The definition is useful for evaluating the
probability of forging a tag. By tag-search queries, for each decryption query, we have only
to consider the two cases that a sequence of input-output tuples that defines the tag are in
Qoff or not. The definition is used to evaluate the former case.

Definition 2 (Tag-candidate sequence). {(Z1, X1, Y1), . . . , (Zw, Xw, Yw)} ∈ (Qoff)w is a
tag-candidate sequence if for some K∗ ∈ {0, 1}k, S∗1 ∈ {0, 1}k1 , S∗2 ∈ {0, 1}n, and N∗ ∈ N ,
these tuples are internal input-output tuples of E in MMM.TagGenEK∗(N∗, S∗1 , S∗2), i.e.,

• ∃N∗ ∈ N , dM ∈ [3, 4] s.t. ∀i ∈ [w] :
msbk1(Zi) = msbk1(Z1)⊕k1

(⊕
j∈[i−1] Yj

)
∧ lsbt−k1(Zi) = fR(dM , N∗, i− 1), and

• ∀i ∈ [w − 1] : Xi+1 = Yi.

Let STagCan ⊆ (Qoff)w be the set of all tag-candidate sequences. Let φ : STagCan → ({0, 1}b)w
be a function that for an input T = {(Z1, X1, Y1), . . . , (Zw, Xw, Yw)} ∈ STagCan returns
(msbb(Y1), . . . ,msbb(Yw)). Let [φ(T)]i := msbb(Yi) be the i-th element of φ(T). �

Note that by tag-search queries, we have |STagCan| ≤ pfb ≤ (w + 1)p. In this evaluation,
we use the following µ-multi-collision event for the function φ such that µ := 2k−(τ−b)k.

• mcoll : ∃T ∗1 , . . . , T ∗w ∈ {0, 1}b, T1, . . . , Tµ ∈ STagCan s.t.
∀i ∈ [µ] : [φ(Ti)]1 ⊕ T ∗1 = · · · = [φ(Ti)]w ⊕ T ∗w.

Note that for a decryption query, if all input-output tuples that define the tag are in
Qoff (Event E2 in the following evaluation), then there exists T ∈ STagCan such that
[φ(T)]1 ⊕ T ′(α)

1 = · · · = [φ(T)]w ⊕ T ′(α)
w = K

(α)
3 . Assuming mcoll does not occur, the

probability that T (α) = T ′(α) is satisfied with the event E2 can be upper-bounded by the
probability that the internal state connects with one of the µ-multi-collision elements.

Using the multi-collision event, we have

Pr[bad4] ≤ Pr[mcoll] + Pr[bad4|¬mcoll] .

These probabilities are evaluated in the following and the bounds are given in Eqs. (6)
and (7). The bounds offer the following bound.

Pr[bad4] ≤
(

6w2

k
· p2k

)k
+ 2kσD

2τ . (5)

Yusuke Naito, Yu Sasaki, and Takeshi Sugawara 97

Bounding Pr[mcoll]. We first show the following lemma.
Lemma 2. ∀T ∗1 , . . . , T ∗w ∈ {0, 1}b, T ∈ STagCan : Pr[[φ(T)]1 ⊕ T ∗1 = · · · = [φ(T)]w ⊕ T ∗w] ≤
w/2τ−b. �
Proof. Fix T ∗1 , . . . , T ∗w ∈ {0, 1}b, T ∈ STagCan, and evaluate the probability Pr[[φ(T)]1 ⊕
T ∗1 = · · · = [φ(T)]w ⊕ T ∗w]. Let T := {(Z1, X1, Y1), . . . , (Zw, Xw, Yw)}. Assume that a j-th
input-output tuple (Zj , Xj , Yj) is defined before the others in T are defined. If the query
for the j-th input-output block is a forward (resp. inverse) one, then the randomness of
Xj (= Yj−1) (resp. Yj) cannot be used but the other outputs in T can be used, and we
thus have Pr[msbb(Yi)⊕T ∗i = msbb(Yj−1)⊕T ∗j−1] ≤ 2n−b/(2n− s) for each i ∈ [w]\{j− 1}
(resp. Pr[msbb(Yi) ⊕ T ∗i = msbb(Yj) ⊕ T ∗j] ≤ 2n−b/(2n − s) for each i ∈ [w]\{j}). Using
the bounds, we have

Pr[[φ(T)]1 ⊕ T ∗1 = · · · = [φ(T)]w ⊕ T ∗w]

≤
(

1
2b(1− s/2n)

)w−1
≤ 1

(1− 1
w+1)w−1 ·

1
2(w−1)b ≤

1
1− w−1

w+1
· 1

2τ−b ≤
w

2τ−b .

Using the above lemma, we have

Pr[mcoll] ≤
∑

T∗1 ,...,T
∗
w∈{0,1}b,T1,...,Tµ∈STagCan

Pr[∀i ∈ [µ] : [φ(Ti)]1 ⊕ T ∗1 = · · · = [φ(Ti)]w ⊕ T ∗w]

≤ 2τ
(
pfb
µ

)(w

2τ−b
)µ
≤ 2τ ·

(
ewpfb
µ2τ−b

)µ
≤
(

6w2

k
· p2k

)k
≤ 6wp

2k , (6)

using Stirling’s approximation (x! ≥ (x/e)x for any x).

Bounding Pr[bad4|¬mcoll]. First fix α ∈ [qE + 1, q] and evaluate Pr[T (α) = T ′(α)]. We
consider the following two events.
• E1: All input-output tuples that define the tag T (α) are new, that is, ∀i ∈ [w] :

(W (α)
`α−i+1, U

(α)
`α−i+1, V

(α)
`α−i+1) 6∈ Qoff .

• E2: All input-output tuples that define the tag T (α) have been defined by offline queries,
that is, ∀i ∈ [w] : (W (α)

`α−i+1, U
(α)
`α−i+1, V

(α)
`α−i+1) ∈ Qoff .

By tag-search queries, E1 = ¬E2 is satisfied. Using these events, we have

Pr[T (α) = T ′(α)|¬mcoll] = Pr[T (α) = T ′(α) ∧ E1|¬mcoll] + Pr[T (α) = T ′(α) ∧ E2|¬mcoll]
≤ Pr[T (α) = T ′(α)|E1 ∧ ¬mcoll] + Pr[T (α) = T ′(α) ∧ E2|¬mcoll] .

These probabilities are evaluated below.
We first evaluate Pr[T (α) = T ′(α)|E1 ∧ ¬mcoll]. In this case, as bad2 does not occur,

each input (W (α)
`α−i+1, U

(α)
`α−i+1) is new, and thus we have Pr[msbb(V (α)

`α−i+1) = T
(α)
w−i+1] ≤

2n−b
2n−s ≤

1
1−1/(w+1) ·

1
2b . Using the bound, we have

Pr[T (α) = T ′(α)|E1 ∧ ¬mcoll] ≤ 1
(1− 1/(w + 1))w ·

1
2wb ≤

1
1− w/(w + 1) ·

1
2τ = w + 1

2τ .

We next evaluate Pr[T (α) = T ′(α) ∧ E2|¬mcoll]. For γ ∈ [`α − w], let E2[γ] be an
event that the γ-th input for the α-th online query is new but the following input-output
tuples (from the (γ + 1)-th to `α-th blocks) are in Qoff . Fix γ ∈ [`α − w] and evaluate
Pr[T (α) = T ′(α) ∧ E2[γ]]. By ¬mcoll, there are at most (µ− 1) tag-generation sequences
T1, . . . , Tµ−1 ∈ STagCan such that ∀i ∈ [µ − 1] : [φ(Ti)]1 ⊕ T ′(α)

1 = · · · = [φ(Ti)]w ⊕ T ′(α)
w .

Then T (α) = T ′(α) ∧ E2[γ] implies that ∃j ∈ [µ− 1] s.t.

98 MMM: Authenticated Encryption with Minimum Secret State for Masking

E

f(dM,N,0) ⊕

T1

⊕

E

f(dM,N,w-1)

Tw

⊕K3 K3

TagGen

= φ(Tj)

The input-output tuples = Tj

E ⊕

f(dA,N,r) ⊕

E

f(dA,N,r+1)⊕

Cr

K3 ⊕

Mr

zpn

⊕

⊕

Cm

K3 ⊕ zpn ozpb

⊕

⊕

Mm

g g

=

=
γ+1-th blockγ-th block

connect

r = γ-aα

The sequence with Tj

Figure 5: Event E22[γ]. The event considers the case that the internal state after the γ-th
IC call connects with the sequence with Tj , where the γ-th input-output tuple is not in Qoff .
Since Tj , the ciphertext blocks, and the tag blocks are fixed such that ∀i ∈ [w] : Ti = T

′(α)
i ,

the sequence with Tj is uniquely determined.

• E21[γ]: [φ(Tj)]1 ⊕ T ′(α)
1 = · · · = [φ(Tj)]w ⊕ T ′(α)

w = K
(α)
3 and

• E22[γ]: the state after the γ-th block connects with the sequence whose the last w
input-output tuples are equal to Tj . See Fig. 5.

For E21[γ], by the randomness of K3, we have Pr[E21[γ]] ≤ 1
2b . For E22[γ], the least

significant n-bit part of the k-bit state after the γ-th IC call is defined by using the
γ-th IC’s output, and the remaining k1-bit part is defined by using the user’s key K(α)

1 .
Since each IC’s output is chosen uniformly at random from at least 2n − s ≤ 2n−1, we
have Pr[E22[γ]] ≤ 1

2n−1 · 1
2k1 = 2

2k . Summing the bound (µ− 1) · Pr[E21[γ]] · Pr[E22[γ]] ≤
2·2k−(τ−b)k

2k+b = 2k
2τ for each γ ∈ [`α − w], we have

Pr[T (α) = T ′(α) ∧ E2|¬mcoll] ≤ (`α − w) · 2k
2τ .

Finally, summing the above bounds for each α, we obtain the following bound.

Pr[bad4|¬mcoll] ≤
∑
α∈[qD]

(
w + 1

2τ + 2k(`α − w)
2τ

)
≤
∑
α∈[qD]

2k`α
2τ = 2kσD

2τ . (7)

4.9 Analysis for Good Transcripts
We give an intuition of this analysis. The detail is given in Appendix B. This analysis
considers only good transcripts which do not satisfy the bad events. For τ ∈ Tgood, we
evaluate Pr[TR=τ]

Pr[TI=τ] .
Regarding offline queries, in both worlds, the responses are defined by an IC. Hence,

there is no difference between the real and ideal worlds.
Regarding encryption queries, by bad3 there is no collision between IC’s inputs of τ

for encryption and offline queries. By bad1 there is no input collision in IC’s inputs of τ
defined by encryption queries. The IC’s outputs of TR are defined by an IC and those of
TI are chosen uniformly at random from {0, 1}n. Hence, the probability that TR satisfies
the IC’s output in τ is grater than or equal to the one for TR.

Regarding decryption queries, by bad4, the IC’s outputs in τ are such that the responses
are all reject. Hence, we have only consider the IC’s outputs for decryption queries. In
both worlds, for each decryption query, the outputs are defined by an IC, thus there is no
difference between the real and ideal worlds.

Hence, we have
Pr[TR = τ]
Pr[TI = τ] ≥ 1 . (8)

Yusuke Naito, Yu Sasaki, and Takeshi Sugawara 99

5 Hardware Implementation
5.1 Instantiation of MMM for Implementation
We instantiate MMM-8 and MMM-64 for 128-bit security to make hardware performance
comparison with HOMA. We use the ISO-standard TBC SKINNY [BJK+16, ISO22] as
a primitive. In particular, we chose SKINNY-64/192 with a 64-bit block and 192-bit
tweakey because HOMA uses another 64-bit SKINNY variant SKINNYee [NSS22]. We
refer to SKINNY-64/192’s independently scheduled 64-bit tweakey blocks as TK1, TK2,
and TK3. We assign the 64-bit secret K1 to the simplest TK1. Meanwhile, the public value
fR(d,N, i) ∈ {0, 1}128 is stored in TK2 and TK3 concatenated.

The state-update function g : {0, 1}128 → {0, 1}128 is defined using the SKINNY’s 4-bit
LFSR function fLFSR : x3||x2||x1||x0 7→ x2||x1||x0||x3 ⊕ x2 with x3, x2, x1, x0 ∈ {0, 1}.
g is its parallel application, i.e., g : X15|| · · · ||X0 7→ fLFSR(X15)|| · · · ||fLFSR(X0) with
X15, · · · , X0 ∈ {0, 1}4. g defined as above satisfies the condition in Section 3.2, i.e., X
satisfying X ⊕ g(X) = Y is unique for a fixed Y .

HOMA is the main target for performance comparison because it is the conventional
smallest [NSS22]. We implement MMM and HOMA with the same design policy, including
fullVerif, and use the same hardware components as much as possible. We implement
HOMA by following the hardware architecture shown in the original paper [NSS22].

5.2 HPC2 Masking Scheme and Composition-based Verification
We use HPC2 as a masking scheme [CGLS21, CL20], following the previous HOMA
implementation [NSS22]. HPC2 provides security with glitches, i.e., transient signal
propagation that can break the assumptions behind some masking schemes [MMSS19].
HPC2 also offers composability with Probe Isolating Non-Interference (PINI) [CS20], which
ensures the security of a circuit composed of the HPC2 gadgets.

Although composability greatly simplifies the security analysis, additional high-level
assumptions should be satisfied for security. They include (i) fresh and independent
randomness, (ii) no additional computations than specified by the algorithm, and (iii)
no shuffling of the order of the shares. Ensuring the security with these assumptions,
Cassiers et al. proposed the composition-based verification tool fullVerif [Cas21]. The tool
receives a design in hardware description language (HDL) using special annotations and a
gadget library. FullVerif uses the source codes to construct composition graphs, through
logic synthesis and simulation, and checks the resulting graphs for security conditions.

We verify our MMM and HOMA implementations using fullVerif. There are two
additional tasks for developing the HDL codes compliant with fullVerif. First, the design
should be constructed from the verified hardware components. For this purpose, we use
the fullVerif’s component library containing basic gadgets, including AND, XOR, and
MUX. This requirement prohibits low-level optimizations, such as manually instantiating
a particular standard cell, e.g., clock gating and scan flip-flops in the previous HOMA
implementation [NSS22]. Second, we should annotate the SCA-protected modules and
their input and output ports with special directives. The annotation used for fullVerif
represents the information such as the security property, the number of shares, and data
types [Cas21].

We develop the HDL codes in the design flow in Fig. 6, wherein verification with
fullVerif is conducted after the conventional functional verification. We implement the
hardware modules in HDL using the verified component library and with annotations.
Then, we make functional verification using a logic simulator using testbench, followed by
fullVerif verification. Running fullVerif with the source codes and testbench checks the
consistency between the annotations and reports pass or fail. If fullVerif reports a failure,
we fix the HDL description based on the error messages. We repeat this development

100 MMM: Authenticated Encryption with Minimum Secret State for Masking

HW modules

Testbench

Logic
Simulation
(iverilog)

Verification

fullVerif
w/ annotation

HDL Development

Logic Synthesis
(Design Compiler)

Performance Eval.

Fail Fail

Pass Pass

Figure 6: Design and evaluation flow with fullVerif

KeySR

S-box

Rcon

4(d+1)

TK1 array

g

K3 input

 Data input State array

TK3 array

TK2 array

TK1 input

No SCA protectionTK3 input

TK2 input

Dom. sep.

0

4(d+1)

4(d+1)

4(d+1)

4(d+1) Data output

3

4

4

4

Figure 7: Datapath architecture of diagram of our MMM-8 and MMM-64 implementations

process from low-level modules to the top module while keeping the fullVerif compliance
of the finished modules. The final MMM and HOMA implementations are compliant with
fullVerif and used for performance evaluation.

5.3 Datapath Architecture
Fig. 7 shows the datapath architecture of our MMM circuit. The overall architecture follows
the previous HOMA implementation, which realizes a compact circuit area using a set of
systolic arrays that store data and modify them in place. The state array stores SKINNY’s
64-bit state and executes ShiftRows and MixColumns in place using the nibble-sliding
technique [JMPS17]. The TK1, TK2, and TK3 arrays are the other systolic arrays that
integrate the tweakey schedule. KeySR is a cyclic shift register for storing K3, and MMM-8
and MMM-64 differ only in the size of this KeySR.

We use the same S-box circuit used in the previous HOMA implementation, which is
based on Cassiers et al.’s optimized S-box representation [CL20], composed of four HPC2
AND gadgets and three pipeline stages. Since each AND gadget consumes d(d + 1)/2
bits of randomness for each operation, the S-box circuit consumes 2d(d+ 1)-bit random
number for each cycle at maximum.

TBC dominates the execution time, and single SKINNY encryption finishes in 1,050
cycles, corresponding to 131.25 cycles/byte. Here, a single SKINNY round takes 26
cycles (with 19, 3, and 4 cycles for S-box, ShiftRows, and MixColumns, respectively), and
SKINNY-64/192 is composed of 40 rounds (26× 40 = 1040 cycles).

As shown in Fig. 7, the TK2 and TK3 arrays storing the public value are unprotected

Yusuke Naito, Yu Sasaki, and Takeshi Sugawara 101

from SCA. The S-box circuit is the only place wherein the component in a share can
interact with each other, and it is implemented as described above [NSS22]. The other
secret components (the state array, TK1 array, g, and KeySR) are linear (affine), and
each component in a share is processed independently. The last-level elements of the
SCA-protected modules are always the fullVerif’s verified gadgets, and the modules are
parameterized with the protection order d.

5.4 Performance Comparison
Table 3 summarizes the post-synthesis performances of MMM-8, MMM-64, and HOMA for
the protection orders d ∈ [0, 5], shown in NAND-equivalent gate count (GE). For further
comparison, the table also shows the performance of our Romulus-N1 [IKMP20] implemen-
tation (see Appendix C for details) and the HOMA and PFB_Plus implementations in the
previous work [NSS22]. The table also shows the circuit sizes of the components preserved
during the synthesis. All the targets are evaluated using Synopsys Design Compiler and
the NanGate 45-nm standard cell library [Nan21].

As a result, MMM-8 and MMM-64 are smaller than HOMA for all d ∈ [0, 5]. As
summarized in Table 1, MMM-8, MMM-64 and HOMA use 192(d+1)+256, 136(d+1)+128,
and 192(d+1)+128 bits of memory, respectively. In other words, MMM-8 (resp. MMM-64)
is smaller by 56d + 184 (resp. 128) bits compared with HOMA, which results in the
smaller circuit area. The circuit area of each component in Table 3 further verifies that
the difference comes from the memory elements for storing the secret-key elements. With
d = 5, for example, MMM-8 is smaller than HOMA by 3, 222 (= 17, 261 − 14, 039) GE,
which mostly comes from those in TK1 and KeySR: MMM-8 and HOMA use (3, 275 + 390)
and (549 + 5, 720) GE for these components, respectively.

The Romulus-N1 implementation uses large circuit area by the two reasons. First,
Romulus-N1 needs 120(d + 1)-bit (resp. 64(d + 1)-bit) more memory compared with
MMM-8 (resp. MMM-64), as summarized in Table 1. Second, Romulus-N1 use the 8-bit
SKINNY S-box comprising 8 AND gadgets, which is more costly than the 4-bit SKINNY
S-box with only 4 AND gadgets. Although our Romulus-N1 has room for reducing a
register by 64 bits (256–448 GE, see Appendix C), the advantages of MMM-8 and MMM-64
are more significant.

Table 3 also shows the performance of the conventional HOMA and PFB_Plus im-
plementations [NSS22]. Our HOMA implementation is larger than the previous one for
d > 0, which is caused by not using low-level optimizations for fullVerif in all of the designs
in comparison. In particular, without clock gating, an additional MUX is necessary for
realizing a register with enable, which increases the per-bit cost of a memory. Despite
this disadvantage, our MMM-8 implementation outperforms both the previous HOMA and
PFB_Plus implementations for all d ∈ [0, 5].

We finally compare speed with Table 4 summarizing the speed in cycle per byte (cpb)
for processing a message block in AE encryption. MMM-64 achieves 131.25 cpb, achieving
more than ×3 speed-up from HOMA (549.75 cpb) because of the smaller number of TBC
calls per message block (see Table 1). MMM-64 is comparable with PFB_Plus in speed by
the same reason. Romulus-N1 achieved a better speed (83.13 cpb) because of its byte-serial
architecture that processes a byte (cf. a nibble) for each cycle, roughly doubling the speed,
which comes at the cost of a larger area as described previously.

6 Discussion on Other Primitive Choices
MMM allows flexibility in choosing the size of K1 and K2‖K3 according to user needs and
available primitive designs, and allows settings other than SKINNY64/192 and |K1| = 64
implemented in the previous section. The plaintext block size b can be up to the BC’s block

102 MMM: Authenticated Encryption with Minimum Secret State for Masking

Table 3: NAND-equivalent circuit area (GE) of MMM-8, MMM-64, HOMA, Romulus-N1,
and PFB_Plus for the protection order d ∈ [0, 5].

Order d Target Total S-box State TK1 TK2 TK3 TK4 KeySR

0 MMM-8 3,343 161 594 549 732 583 — —
0 MMM-64 3,767 161 549 549 729 582 — 539
0 HOMA 4,878 161 595 549 704 583 588 955
0 Romulus-N1 5,915 598 1,082 1,261 1,184 1,186 — —

1 MMM-8 5,023 500 1,165 1,094 732 583 — 130
1 MMM-64 5,847 499 1,165 1,094 729 582 — 960
1 HOMA 6,893 500 1,157 549 704 583 588 1,907
1 Romulus-N1 9,156 1,532 2,147 1,162 1,184 1,186 — —

2 MMM-8 6,924 1,086 1,713 1,639 730 582 — 195
2 MMM-64 8,167 1,086 1,713 1,639 729 582 — 1,439
2 HOMA 9,138 1,086 1,715 549 701 578 590 2,860
2 Romulus-N1 12,899 2,967 3,202 1,188 1,094 3,479 — —

3 MMM-8 9,073 1,896 2,282 2,185 729 582 — 260
3 MMM-64 10,732 1,896 2,282 2,185 729 582 — 1,918
3 HOMA 11,622 1,896 2,279 549 703 579 588 3,814
3 Romulus-N1 17,139 4,869 4,268 1,137 1,089 4,629 — —

4 MMM-8 11,457 2,934 2,852 2,733 729 582 — 324
4 MMM-64 13,530 2,934 2,852 2,733 729 582 — 2,397
4 HOMA 14,341 2,929 2,851 549 702 579 590 4,769
4 Romulus-N1 21,858 7,173 5,329 1,171 1,090 5,775 — —

5 MMM-8 14,039 4,193 3,404 3,275 729 582 — 390
5 MMM-64 16,526 4,193 3,404 3,275 729 582 — 2,876
5 HOMA 17,261 4,187 3,405 549 702 579 588 5,720
5 Romulus-N1 26,991 9,978 6,388 1,135 1,083 6,916 — —

0 HOMA† 4,981 161 542 636 844 675 675 735
0 PFB_Plus† 4,569 161 540 637 674 746 865

1 HOMA† 6,283 501 1,046 549 749 585 577 1,468
1 PFB_Plus† 6,884 501 1,049 1,231 1,296 656 782 —

2 HOMA† 8,226 1,087 1,573 549 744 586 576 2,201
2 PFB_Plus† 9,667 1,087 1,571 1,845 1,938 657 782 —

3 HOMA† 10,392 1,897 2,097 549 748 585 577 2,935
3 PFB_Plus† 12,675 1,897 2,094 2,459 2,578 656 780 —

4 HOMA† 12,782 2,931 2,621 549 744 585 577 3,668
4 PFB_Plus† 15,941 2,931 2,619 3,083 3,239 656 780 —

5 HOMA† 15,487 4,189 3,240 549 748 586 576 4,402
5 PFB_Plus† 19,724 4,189 3,238 3,818 3,989 656 781 —

†HOMA and PFB_Plus performance obtained from [NSS22, Table 3].

size n and may have different properties depending on its choice. This section describes
the selection of primitives when s = 128 and n = 128.

When b is chosen to be 128 for the fastest speed in MMM, the size of K3 is 128 bits,
and K1 is 0 bits. First, since |K1| = 0, the input to the underlying BC is 128 bits in total:
the counter, the nonce, and the domain separation. Hence, the key size that the underlying
BC must support is 128 bits. This is a popular parameter especially for n = 128. Hence,

Yusuke Naito, Yu Sasaki, and Takeshi Sugawara 103

Table 4: Execution speed in cycle/byte for processing one message block in AE encryption.

Target Primitive Latency Message block Enc. speed
(cycles) length (bytes) (cycle/byte)

MMM-8 SKINNY-64/192 1,050 1 1,050.00
MMM-64 SKINNY-64/192 1,050 8 131.25
HOMA SKINNYee 1,466 8/3 549.75

Romulus-N1 SKINNY-128/384+ 1,330 16 83.13

HOMA† SKINNYee 1,344 8/3 504.00
PFB_Plus† SKINNYe 1,056 8 132.00

†HOMA and PFB_Plus performance in the previous work [NSS22].

the choice of primitives is diverse, and basing the scheme on a standardized BC is easy.
Second, due to |K1| = 0, the state corresponding to K1, H1, and S1 disappears, and there
will be no secret value in the key element of each BC call. Recall that, for b = 64, the key
element has both secret and public values, and these values are updated simultaneously
in the key schedule function in BC. At this time, it was necessary to have a BC with a
special key schedule function in which the secret part and the public part are updated
independently. If all the bits of the key element are public, then there is no longer a
separation of data that must not be mixed, and any operation on the BC’s key schedule
function can be used as an instance of MMM. For example, the AES key schedule function
can be used without problems.

One concern is that many 128-bit block BCs use 8-bit S-boxes instead of 4-bit S-boxes.
Since the masking implementation cost depends on the S-box size, BCs using 4-bit S-
boxes should be used as an instance of MMM. For example, GIFT-128 [BPP+17] and
Midori128 [BBI+15] are examples of BCs with a 128-bit block using a 4-bit S-box.

Another point that needs to be addressed carefully is the gap between the assumption
about primitives by mode and the premise of security by primitive designs. MMM assumes
that the BC behaves as an ideal cipher. On the other hand, many lightweight BC designs
may only consider security in the single-key setting. For example, regarding GIFT-128
and Midori128, the designers do not claim any related-key security, though related-key
attacks have not been found yet.

Contrarily, designing new decent BCs with the above features, suitable as an instance
of MMM, is an interesting open problem.

7 Conclusion
In this paper, we proposed a new AE mode MMM that achieves the minimum memory
size with masking. Our idea is to update the whole s-bit secret state by iterating an n-bit
block BC, and to encrypt a b-bit plaintext block by using the b-bit part of the s-bit state.
Compared to HOMA, MMM achieves several advantages, which includes a better rate,
mu-security, and a smaller transmission cost. Then two SKINNY-based instances, MMM-8
and MMM-64, were proposed and implemented With a (d+ 1)-masking scheme. MMM-8
and MMM-64 achieved smaller circuit areas than HOMA with all d ∈ [0, 5].

A Example of MMM
The structure of MMM with k1 = n, b = n, and τ = 2n is given in Fig. 8. The conditions
offer the following conditions k2 = 0, b = n, and k = 2n. Note that MMM-64 satisfy the

104 MMM: Authenticated Encryption with Minimum Secret State for Masking

K3

K1

ozpn(Aa)
⊕

A1

E ⊕

A2

f(0,N,0) ⊕

E

f(0,N,1) ⊕

E ⊕

f(0,N,a-2)
⊕

⊕
Aa-1

H1

H2

E ⊕

f(dA,N,0) ⊕

E

f(dA,N,1) ⊕H1

H2

C1

K3 ⊕

S1

S2

E

f(dM,N,0) ⊕

E

f(dM,N,1)S1

S2

T1

⊕

M1⊕

E

f(dA,N,m-1)
⊕

Cm-1

K3 ⊕

Mm-1⊕

⊕

Cm

K3 ⊕ ozpn

⊕

⊕

Mm

g g g

K3

MMM.Hash

MMM.Main

MMM.TagGen

T2

⊕K3

Figure 8: Structure of MMM with k1 = n, b = n, and τ = 2n.

conditions.

B Analysis for Good Transcripts
Let τ ∈ Tgood. Tags and ciphertexts in τ are defined from (dummy) input-output tuples
in online queries. By ¬bad4, response of decryption queries in τ are all reject. Hence,
we have only to consider (dummy) user’s keys, (dummy) input-output tuples of an IC
in online queries, and offline query-response tuples. Let τK be the subset of τ whose
elements are user’s keys. Let τonline be the set of offline query-response tuples, τenc the set
of input-output tuples defined by encryption query-response tuples that are not in τonline,
and τdec the set of input-output tuples defined by decryption query-response tuples that
are not in τenc ∪ τonline.

Firstly, we evaluate Pr[TR ` τoffline] and Pr[TI ` τoffline], the probabilities for offline
queries. In both worlds, the responses to offline queries are defined by an IC. We thus have
Pr[TR ` τonline] = Pr[TI ` τonline]. Hereafter, we assume that TR ` τonline and TI ` τonline
are satisfied.

Secondly, we evaluate Pr[TR ` τK] and Pr[TI ` τK], the probabilities for user’s keys.
In both worlds, all user’s keys are chosen uniformly at random from {0, 1}k. We thus have
Pr[TR ` τK] = Pr[TI ` τK]. Hereafter, we assume that TR ` τK and TI ` τK are satisfied.

Thirdly, we evaluate Pr[TR ` τenc] and Pr[TI ` τenc], the probabilities for encryption
queries. Note that by bad1, there is no collision among IC’s inputs in the encryption
queries, and by bad3, there is no collision between τonline and τenc. Hence, we all inputs
in τenc are new. In the real world, all internal values in encryption queries are defined by

Yusuke Naito, Yu Sasaki, and Takeshi Sugawara 105

an IC and in the ideal world, by Algorithm 6. In this algorithm, all internal values for
the hash function are defined by an IC and the remaining ones are chosen uniformly at
random from {0, 1}n, as all ciphetext blocks and tag ones are chosen uniformly at random
from {0, 1}b. Hence, the output spaces in the ideal world are larger than those in the real
one, and we have Pr[TR ` τenc] ≥ Pr[TI ` τenc]. Hereafter, we assume that TR ` τenc and
TI ` τenc are satisfied.

Fourthly, we evaluate Pr[TR ` τdec] and Pr[TI ` τdec], the probabilities for decryption
queries. In both worlds, the internal values in decryption queries are defined by an IC,
that is, chosen from the same spaces. Note that the ideal-world values are defined by
Algorithm 6. Hence, we have Pr[TR ` τdec] = Pr[TI ` τdec]

Finally, using the above evaluations, we have

Pr[TR = τ]
Pr[TI = τ] = Pr[TR ` τoffline] · Pr[TR ` τK] · Pr[TR ` τenc] · Pr[TR ` τdec]

Pr[TI ` τoffline] · Pr[TI ` τK] · Pr[TI ` τenc] · Pr[TI ` τdec]
≥ 1 .

C Romulus-N1 Hardware Design
This appendix describes our Romulus-N1 hardware design protected with the HPC2 high-
order masking, discussed in Section 5.4. Romulus-N1 is a TBC-based AE [IKMP20] that ap-
peared at the NIST LWC competition. Romulus-N1’s underlying TBC is SKINNY-128-384+,
a 40-round version of SKINNY-128-384. The primitive is a variant of 128-bit SKINNY
with the 8-bit S-box, which contrasts with MMM, HOMA, and PFB_Plus that used 64-bit
SKINNY with the 4-bit S-box. A byte is a natural processing unit for Romulus-N1, and
we design its implementation with the byte-serial (cf. nibble-serial) architecture using the
state and tweakey arrays [BJK+16].

The state array is a 128-bit systolic array integrating MixColumns and ShiftRows.
The TK1–TK3 arrays are similar 128-bit systolic arrays that integrate forward and inverse
tweakey schedules. TK3 (cf. TK1) stores the secret key and needs SCA protection, and TK1
integrates a 56-bit LFSR circuit for a counter. These arrays are optimized with the byte-
sliding technique to minimize the hardware cost [JMPS17]. A single SKINNY-128-384+
round takes 30 cycles, and a single SKINNY-128-384+ takes 1,330 cycles involving 40
rounds of operations and the other overhead for recovering the original values overwritten
by the on-the-fly tweakey schedule. Although Romulus-N1 uses only the upper half of TK1,
we implement the TK1 array with a 128-bit register for simplicity and consistency with
the other tweakey array implementations; The unused 64 bits can be reduced by designing
a sophisticated circuit that keeps track of the unused bits in the tweakey schedule. The
room for further optimization is estimated as 256–448 GE with a typical register cost
(4–7 GE/bit). In addition to the state and tweakey arrays, we also implement the ρ and
ρ−1 functions for feeding plaintext/ciphertext blocks [IKMP20]. This module needs SCA
protection, but it can be easily realized exploiting the linearity of ρ and ρ−1.

We finally discuss the implementation of the SKINNY 8-bit S-box. Since the HPC2
AND gadget needs a different number of cycles (1 and 2 cycles) for its inputs, sophisticated
scheduling is necessary to minimize the pipeline stages. In the previous work, Cassiers et al.
approached the problem by using a SAT solver to find an efficient Boolean circuit for 4-bit S-
boxes [CL20], which is used in our MMM and HOMA implementations. Unfortunately, the
same approach is infeasible with 8-bit S-boxes for a large computational complexity [Sto16].
Therefore, we schedule the HPC2 AND gadgets without changing the S-box’s original
Boolean representation comprising 8 NOR gates [BJK+16]. Realizing NOR using AND is
straightforward because x0 ∨ x1 = x0∧x1. Then, we assign each AND gadget by analyzing
the data dependency graph. Fig. 9 shows the final design comprising a 6-stage pipeline
with one additional input stage for controlling incoming data. Each S-box calculation
consumes 4d(d+ 1) random bits with d+ 1 shares. The S-box circuit uses 28d2 + 92d+ 16

106 MMM: Authenticated Encryption with Minimum Secret State for Masking

x7
1

x0
1

x1
1

1 2 3 4 5 6

tA

tE

tG

tF

tH

tC

tD

tB

HPC2 ANDA

HPC2 ANDB

HPC2 ANDC

HPC2 ANDD

HPC2 ANDF

HPC2 ANDG

HPC2 ANDE

HPC2 ANDH

x2
1

x6
1

x2
2

x0
2 tB

x3
3

x4
3 tC

x3
3

x0
4 tE

x0
4 tE

x6
4

x0
5 tF

x1
1

x3
1

x0
2 tB

x2
1

x3
1

x6
1

x5
1

x4
1

x7
2

x0
2

x1
2

x2
2

x3
2

x6
2

x5
2

x4
2

x7
3

x0
3

x1
3

x2
3

x3
3

x6
3

x5
3

x4
3

x7
4

x0
4

x1
4

x2
4

x3
4

x6
4

x5
4

x4
4

x7
5

x0
5

x1
5

x2
5

x3
5

x6
5

x5
5

x4
5

x7
6

x0
6

x1
6

x2
6

x3
6

x6
6

x5
6

x4
6

x7
0

x3
0

x7
0

x0
0

x1
0

x2
0

x3
0

x6
0

x5
0

x4
0

Figure 9: Pipelined circuit for 8-bit SKINNY S-box using high-order masking HPC2.

bits of registers: (8 × 6)d bits for pipeline registers and (7d2 + 11d + 4)/2 bits for each
AND gadget.

References
[AFK+11] Frederik Armknecht, Ewan Fleischmann, Matthias Krause, Jooyoung Lee,

Martijn Stam, and John P. Steinberger. The preimage security of double-
block-length compression functions. In ASIACRYPT 2011, volume 7073 of
LNCS, pages 233–251. Springer, 2011.

[ARS+15] Martin R. Albrecht, Christian Rechberger, Thomas Schneider, Tyge Tiessen,
and Michael Zohner. Ciphers for MPC and FHE. In EUROCRYPT 2015,
volume 9056, pages 430–454, 2015.

[BBB+20] Davide Bellizia, Francesco Berti, Olivier Bronchain, Gaëtan Cassiers, Sébastien
Duval, Chun Guo, Gregor Leander, Gaëtan Leurent, Itamar Levi, Charles
Momin, Olivier Pereira, Thomas Peters, François-Xavier Standaert, Balazs
Udvarhelyi, and Friedrich Wiemer. Spook: Sponge-based leakage-resistant
authenticated encryption with a masked tweakable block cipher. IACR Trans.
Symmetric Cryptol., 2020(S1):295–349, 2020.

[BBC+20] Davide Bellizia, Olivier Bronchain, Gaëtan Cassiers, Vincent Grosso, Chun
Guo, Charles Momin, Olivier Pereira, Thomas Peters, and François-Xavier
Standaert. Mode-level vs. implementation-level physical security in symmetric
cryptography - A practical guide through the leakage-resistance jungle. In
CRYPTO 2020, pages 369–400, 2020.

[BBI+15] Subhadeep Banik, Andrey Bogdanov, Takanori Isobe, Kyoji Shibutani,
Harunaga Hiwatari, Toru Akishita, and Francesco Regazzoni. Midori: A
block cipher for low energy. In ASIACRYPT 2015, volume 9453 of LNCS,
pages 411–436. Springer, 2015.

Yusuke Naito, Yu Sasaki, and Takeshi Sugawara 107

[BBP+16] Sonia Belaïd, Fabrice Benhamouda, Alain Passelègue, Emmanuel Prouff,
Adrian Thillard, and Damien Vergnaud. Randomness complexity of private
circuits for multiplication. In EUROCRYPT 2016, pages 616–648, 2016.

[BGP+20] Francesco Berti, Chun Guo, Olivier Pereira, Thomas Peters, and François-
Xavier Standaert. TEDT, a leakage-resist AEAD mode for high physical
security applications. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2020(1):256–
320, 2020.

[BJK+16] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The SKINNY
family of block ciphers and its low-latency variant MANTIS. In CRYPTO
2016, pages 123–153, 2016.

[BPP+17] Subhadeep Banik, Sumit Kumar Pandey, Thomas Peyrin, Yu Sasaki,
Siang Meng Sim, and Yosuke Todo. GIFT: A small Present - towards reaching
the limit of lightweight encryption. In CHES 2017, volume 10529 of LNCS,
pages 321–345. Springer, 2017.

[BT16] Mihir Bellare and Björn Tackmann. The multi-user security of authenticated
encryption: AES-GCM in TLS 1.3. In CRYPTO 2016, volume 9814, pages
247–276. Springer, 2016.

[Cas21] Gaëtan Cassiers. fullVerif. https://github.com/cassiersg/fullverif,
2021.

[CGLS21] Gaëtan Cassiers, Benjamin Grégoire, Itamar Levi, and François-Xavier Stan-
daert. Hardware private circuits: From trivial composition to full verification.
IEEE Trans. Computers, 70(10):1677–1690, 2021.

[CL20] Gaëtan Cassiers and Itamar Levi. AND depth 2, 4 ANDs, 4-bit (Optimized)
S-boxes. IACR Cryptol. ePrint Arch., 2020:185, 2020.

[CS20] Gaëtan Cassiers and François-Xavier Standaert. Trivially and efficiently
composing masked gadgets with probe isolating non-interference. IEEE Trans.
Inf. Forensics Secur., 15:2542–2555, 2020.

[DEM+20] Christoph Dobraunig, Maria Eichlseder, Stefan Mangard, Florian Mendel,
Bart Mennink, Robert Primas, and Thomas Unterluggauer. ISAP v2.0. IACR
Trans. Symmetric Cryptol., 2020(S1):390–416, 2020.

[DM21] Christoph Dobraunig and Bart Mennink. Leakage resilient value comparison
with application to message authentication. In EUROCRYPT 2021, pages
377–407, 2021.

[DP08] Stefan Dziembowski and Krzysztof Pietrzak. Leakage-resilient cryptography.
In IEEE Symposium on Foundations of Computer Science, FOCS 2008, pages
293–302, 2008.

[GGNS13] Benoît Gérard, Vincent Grosso, María Naya-Plasencia, and François-Xavier
Standaert. Block ciphers that are easier to mask: How far can we go? In
CHES 2013, pages 383–399, 2013.

[GJK+20] Dahmun Goudarzi, Jérémy Jean, Stefan Kölbl, Thomas Peyrin, Matthieu
Rivain, Yu Sasaki, and Siang Meng Sim. Pyjamask: Block cipher and authen-
ticated encryption with highly efficient masked implementation. IACR Trans.
Symmetric Cryptol., 2020:31–59, 2020.

https://github.com/cassiersg/fullverif

108 MMM: Authenticated Encryption with Minimum Secret State for Masking

[GMK16] Hannes Groß, Stefan Mangard, and Thomas Korak. Domain-oriented masking:
Compact masked hardware implementations with arbitrary protection order.
IACR Cryptol. ePrint Arch., 2016:486, 2016.

[HTT18] Viet Tung Hoang, Stefano Tessaro, and Aishwarya Thiruvengadam. The
multi-user security of gcm, revisited: Tight bounds for nonce randomization.
In CCS 2018, pages 1429–1440. ACM, 2018.

[IKMP20] Tetsu Iwata, Mustafa Khairallah, Kazuhiko Minematsu, and Thomas Peyrin.
Duel of the titans: The Romulus and Remus families of lightweight AEAD
algorithms. IACR Trans. Symmetric Cryptol., 2020(1):43–120, 2020.

[ISO22] ISO. ISO/IEC 18033-7:2010 Information security — Encryption algorithms —
Part 7: Tweakable block ciphers. 2022.

[ISW03] Yuval Ishai, Amit Sahai, and David A. Wagner. Private circuits: Securing
hardware against probing attacks. In CRYPTO 2003, pages 463–481, 2003.

[JLM+19] Philipp Jovanovic, Atul Luykx, Bart Mennink, Yu Sasaki, and Kan Yasuda.
Beyond Conventional Security in Sponge-Based Authenticated Encryption
Modes. J. Cryptol., 32(3):895–940, 2019.

[JMPS17] Jérémy Jean, Amir Moradi, Thomas Peyrin, and Pascal Sasdrich. Bit-Sliding:
A generic technique for bit-serial implementations of SPN-based primitives -
applications to AES, PRESENT and SKINNY. In CHES 2017, volume 10529,
pages 687–707, 2017.

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential Power Analysis.
In CRYPTO ’99, pages 388–397, 1999.

[LMP17] Atul Luykx, Bart Mennink, and Kenneth G. Paterson. Analyzing multi-key
security degradation. In ASIACRYPT 2017, volume 10625, pages 575–605.
Springer, 2017.

[MMSS19] Thorben Moos, Amir Moradi, Tobias Schneider, and François-Xavier Standaert.
Glitch-resistant masking revisited or why proofs in the robust probing model
are needed. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2019(2):256–292,
2019.

[Nan21] NanGate. NanGate FreePDK45 Open Cell Library. https://si2.org/
open-cell-library/, 2021.

[NRR06] Svetla Nikova, Christian Rechberger, and Vincent Rijmen. Threshold im-
plementations against side-channel attacks and glitches. In Information and
Communications Security, 8th International Conference, ICICS 2006, pages
529–545, 2006.

[NS20] Yusuke Naito and Takeshi Sugawara. Lightweight authenticated encryption
mode of operation for tweakable block ciphers. IACR Trans. Cryptogr. Hardw.
Embed. Syst., 2020(1):66–94, 2020.

[NSS20] Yusuke Naito, Yu Sasaki, and Takeshi Sugawara. Lightweight authenticated
encryption mode suitable for threshold implementation. In EUROCRYPT
2020, pages 705–735, 2020.

[NSS22] Yusuke Naito, Yu Sasaki, and Takeshi Sugawara. Secret can be public: Low-
memory AEAD mode for high-order masking. In CRYPTO 2022, volume
13509 of LNCS, pages 315–345, 2022.

https://si2.org/open-cell-library/
https://si2.org/open-cell-library/

Yusuke Naito, Yu Sasaki, and Takeshi Sugawara 109

[Pat08] Jacques Patarin. The "Coefficients H" technique. In SAC 2008, pages 328–345,
2008.

[PSV15] Olivier Pereira, François-Xavier Standaert, and Srinivas Vivek. Leakage-
resilient authentication and encryption from symmetric cryptographic primi-
tives. In CCS 2015, pages 96–108, 2015.

[QDW+22] Lingyue Qin, Xiaoyang Dong, Anyu Wang, Jialiang Hua, and Xiaoyun Wang.
Mind the TWEAKEY schedule: Cryptanalysis on SKINNYe-64-256. In ASI-
ACRYPT 2022, volume 13791 of LNCS, pages 287–317. Springer, 2022.

[RBN+15] Oscar Reparaz, Begül Bilgin, Svetla Nikova, Benedikt Gierlichs, and Ingrid
Verbauwhede. Consolidating masking schemes. In CRYPTO 2015, volume
9215, pages 764–783, 2015.

[Res18] Eric Rescorla. RFC 8446: The transport layer security (TLS) protocol version
1.3. https://doi.org/10.17487/RFC8446, 2018.

[RTM21] Eric Rescorla, Hannes Tschofenig, and Nagendra Modadugu. The datagram
transport layer security (DTLS) protocol version 1.3 – draft-ietf-tls-dtls13-43.
https://tools.ietf.org/html/draft-ietf-tls-dtls13-43, 2021.

[Sto16] Ko Stoffelen. Optimizing S-box implementations for several criteria using SAT
solvers. In FSE 2016, volume 9783, pages 140–160, 2016.

[TT21] Martin Thomson and Sean Turner. Using TLS to secure QUIC. RFC, 9001:1–
52, 2021.

	Introduction
	Preliminaries
	AE with Minimum Secret State: Design and Security
	Specification of MMM
	Design of MMM
	mu-AE Security of MMM in the z-Bound Model
	Overview of Proof of Theorem 1

	Proof of Theorem 1
	Deriving the Upper-Bound using Coefficient H Technique
	Lazy Sampling for IC.
	Definition
	Additional Queries
	Revealing User's Keys and Internal Values
	Adversary's View
	Good and Bad Transcripts
	Analysis for Bad Transcripts
	Analysis for Good Transcripts

	Hardware Implementation
	Instantiation of MMM for Implementation
	HPC2 Masking Scheme and Composition-based Verification
	Datapath Architecture
	Performance Comparison

	Discussion on Other Primitive Choices
	Conclusion
	Example of MMM
	Analysis for Good Transcripts
	Romulus-N1 Hardware Design

