
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2023, No. 4, pp. 58–79. DOI:10.46586/tches.v2023.i4.58-79

Protecting Dilithium against Leakage
Revisited Sensitivity Analysis and Improved Implementations

Melissa Azouaoui1, Olivier Bronchain1,2, Gaëtan Cassiers2,3,4, Clément
Hoffmann2, Yulia Kuzovkova1, Joost Renes1, Tobias Schneider1, Markus
Schönauer1, François-Xavier Standaert2 and Christine van Vredendaal1

1 NXP Semiconductors, Eindhoven, Netherlands {firstname.lastname}@nxp.com
2 UCLouvain, Ottignies-Louvain-la-Neuve, Belgium, {firstname.lastname}@uclouvain.be

3 Graz University of Technology, Graz, Austria, {firstname.lastname}@iaik.tugraz.at
4 Lamarr Security Research, Graz, Austria

Abstract. CRYSTALS-Dilithium has been selected by the NIST as the new stan-
dard for post-quantum digital signatures. In this work, we revisit the side-channel
countermeasures of Dilithium in three directions. First, we improve its sensitivity
analysis by classifying intermediate computations according to their physical security
requirements. Second, we provide improved gadgets dedicated to Dilithium, taking
advantage of recent advances in masking conversion algorithms. Third, we combine
these contributions and report performance for side-channel protected Dilithium
implementations. Our benchmarking results additionally put forward that the ran-
domized version of Dilithium can lead to significantly more efficient implementations
(than its deterministic version) when side-channel attacks are a concern.
Keywords: CRYSTALS-Dilithium · Lattice-Based Cryptography · Post-Quantum
Cryptography · Signatures · Side-Channel Countermeasures · Masking

1 Introduction
The world’s digital security infrastructure has always relied on a range of efficient and
secure cryptographic primitives, including both symmetric and asymmetric solutions.
In particular for asymmetric cryptography, RSA and ECC are the ubiquitous schemes
in practice. However, with the anticipated advent of powerful and dedicated quantum
computers, the established asymmetric cryptographic schemes, that we mainly use for key
exchange and digital signatures, will no longer provide the desired security.

In 2016, the National Institute of Standards and Technology (NIST) has launched a
standardization effort for cryptographic schemes that can withstand quantum cryptanaly-
sis [Nat]. Recently in 2022, the NIST announced the first Post-Quantum Cryptography
(PQC) schemes to be standardized. These include (CRYSTALS-)Kyber [ABD+19] for
Key Encapsulation Mechanism (KEM), and (CRYSTALS-)Dilithium [DLL+17] for digital
signatures. Both Kyber and Dilithium are lattice-based schemes, and in recent years the
analysis of lattice-based PQC schemes and their implementations has become a prominent
area of research. This is not only due to their widely accepted strong security but also
because of their implementation efficiency in comparison to other PQC schemes.

Although a PQC scheme can be secure against classic and quantum adversaries, this is
not sufficient to provide practical security in the embedded context. The implementations
of cryptographic schemes on constrained devices can be targeted by physical attacks,
which include Side-Channel Analysis (SCA) and Fault Injection (FI) attacks. Over the
last years, PQC KEM’s have attracted most of the attention when it comes to SCA.

Licensed under Creative Commons License CC-BY 4.0.
Received: 2023-04-15 Accepted: 2023-06-15 Published: 2023-08-31

https://doi.org/10.46586/tches.v2023.i4.58-79
mailto:christine.cloostermans@nxp.com,olivier.bronchain@nxp.com,joost.renes@nxp.com,markus.schonauer@nxp.com,melissa.azouaoui@nxp.com,tobias.schneider@nxp.com,yulia.kuzovkova_2@nxp.com
mailto:clement.hoffmann@uclouvain.be,fstandae@uclouvain.be
mailto:gaetan.cassier@iaik.tugraz.at
http://creativecommons.org/licenses/by/4.0/

Azouaoui et al. 59

Indeed, most KEM’s in the NIST competition, including Kyber, rely on the Fujisaki-
Okamoto (FO) transformation [FO99] which is a simple and generic technique to achieve
IND-CCA security. Unfortunately, the leakage of the re-encryption step in the FO
transformation leads to very powerful SCA’s, demonstrated and analyzed in many recent
works, including but not limited to [RRCB20, REB+22, UXT+22]. An adversary can
also exploit leakage from the Number Theoretic Transformation (NTT) or from the Key
Derivation Function (KDF) in order to extract the long term secret key or the shared
secret key [RPBC20, HHP+21, KPP20, PPM17]. This variety of threats implies a large
attack surface leading to significant overheads when protecting PQC KEM’s [ABH+22].

To the best of our knowledge, digital signatures, including Dilithium, have received
less attention than KEM’s with respect to SCA. The main results include a work by
Ravi et al. [RJH+18] that shows that to achieve existential forgery an attacker only
requires knowledge of one part of the secret key in Dilithium, namely s1. Marzougui
et al. [MUTS22] exploit leakage of the zero coefficients in the secret signing nonce y for
multiple signatures and recover the secret key by leveraging least squares regression and
integer linear programming. Liu et al. [LZS+21] also present an SCA on Dilithium, which
is able to recover the secret key from the leakage of a single bit of the secret signing
nonce y for multiple signatures. The authors use this side-channel information to define a
problem called the Fiat-Shamir Integer LWE, and show that it can be solved efficiently.
This attack is very reminiscent of the well-known lattice reduction attacks on (EC)DSA
(and other Schnorr-like signature schemes) with partial nonce leakage, originally due to
Howgrave-Graham and Smart [HS01] and recently improved by Sun et al. [SETA22]. Liu
et al. showed that their attack requires a relatively low number of signatures. This result,
along with previous works and the fact that the side-channel analysis of Dilithium is quite
a new research topic for the community, highlights the vital need to protect the future
digital signature standard against these threats. The amount of published works appears
to be even scarcer when it comes to protecting Dilithium against leakage. To the best of
our knowledge, the main contribution comes from Migliore et al. [MGTF19] and presents
masked gadgets for Dilithium and a power-of-two modulus masked version of it.

Contributions. In this work, we tackle the challenge of efficiently protecting Dilithium
implementations on embedded devices. Our contributions are the following.

First, we revisit the sensitivity analysis of Migliore et al. [MGTF19]. Interestingly,
we notice that the authors do not consider some intermediate computation as sensitive
even though they can be explicitly used to recover the secret key. Conversely, others
were unnecessarily protected since they could be computed from the signature and the
public key. These observations lead to improved security and to more efficient signature
generation. To the best of our knowledge, our work presents the first masked Dilithium
design compliant with the third round submission document for all parameter sets.

Second, and following the security requirements of our sensitivity analysis, we propose
new and improved masked gadgets for the main operations of Dilithium (namely the bound
check, the secret sampling and the decomposition) and for all NIST security levels.

Finally, we provide a complete benchmark for an ARM Cortex-M4 microcontroller,
which includes the evaluation of individual components, their comparison with the ones of
Migliore et al., and performance results of full signature generation for deterministic and
randomized versions of Dilithium. They highlight the advantages of randomized Dilithium
compared to its deterministic variant in the context of physical attacks.

Cautionary note. In an earlier presentation of our results, at the NIST’s 4th PQC
Standardization Conference, a finer-grain sensitivity analysis distinguishing security against
Simple Power Analysis and Differential Power Analysis was proposed [ABC+22]. This
analysis was conjectured to enable strongly leveled implementations of Dilithium, where

60 Protecting Dilithium against Leakage

different parts of the implementation use different countermeasures (e.g., shuffling against
SPA [VMKS12], masking against DPA [CJRR99, ISW03]). We clarify in Section 3.4 that
the possibility to leverage a “hard physical learning problem” similar to [DMMS21] that
would back up this conjecture does not hold. As a result, Dilithium has less potential for
leveling and its sensitivity analysis can be simplified to a coarser-grain mix of sensitive
operations that require DPA protections and non-sensitive ones that can leak in full. We
discuss directions to partially restore the interest of a finer-grain leveling in conclusions.

2 Background
We next detail the notations used in the paper and the Dilithium signature scheme.

2.1 Polynomial arithmetic notations
All arithmetic operations in the paper are denoted over the polynomial ring R =
Zq[X]/(Xn + 1). We denote a polynomial with small caps such as p ∈ R, a vector
of polynomials with bold letters such as x ∈ Rk and a matrix of polynomials with capital
bold letters such as X ∈ Rk×k′ . For Dilithium, the parameters of the ring are the prime
q = 223 − 213 + 1 and the degree n = 256. For z, α ∈ Z we write z mod±α to mean the
unique integer z′ in]− α

2 ,
α
2] (resp., [−α−1

2 , α−1
2]) with z ≡ z′ mod α if α is even (resp.,

odd). The notation z mod±α implies that all the coefficients in z are given with mod±α.
With this, we can define the following norms on Zq, R and Rk respectively:

‖z‖∞ = |z mod±q|, ‖p‖∞ = max
i
‖pi‖∞, ‖w‖∞ = max

i
‖wi‖∞,

with z ∈ Zq, p ∈ R, pi being the i-th coefficient of p, w ∈ Rk and wi being the i-
th polynomial in w. Additionally, we define Sη = {w ∈ R : ‖w‖∞ ≤ η} and S̃η =
{w mod±2η : w ∈ R}. This means that the coefficients of an element in Sη or S̃η are in
the range [−η, η] or]− η, η], respectively. We use the notation x← X whenever we assign
a uniformly random element of a set X to a variable x. The symbol ‖ is used for the
concatenation of two bit strings, the function H is an expandable output function (XOF).

2.2 Dilithium
Dilithium is a digital signature scheme based on the MLWE (Module Learning With Errors)
and the SelfTargetMSIS (Module Short Integer Solution) problems [LS15]. It is the primary
algorithm selected by the NIST for quantum safe digital signatures. Its main features are:
random sampling from a uniform distribution instead of a discrete Gaussian distribution, a
focus on keeping the public key and the signature as small as possible in terms of their bit
size, and being easy to adjust for different security levels by only changing the dimensions
of the matrices and vectors involved. For a comprehensive description of the algorithm we
refer to the proposal [DLL+17]. Note that the pseudocode presented there and in the rest
of the paper is a variation from the reference implementation described in [DLL+17, p.17].
The key differences are highlighted in Section 3.3. In this paper we refer to the implemented
version if not stated otherwise. We describe the key generation and signature generation
algorithms in the following paragraphs. We do not consider the verification, which does
not involve long-term secret variables (hence, does not leak sensitive information). Table 1
provides the Dilithium parameters for different NIST security levels.

Key generation. The key generation is defined in [DLL+17, Fig 4.] and is recalled in
Algorithm 1. Initially, a random bit string ζ is created and used to generate three seeds ρ,
ς and K thanks to the hash function H. A public matrix A for which all coefficients are

Azouaoui et al. 61

Table 1: Dilithium parameters.
NIST Security level 2 3 5

q (modulus) 223 − 213 + 1 223 − 213 + 1 223 − 213 + 1
d (number of dropped bits from t) 13 13 13

τ (# of ± 1’s in c) 39 49 60
γ1 (y coefficient range) 217 219 219

γ2 (low order rounding range) (q-1)/88 (q-1)/32 (q-1)/32
(k, l) (dimensions of A) (4,4) (6,5) (8,7)
η (secret key range) 2 4 2

β (= τ · η) 78 196 120
ω (max. # 1’s in h) 80 55 75

average number of signing iterations 4.25 5.1 3.85

uniform in Zq is generated from ρ. Two secret vectors s1 ∈ Slη and s2 ∈ Skη are derived
from ς. Then, the vector t = As1 + s2 is calculated. This is an instance of MLWE, where
s1 and s2 are hard to calculate given A and t. Next, the bit representation of t is split
up into high order bits t1 and low order bits t0. Only t1 will be part of the public key,
to keep its size as small as possible. For the same reason the matrix seed ρ is part of the
output, rather than the whole matrix A. Lastly, ρ‖t1 gets hashed to tr. The output is the
public key pk = (ρ, t1) and the secret key sk = (ρ,K, tr, s1, s2, t0).

Algorithm 1 KeyGen.
1: ζ ← {0, 1}256

2: (ρ, ς,K) = H(ζ) . (ρ, ς,K) ∈ {0, 1}256 × {0, 1}512 × {0, 1}256

3: A = ExpandA(ρ) . A ∈ Rk×l

4: (s1, s2) = ExpandS(ς) . (s1, s2) ∈ Slη × Skη
5: t = As1 + s2
6: (t1, t0) = Power2Round(t, d)
7: tr = H(ρ‖t1) . tr ∈ {0, 1}256

8: return pk = (ρ, t1), sk = (ρ,K, tr, s1, s2, t0)

Signature. Similarly, we now describe the signing procedure in Algorithm 2. We refer
to [DLL+17, Fig 4.] for a more detailed description. The input is the secret key sk and a
message M . The message is preprocessed with H into a bit string µ of fixed length. For
deterministic signing, µ is used together with K to produce a seed ρ′. For the randomized
version the seed ρ′ is generated randomly. This seed and a rejection counter κ (initially
set to κ = 0) are used to sample the secret polynomial y ∈ S̃lγ1

with ExpandMask. Then,
the product w = Ay is decomposed via division with remainder into w1 and w0. The
challenge c̃ is the hash of µ‖w1. For further calculations, c̃ is converted into a polynomial
c that contains strictly τ coefficients set to ±1 and the others set to zero. This polynomial
is then used to calculate z and r̃. To ensure the security and correctness of the scheme,
two checks are performed:

‖z‖∞ < γ1 − β, ‖r̃‖∞ < γ2 − β,

where β = η · τ . If any of the two conditions does not hold, κ is increased and the process
starts over (beginning with the sampling of a new y). After successful checks, a hint h
is calculated. This is needed in the verification step in order to make up for the “lost”
information of t0. Two more checks are performed on ct0 and h. Again, if these conditions
are not met, the signature is rejected and κ is increased. Otherwise, if all checks are
successful, the signature σ = (c̃, z,h) can be output.

62 Protecting Dilithium against Leakage

Algorithm 2 Sign(sk,M).
1: A = ExpandA(ρ)
2: µ = H(tr‖M) . µ ∈ {0, 1}512

3: κ = 0, (z,h) = ⊥
4: ρ′ = H(K‖µ) (or ρ′ $← {0, 1}512 for randomized signing) . ρ′ ∈ {0, 1}512

5: while (z,h) = ⊥ do
6: y = ExpandMask(ρ′, κ) . y ∈ S̃lγ1
7: w = Ay
8: (w0,w1) = Decompose(w, 2γ2)
9: c̃ = H(µ‖w1) . c̃ ∈ {0, 1}256

10: c = SampleInBall(c̃) . c ∈ Bτ
11: z = y + cs1
12: r̃ = w0 − cs2
13: if ‖z‖∞ ≥ γ1 − β or ‖r̃‖∞ ≥ γ2 − β then (z,h) = ⊥
14: else
15: h = MakeHint(r̃, c, t0,w1, γ2)
16: if ‖ct0‖∞ ≥ γ2 or the # of 1’s in h is greater than ω then (z,h) = ⊥
17: κ = κ+ l

18: return σ = (c̃, z,h)

3 Sensitivity analysis
In this section, we analyze Dilithium’s key generation and signature generation and
discuss the sensitivity of all the variables and functions potentially leading to side-channel
attacks. This sensitivity analysis indicates which operations/variables need to be protected
against leakage. As mentioned in introduction, we use a coarse-grain taxonomy for this
purpose, which is next reflected by color-coded diagrams: Figure 1 and Figure 2, where
red (resp., blue) denotes sensitive variables/operations that need security against DPA
(resp., variables/operations that do not require side-channel attack protection). Doing so
we also compare our analysis to the one previously proposed in [MGTF19].

Starting with generalities, we first note that the public key can be leaked to the
adversary over the whole scheme (since it is public). The public matrix A can also be
leaked since it is deterministically derived from ρ. A similar status holds for some parts
of the secret key sk := (ρ,K, tr, s1, s2, t0), since similar variables are contained in the
public key. Concretely, tr does not need to be protected either since it is a hash of pk.
We additionally note that the vector of polynomials t0 can be leaked as well. Indeed,
the Dilithium security proofs consider t (hence t0 and t1) to be public [DLL+17].1 M
does not need to be protected, but s1 and s2, and K, must be protected in order to avoid
side-channel attacks leading to a signature forgery. Next, we detail which other variables
must be protected in order to avoid the leakage of long-term sensitive secrets. We start
with their sensitivity analysis for the key generation followed by the signing procedure.

3.1 Key generation sensitivity
During key generation, the variable ζ has to be protected since it is the seed for all
subsequent values (e.g., K). Similarly, ς has to be protected since it serves as a seed to
deterministically generate the long term secrets s1 and s2. All the other variables in the
key generation can be leaked or are public, hence do not need side-channel protection.

1 As a result t could be fully part of the public key. Alternatively, it can decomposed into t0 and t1 so
that the public key only contains t1. This reduces the size of the public key by a factor close to two at the
cost of an increased secret key size, which must then contain t0, and a slightly increased signature size.

Azouaoui et al. 63

ζ H

ρ

ς

K

ExpandA

ExpandS

A

s1

s2

◦

+ t Power2Round

t1 t0

H tr

Figure 1: Graphical representation of the key generation. Output: pk = (ρ, t1), sk =
(ρ,K, tr, s1, s2, t0). Red: sensitive. Blue: non-sensitive.

3.2 Signature generation sensitivity
All the variables denoted in red in Figure 2 need to remain secret and hence must be
secure against DPA. This naturally holds for both secret key components s1 and s2, in
order to avoid trivial key recovery attacks leading to signature forgeries. Next, the vector
of polynomials y is sensitive and must be protected. Indeed, given a valid signature
σ = (c̃, z,h), the secret vector s1 can be recovered from z = y + cs1 for known or partial
knowledge of y [MUTS22]. A similar analysis applies to w0 which can lead to the recovery
of s2.2 As a result, the vector of polynomials w must be protected: w0 is directly derived
from w, and it is possible to solve the system of equations Ay = w for known A and w to
recover y in most cases (see Section 3.3 for details). This equation is similar to a Learning
With Rounding (LWR) instance, where w1 would be the public rounded value and w0
would be the error (which cannot leak). For the same reason, ρ′ must be protected since it
is used as a seed to obtain y. The same holds for K in the deterministic signing case.

tr

M

H µ

K

H ρ′

ρ ExpandA A

ExpandMask y

κ

◦ w Decompose

w1 w0

H c̃

SampleInBall

c

c

s1

y

◦

+ z

z

c

s2

w0

◦

+
−

r̃

r̃

t0

c

◦

+

w1

MakeHint h

Figure 2: Graphical representation of the signature generation. Input: sk,M , Output:
σ = (c̃, z,h). Curved arrows represent rejection checks. Red: sensitive. Blue: non-sensitive.

Next, when it comes to public or non-sensitive variables, both tr and t0, the message
M , the seed ρ, the hash µ and the matrix A are public. The sensitivity of the vector of

2 A recent ePrint report details an attack exploiting the leakage of w0 [BVC+23].

64 Protecting Dilithium against Leakage

polynomials w1 in the signing procedure is more delicate to analyze, since it depends on
the result of the boundary checks on z and r̃. If the boundary checks pass, for example
when a signature is accepted, then the zero-knowledge proof of security of Dilithium shows
that w1 does not leak any information. Informally, w1 can be reconstructed from a valid
signature, which in turn can be simulated in zero knowledge, and hence w1 contains
no more information than the signature itself. As a result, Dilithium does not need an
explicit LWR hardness assumption in this case, since it is at least as hard as its LWE
assumption. When the boundary checks do not pass, the reduction from LWR to LWE
does not apply immediately since the distribution on w1 changes slightly. Leaving w1
unmasked therefore requires the additional explicit assumption that the corresponding LWR
problem is hard. Since the number of rounded bits is significantly higher than the error
that is added in the LWE problem, we conjecture that w1 does not require side-channel
countermeasures. The same expectation was also shared by Vadim Lyubashevsky in a
personal communication and publicly during RWPQC23. We leave its further investigation,
e.g., in the light of the recent [DFPS23], as an interesting scope for further investigations.
In order to be conservative, we nevertheless study the option of additionally protecting w1
in Subsection 6.4. For the rest, the challenge c can be left unprotected since it is derived
from a one-way hash of w1 and public inputs. And once the bound checks on z and r̃
(discussed further in the next paragraph) have passed, the hint vector can be made public
since it does not contain any sensitive information. Indeed, in the simplified version of
Dilithium which does not involve the hints or the public key compression, all information
that would be given by the hints is already contained in the returned valid signature and
the public key. The checks on ct0 and h are needed for correctness only.

Finally, regarding z and r̃, both must remain protected until the bound checks on both
have passed. This implies the need for a secure bound check algorithm. After successful
bound checks, they do not leak information about other sensitive values and can be leaked
to the adversary.3 For z this is trivial, as it is part of the signature. In the case of r̃, this
can be shown by the equation:

Az− ct = w− cs2 = αw1 + r̃.

Indeed, for a valid signature, the values A, z, c, t, and w1 are not sensitive and α is a
known parameter of the algorithm. Therefore, r̃ can be computed using only public values,
so there is no need to keep it protected after a successful signing process. A public r̃ is
quite handy, because it allows us to compute the hint h completely on public data.

3.3 Differences with [MGTF19]
Most of our claims made above do align with the ones made in [MGTF19]. However, our
conclusions on w and r̃ slightly differ, which we discuss in the following.

Protecting w. First we look at w, in particular at the system of equations that produces
it: Ay = w. It is possible to solve this system for y, if the matrix A has one more row
than columns. This is the case for NIST security levels 3 and 5, where A has dimensions
6× 5 and 8× 7 respectively. Even a simple solver is able to compute the sensitive y in less
than two minutes on a laptop, with original Dilithium parameters.4 For level 2, since the

3 This refers to the rejection checks on z and r̃. The one on h is not sensitive.
4 First, the polynomials of the first column of A are reduced to monic form via Gaussian elimination

on the coefficients. Then, the fact that aijXk ·Xn−k = −aijX0(mod Xn + 1) is used to eliminate all but
one polynomial in the first column. The remaining polynomial then allows us to eliminate all others in the
first row, from column 2 onwards. The procedure is repeated on the second column, etc. The solver was
implemented in Matlab and tested with the parameters given in [DLL+17] for security levels 3 and 5.

Azouaoui et al. 65

matrix A is square (of dimensions 4× 4) and random, it is most likely invertible.5 Hence,
with knowledge of w, y can be computed simply as y = A−1 ·w. This shows that w must
be protected, contrary to what was previously proposed in [MGTF19].

Unmasking r̃. Before we look at r̃ we need to address a variation of the signing procedure
in Dilithium. The original pseudocode for the signing algorithm described in [DLL+17]
only keeps the output w1 from Decompose(w). Then, instead of r̃ = w0 − cs2 it computes
r = w−cs2. The rejection check on r̃ is done on r0, which comes from Decompose(r). Also,
the MakeHint function works slightly different and takes r, c, t0 as input (but produces the
same exact output h). In [MGTF19], this r-version is used while the r̃-version is never
mentioned. However, considering the equation:

r = w− cs2 = αw1 + w0 − cs2 = αw1 + r̃.

we can see that r and r̃ can be calculated from each other using the public values w1
and α. So any consideration regarding the sensitivity classification of one of these values
automatically applies to the other one as well. In [MGTF19], the value r is never unmasked
which means that the calculation of the hint h must be protected against side-channel
attacks. But as we explained above, r̃ can be recreated from public values after a valid
signature output. So we consider r̃ as public after the checks on z and r̃.

3.4 Differences with [ABC+22]
In this previous version of our results, a finer-grain sensitivity analysis was proposed,
suggesting that the computation of cs1 + y = z could only require security against SPA. It
was in particular conjectured that an intermediate attack path targeting this computation
would be hard, the investigation of which being left as an open problem. However, it
appears that the analogy between the multiplication cs1 and a variant of “hard physical
learning problem” similar to [DMMS21], which would back up this conjecture, does not
hold. The problem, already glimpsed in [ABC+22], is that c and s1 are not uniformly
distributed and have small norm, while the hardness of hard physical learning problems
leverages uniform secrets so that computing the multiplication leads to modular reductions.
Combined with the fact that when the signature is correct, the knowledge on z can be used
to directly transfer information on y into information on the output of the multiplication,
it implies that y and z actually need to be protected against DPA. As a result, Dilithium
has less opportunities of levelling and its sensitivity analysis can be simplified into the mix
of unprotected and DPA protected operations that we now use.

4 Improved masked gadgets
In this section, we describe the techniques used for masking Dilithium. First, we recall
some standard notions of masking along with the notations used in this paper. Then,
we provide a set of new gadgets dedicated to Dilithium operations. For each of them,
we justify their correctness and discuss their probing security. Finally, we discuss their
instantiation in the case of the different parameter sets of Dilithium.

Concretely, these gadgets are essentially relying on standard approaches tailored to the
Dilithium use case and most of our optimizations are obtained from carefully selecting
the type of masking (i.e., Boolean or arithmetic) We in particular rely on the recently
improved masking conversion proposed in [BC22] for this purpose.

5 More precisely, since the entries of A are elements of R, and R contains qn = 8380417256 elements, it
is highly unlikely that two rows of A are linearly dependent. Therefore, it almost always holds that the
determinant of A is non-zero and an inverse matrix exists.

66 Protecting Dilithium against Leakage

4.1 Masking background
Masking is a popular countermeasure against side-channel attacks. It consists in splitting
any sensitive variable x into d shares [CJRR99]. Concretely, d − 1 shares are chosen
uniformly at random. Hence, any subset of d− 1 shares remains independent of the secret
x, forcing the adversary to exploit d shares simultaneously to extract sensitive information.
This property must be maintained during the entire execution of the masked circuit. This
is formalized in the probing model, ensuring that the adversary learns no information
about the secret by having access to d− 1 intermediate variables [ISW03].

In lattice-based cryptography, two types of masking are used. The first one is Boolean
masking. In such a case, the sharing of a k-bit Boolean variable x is written as xB,k

and satisfies the property that x =
⊕d−1

i=0 xB,ki where xB,ki is the i-th share of x. The
notation xB,k[j] denotes the sharing of the j-th bit of x. Boolean masking is typically
used for protecting symmetric primitives such as hash functions. The second one is
arithmetic masking. In such a case, the sharing of a variable x ∈ Zq is expressed as xAq

such that x =
∑d−1
i=0 x

Aq
i mod q where x

Aq
i is the i-th share of x. Arithmetic masking is

typically used to perform polynomial operations such as additions and multiplications.
Since both arithmetic and Boolean masking are used to protect lattice-based cryptography,
gadgets are required to convert masking from one type to another. To convert from
arithmetic to Boolean masking, we use SecA2BModpdq . Similarly to converting from Boolean
masking to arithmetic masking, we use SecB2AModpdq . Eventually, we also leverage the
gadget SecAddModpdq that performs a modular addition operating on inputs protected with
Boolean masking. We refer to [BC22] for the implementation of these algorithms.

In this work, probing security is ensured thanks to the Probe Isolating Non Interference
(PINI) security notion [CS20]. Fulfilling PINI ensures probing security and the composition
of PINI gadgets is PINI as well. This means that PINI gadgets can be composed (without
refresh) and the resulting circuit is probing secure. Since the new gadgets we propose
can be expressed as a composition of PINI gadgets previously proposed by Bronchain and
Cassiers, it directly implies that they are PINI and therefore probing secure.

4.2 SecLeq

We first introduce SecLeqdψ
(
xB,k

)
described in Algorithm 4. It outputs a bit b equal to 1

if the input Boolean sharing of the k-bit variable x is less than or equal to a bound ψ.

Algorithm 3 SecUnMaskdk
(
xB,k

)
Input: Boolean sharing xB,k with 0 ≤ x < 2k.
Output: Output the k-bit unmasked value x.

1: yB,k ← Refreshdk
(
xB,k

)
. Refresh based on the ISW multiplication [CS21, Algorithm 3].

2: x←
⊕d−1

i=0 xB,ki

Algorithm 4 SecLeqdψ
(
xB,k

)
Input: Boolean sharing xB,k with 0 ≤ x < 2k and ψ ≥ 0.
Output: For 0 ≤ ψ < 2k − 1, public bit b with b = 1 if x ≤ ψ and b = 0 otherwise. If ψ ≥ 2k − 1,

trivially returns b = 1.

1: x′B,k+1 ← SecAdddk+1
(
xB,k, 2k+1 − ψ − 1

)
2: b← SecUnMaskd1

(
x′B,k+1[k]

)

Azouaoui et al. 67

Correctness. We next detail the correctness of Algorithm 4 for the case of 0 ≤ ψ < 2k−1.
The first step in SecLeq consists in doing an addition of x with the (k + 1)-bit two’s
complement representation of −(ψ+ 1) to obtain x′ = x−ψ− 1. As a result, the output b
must be set to 1 only if x′ is strictly negative. Because of the input conditions 0 ≤ x < 2k
and 0 ≤ ψ < 2k − 1, the resulting x′ is included in −2k ≤ x < 2k which fits in a k + 1-bit
two complement representation, hence no overflow occurs in the subtraction. The second
step consists in unmasking the (k + 1)-th bit of x′ which corresponds to the sign bit of the
two’s complement representation. Eventually, the case of ψ ≥ 2k − 1 is trivial. Indeed,
x ≤ 2k − 1 hence x is always smaller or equal to ψ.

Proposition 1. Algorithm 4 is PINI if b is public.

Proof. SecUnMask is PINI as a consequence of [CGMZ23, Lemma 2].6. Therefore, if b is
public, Algorithm 4 is a composition of PINI gadgets.

Usage in Dilithium. SecLeq is not a high-level component of Dilithium but is instead
used as a building block in Algorithm 5 and Algorithm 6. We note that the SecAdddk+1
in SecLeq can be generically implemented with the full-adder based addition proposed
in [BC22, Algorithm 6]. In the context of Dilithium, the added constant is public and fixed
by the parameter set, enabling possible optimization of the adder taking into account the
bits of the constant as well as the fact that only the sign bit (and so all the intermediate
carries) must be explicitly computed. These optimizations depend on the constant and
can lead to the saving of multiple SecAnd’s and XOR’s.

4.3 SecBoundCheck

Algorithm 5 describes SecBoundCheckdq,λ0,λ1

(
xAq

)
which returns a bit b if the input

arithmetic sharing xAq satisfies the property −λ0 ≤ x ≤ λ1 mod q.

Algorithm 5 SecBoundCheckdq,λ0,λ1

(
xAq

)
Input: Arithmetic sharing xAq , integer q < 2k and λ0 + λ1 < q with λ0 ≥ 0 and λ1 ≥ 0.
Output: Bit b with b = 1 if −λ0 ≤ x ≤ λ1 mod q, b = 0 otherwise.

1: x′Aq
0 ← x

Aq
0 + λ0 mod q . b = 1 iff 0 ≤ x′ ≤ λ1 + λ0 mod q

2: x′B,k ← SecA2BModpdq
(
x′Aq

)
3: b← SecLeqdλ0+λ1

(
x′B,k

)

Correctness The first step in Algorithm 5 is to add λ0 to the input sharing of x resulting in
a sharing of x′. As a result, the output bit b will be set to one if and only if 0 ≤ x′ ≤ λ0 +λ1
mod q. The second step is to check that condition thanks to SecLeq. To do so, the
arithmetic sharing x′Aq of x′ is converted to a Boolean sharing x′B,k thanks to SecA2BModp.
The resulting sharing fulfills the input conditions of SecLeq. Indeed, (x′ mod q) < q and
q < 2k implies x′ < 2k. Additionally, since λ0 and λ1 are positive integers, we ensure that
λ0 + λ1 ≥ 0. The returned bit by SecBoundCheck is the one returned by SecLeq.

Proposition 2. Algorithm 5 is PINI.

Proof. The first addition is applied only on the first share hence PINI. SecA2BModpdq is PINI
by [BC22, Proposition 4], and Algorithm 4 is PINI by Proposition 1. Hence, Algorithm 5
is PINI since it is the composition of PINI gadgets.

6 Refresh is (d− 1)-free-SNI [CS21] Therefore, all its outputs and any set of at most t probes inside
the gadget can be simulated by knowing its output and t of its input shares.

68 Protecting Dilithium against Leakage

Usage in Dilithium. SecBoundCheck can be used to perform both rejection checks ‖z‖∞ <
γ1 − β and ‖r̃‖∞ < γ2 − β, where γ1, γ2 and β are defined by Dilithium specifications
(see Table 1). In the first case, SecBoundCheck is instantiated with λ0 = λ1 = γ1 − β − 1,
where the −1 is due to the strict inequality in the norm check. Similarly, in the second
case, SecBoundCheck is instantiated with λ0 = λ1 = γ2 − β − 1.

4.4 SecSampleModp

Algorithm 6 describes SecSampleModp which samples uniformly x over the range −φ0 ≤
x ≤ φ1 mod p and outputs an arithmetic sharing when provided with a masked uniform
randomness stream (xB,k0 ,xB,k1 , . . .).

Algorithm 6 SecSampleModpdq,φ0,φ1

(
xB,k0 ,xB,k1 , . . .

)
Input: Bounds φ0 and φ1 with φ0 ≥ 0, φ1 ≥ 0 and φ0 + φ1 < q.
Output: Arithmetic sharing xAq with uniformly distributed x such that −φ0 ≤ x ≤ φ1 mod q.

1: k ← dlog2(φ0 + φ1 + 1)e
2: i← 0
3: while ¬SecLeqdφ0+φ1

(
xB,ki

)
do

4: i← i+ 1
5: xAq ← SecB2AModpdq

(
xB,ki

)
6: xAq [0]← xAq [0]− φ0 mod q

Correctness. We first note that the output sharing should be uniform on a continuous
range [−φ0, φ1] which contains φ0 + φ1 + 1 integers. This range can be represented
with k-bits such that φ0 + φ1 + 1 ≤ 2k. The first step in Algorithm 6 is to convert its
uniformly distributed input bits into shares xB,ki while the obtained x is strictly larger
than φ0 + φ1. This inequality is checked by leveraging SecLeq described in Algorithm 4.
Once the inequality is not satisfied, the obtained x is uniformly distributed on the range
0 ≤ x ≤ φ0 +φ1. The Boolean sharing of x is then converted into an arithmetic sharing xAq .
Finally, −φ0 mod q is added to this arithmetic sharing, resulting in x being uniformly
distributed over −φ0 ≤ x ≤ φ1 mod q.

Proposition 3. Algorithm 6 is PINI assuming that whether each xi satisfies xi > φ0 +φ1
is public information and that xi∗ ≤ φ0 + φ1 for some integer i∗.

Proof. The assumptions imply that the output value of the SecLeq gadget calls are public
and that the gadget terminates with the number of iterations being public. Therefore,
the gadget SecSampleModp can be viewed as a circuit composed of PINI gadgets, hence
Algorithm 6 is itself PINI.

Usage in Dilithium. SecSampleModp is used during both for key generation and signing.
First, during ExpandS in key generation, a secret key coefficient x in s1 or s2 is sampled such
that −η ≤ x ≤ η where η ∈ {2, 4} depending on the Dilithium parameter set. This sampling
can be masked with SecSampleModpdq,η,η (·). For these parameters, rejections can occur and
a fresh x passes the SecLeq check with probability 5

8 and 9
16 , respectively. Second, during

ExpandMask signature generation, a coefficient x of y is sampled such that −γ1 < x ≤ γ1
where γ1 is a power of two such that γ1 ∈ {217, 219} depending on the parameter set. As
a result, this sampling can be masked thanks to SecSampleModpdq,γ1−1,γ1

(·). For these
parameters, no resampling of x is required. Indeed, SecLeqd2γ1−1 (·) is used which satisfies
the trivial condition φ ≥ 2k − 1 since φ = 2γ1 − 1. The k must not be evaluated at run

Azouaoui et al. 69

time since it is directly derived from the Dilithium parameter set. As an example for the
ExpandMask execution during signature generation, k ∈ {18, 20} depends on the parameter
set. We note that in both ExpandS and ExpandMask, the x is sampled from the output of
a hash function, which is most efficiently protected using Boolean masking. This explains
why we consider only sampling in Boolean domain.7 Moreover, whether the samples have
to be rejected is public information in the original security proof of Dilithium.

4.5 SecDecompose

The SecDecompose gadget presented in Algorithm 7 enables to compute the decomposition
(w1, w0) of a coefficient w such that w = αw1+w0 mod q with w0 = w mod±α. Concretely,
we leverage the fact that w1 can be leaked to the adversary since it is computed during
signature verification, and hence must not be protected against side-channel attacks. The
first step of our gadget is to derive w1 from wAq . Then, w0

Aq is obtained by computing
w0

Aq = wAq − α · w1 mod q. To the best of our knowledge, there is no generic and
efficient method for a masked division to compute w0

Aq divided by α to get w1. Hence,
we next specialize the extraction of w1 to the different parameter sets of Dilithium.

Algorithm 7 SecDecomposedq,α
(
wAq

)
Input: Arithmetic sharing wAq , prime integer q with q < 2k integer α with 0 < α < q and

α = 2γ2.
Output: Arithmetic sharing w0

Aq and integer w1 such that w = αw1 + w0 mod q.

1: if NIST Level 3 or Level 5 then
2: bAq ← wAq + γ2 mod q
3: b′Aq ← α−1 · bAq − 1 mod q
4: b′B,k ← SecA2BModpdq

(
b′Aq

)
5: w1

B,k′ ← b′B,k[[0, k′[]
6: else . NIST Level 2
7: w1

B,k′ ← SecCompressdq,−α−1

(
wAq

)
8: w1 ← SecUnMaskdk′

(
w1

B,k′
)

9: w0
Aq ← wAp − α · w1 mod q

Correctness Level 2. For the NIST level 2 parameters of Dilithium, we have α = (q−1)/44.
Hence, α−1 = −44 mod q. For these parameters, w1 can be extracted by performing a
division with its reminder such that:

bαw1 + w0

α
e = b(αw1 + w0) · −α

−1

q − 1 e, (1)

≈ b(αw1 + w0)−α
−1

q
e, (2)

which in turn can be performed by using the Compress function defined as:

Compress(x, δ, q) = bx · δ
q
e mod δ, (3)

7 An alternative solution is to leverage arithmetic to arithmetic conversion. It would require to first
generate a random sharing xAφ0+φ1 resulting in a uniform x modulus φ0 + φ1. Then, that sharing of x
must be converted to arithmetic sharing with modulus q such as xAq . Yet to our knowledge, there exists
no arithmetic-to-arithmetic conversion more efficient than the combination of SecLeq and SecB2AModp.

70 Protecting Dilithium against Leakage

for which a masked version at any order is presented in [CGMZ23]. The Compress function
can be used since −α−1 � q. Hence, the error does not have an impact on the results.
This fact has been checked exhaustively for all possible values of w mod q.8

Correctness Level 3 & Level 5. Next, we check the correctness of SecDecompose for
NIST level 3 and level 5 parameters. In such cases, α = (q − 1)/16. Hence, α−1 = −16
mod q. The first steps in Algorithm 7 execute the following processing to w in order to
derive b′ such that;

b′ = α−1 · ((αw1 + w0) + α

2)− 1 mod q, (4)

which can be alternatively expressed as:

b = w1 + α−1 · (w0 −
α

2) mod q, (5)

= w1 + 16 · (α2 − w0) mod q. (6)

There, we note that α
2 − w0 is strictly positive thanks to the definition of Decompose.

Indeed, it follows from −α/2 ≤ w0 ≤ α/2. As a result, w1 can simply be contained in
the 4 LSBs of the binary representation of b′. This is done thanks to the combination of
SecA2BModpdq and just keeping the 4 LSBs of the output.9

Proposition 4. Algorithm 7 is PINI if w1 is public.

Proof. If w1 is public, Algorithm 7 is the composition of PINI gadgets hence it is PINI.

5 Implementation
We now discuss the different designs we compare later in Section 6. We describe the
implementations for both the deterministic and the randomized versions of Dilithium. All
our results are based on modified versions of the Dilithium implementations provided
by the PQM4 project [KRSS]. These are C implementations with optimized assembly
for polynomial arithmetic and hash functions. In order to prevent side-channel attacks,
we follow our previous sensitivity analysis that distinguishes sensitive and non-sensitive
operations, and we make use of masking with the gadgets presented in Section 4 and
the underlying masked additions and conversion gadgets such as SecA2BModp, SecAdd,
SecAddModp or SecB2AModp for all sensitive ones. We rely on their state-of-the-art bitsliced
implementations introduced by Bronchain and Cassiers, which offer (to the best of our
knowledge) the best performances on Cortex-M4 [BC22]. Eventually, we use the same
masked Keccak as the one provided in [BC22]. We additionally leverage arithmetic masking
with q modulus for all the polynomial operations and then apply share-wise the optimized
polynomial arithmetic from the PQM4 implementations. Interestingly, the smaller modulus
q′ approach for the NTT in s1 ◦ c proposed in [AHKS22] could also be used. However, it
requires arithmetic to arithmetic masking conversion from q′ to q to perform the addition
with masked y. We leave the study of such a trade-off for future works.

5.1 Deterministic Dilithium
We use a masked Keccak for H(K||µ) and within ExpandMask. In ExpandMask, the random-
ness generation in SecSampleModp (see Algorithm 6 Line-3) is performed with a call to the

8 [CGMZ23] only considers δ equals a power of two. We take δ as an arbitrary positive number.
9 We note that only the LSBs of the SecA2BModpdq have to be explicitly computed. As a result, this can

save several SecAnd when the SecA2BModpdq from [BC22] is used.

Azouaoui et al. 71

masked XOF. The multiplication Ay is performed on each of the shares of y independently
by leveraging the optimized arithmetic operations in [KRSS]. For the w decomposition, we
leverage the new gadget SecDecompose from Algorithm 7 with the appropriate parameters
given in Subsection 4.5. The protected rejections ‖z‖∞ < γ1 − β and ‖r̃‖∞ < γ2 − β are
implemented thanks to SecBoundCheck presented in Algorithm 5. Eventually, similarly
to SecLeq in Algorithm 5, we unmask the public signature z and r̃ using the SecUnMask
gadget once all the bound checks are passed, to maintain probing security.

5.2 Randomized Dilithium
The implementation we consider of the randomized version is similar to the deterministic
one previously described. The main difference lies in the sampling of the randomness y
within ExpandMask. The randomized version of Dilithium enables more freedom in the
generation of the uniform polynomial vector y compared to the deterministic one. For
the deterministic version, the randomness sampling in Algorithm 6 is based on secured
XOF (Keccak) which can be a performance bottleneck (as detailed in Table 2). For the
randomized version, a first option (which follows the specifications but does not bring
performance improvements) is to generate ρ′ with a TRNG and to use the masked XOF to
derive y. Alternatively, one can directly generate the shares of y with the TRNG. This
does not follow the specifications of Dilithium but saves the cost of a masked XOF and does
not weaken the security of Dilithium as y remains uniform. We next evaluate this option.10

6 Benchmarks
In this section, we report the performances of the Dilithium implementations described
in Section 5. We first detail the benchmarking setup used for this purpose. Second, we
report the performance improvements provided by the new gadgets of Section 4 compared
to the ones of [MGTF19]. Then, we evaluate the cost of each individual operation in
Dilithium’s signature generation (without considering the rejections). Based on this,
we compare the performance of both deterministic and randomized versions when side-
channel countermeasures are required. Performances are given for Dilithium with Level-3
parameters (see Table 1), but the general conclusions apply to all security levels.

6.1 Benchmarking setup
In order to evaluate the execution time of our implementations, we use a similar benchmark-
ing setup as the one provided in [BC22], which itself is based on the PQM4 benchmarking
initiative for PQC signatures and KEMs [KRSS]. More precisely, the benchmarks are per-
formed with the NUCLEO-L4R5ZI demonstration board. The cycle counts are measured
thanks to the cycle-accurate counter DWT_CCYCNT. With the considered clock configura-
tion, the TRNG of the microcontroller provides 32 fresh random bits every 53 Cycles.
This TRNG is used as for the generation of the randomness masking as well as for the
ExpandMask in the randomized version of Dilithium that we evaluate.

6.2 Gadgets improvements
We first compare the gadgets presented in Section 4 and the ones proposed by Migliore et
al. in [MGTF19], and we report the results in Figure 3. To enable a fair comparison, we
implemented the gadgets as described in [MGTF19] by leveraging the PINI property and
the bitslice gadgets from [BC22] for SecAdd, SecAddModp, SecA2BModp and SecB2AModp.

10 Yet another alternative, in case of weak TRNG, is to generate shares of y by applying the unmasked
XOF to TRNG outputs. This option saves the cost of masking the XOF.

72 Protecting Dilithium against Leakage

As a result, the implementation of [MGTF19] we consider does not contain extra refresh
gadgets (as it is PINI). We note that [MGTF19] uses a parameter w reflecting the bus
width of the target CPU, which implies that operations might be performed on more
bits than necessary. In our implementation, we do not use that parameter w as the
operations are performed on the exact necessary number of bits as allowed by bitslicing.
Similarly, [MGTF19] performed masked SecAnd with public values to isolate bits on secret
variables. Individual bits are isolated in our implementations thanks to bitslicing.

SecSampleModp. Both versions of SecSampleModp as used in the signature generation
are similar. The only difference is that the subtraction with φ0 is performed with Boolean
masking in [MGTF19] and with arithmetic masking in Algorithm 6. As a result, our new
gadget saves the cost of one SecAdd by replacing it by a share-wise addition. This results
in a speedup of an approximate factor 1.2, as highlighted in Figure 3b.

SecBoundCheck. Our SecBoundCheck also simplifies the one proposed in [MGTF19]
where a SecA2BModp is performed followed by two SecAdd’s.11 Our construction replaces
one of these additions by one arithmetically masked addition, which is almost free. This
leads to a performance improvement by a factor ≈ 1.1, as reported in Figure 3d.

SecDecompose. Finally, we compare the two implementations of SecDecompose. Inter-
estingly, the main improvement comes from the fact that we first extract w1 efficiently
and then unmask it to compute w0. This improvement relies on the fact that the higher
order bits (e.g., w1) of the SecDecompose gadget is considered as sensitive by Migliore
et al. while it is not necessary as detailed in the revisited sensitivity analysis detailed in
Section 3.3. In short, the implementation based on [MGTF19] starts with a SecA2BModp,
continues with several (≈ 10) additions and finally performs a SecB2AModp to obtain the
arithmetic sharing of w0. The new gadget only requires a single SecA2BModp and some
share-wise operations with arithmetic masking, and runs ≈ 3.8 times faster.

We note that for Level-2 parameters, the α changes and the gadget from Migliore et al.
does not apply. Our implementation of SecDecompose for Level-2 parameters is slightly
slower than for Level-3 and Level-5. Indeed, in the SecCompress, the SecA2BModp must
be performed on a slightly larger modulus increasing the cost by a factor ≈ 1.2.

6.3 Deterministic vs. randomized performances
The performances of each operation within both versions of Dilithium are reported in
Table 2. We observe that the randomized signature generation is more efficient than
the deterministic one. For two shares, 24 005 kCycles are needed for the deterministic
version vs. only 14 282 kCycles for the randomized one. Hence, randomization offers an
improvement by a factor ≈ 1.68. Similarly, for 8 shares, the randomized version is ≈ 1.77×
faster than the deterministic one. The run time of unprotected Dilithium3 signature
generation is 3224 kCycles [KRSS]. Hence, the two-share version is 4.3× slower than the
unprotected implementation in the randomized case and 7.32× in the deterministic case.
Most of the difference between the two Dilithium versions is due to ExpandMask, which is
composed of two parts as detailed in Algorithm 6. The first one is sampling the uniform y
in Boolean masking. This operation is performed with a masked XOF in the deterministic
case, and with the on-board TRNG in the randomized case. The second part is to perform
a SecB2AModp in order to produce an arithmetic sharing. This operation is similar for
both cases. In the deterministic case, the ExpandMask represents 56 % of the total run

11 Only SecBoundCheck is described for Boolean sharing in [MGTF19]. Here we assume that a SecA2BModp
is performed before the end to match Algorithm 5 specifications.

Azouaoui et al. 73

2 4 6 8 10 12 14 16

105

106

107

Number of shares

C
yc
le
s

new

[MGTF19]

(a) SecSampleModp comparison.

2 4 6 8 10 12 14 16

1

1.2

1.4

Number of shares

G
ai
n

new

(b) SecSampleModp gains.

2 4 6 8 10 12 14 16

105

106

107

Number of shares

C
yc
le
s

new

[MGTF19]

(c) SecBoundCheck comparison.

2 4 6 8 10 12 14 16

1

1.2

1.4

Number of shares

G
ai
n

new

(d) SecBoundCheck gains.

2 4 6 8 10 12 14 16

105

106

107

Number of shares

C
yc
le
s

new

new∗

[MGTF19]

(e) SecDecompose comparison.

2 4 6 8 10 12 14 16

2

4

6

Number of shares

G
ai
n

new

new∗

(f) SecDecompose gains.

Figure 3: Comparison between our new gadgets and [MGTF19] for NIST Level-3 parame-
ters. The label new∗ corresponds to the version where w1 remains masked.

74 Protecting Dilithium against Leakage

Table 2: Performances of the masked Dilithium Level-3 components for randomized and
deterministic versions: number of clock cycles are given when running on a STM32L4R5
and using the TRNG for generating the masking randomness (32-bit randomness every 53
Cycles). Reported numbers are in kCycles. The numbers are for a single execution of
the component (and do not consider repetitions due to rejections). Rand. ∗: The vector
polynomial y is sampled from the TRNG and not from a XOF.
d 2 4 6 8

Deter. Rand.∗ Deter. Rand.∗ Deter. Rand.∗ Deter. Rand.∗
Sign 23,613.8 13,891.4 68,557.9 39,064.5 128,280.9 73,905.4 199,567.4 111,515.4

NTT(s) 185.4 185.4 370.7 370.7 556.3 556.2 741.7 741.7
ExpandA 2,160.7 2,160.7 2,160.7 2,160.7 2,160.7 2,160.7 2,160.7 2,160.7
H(K||µ) 370.1 0.0 1,126.7 0.0 2,082.8 0.0 3,377.8 0.0
ExpandMask 12,551.1 3,198.6 38,068.8 9,702.2 70,788.2 18,514.6 113,185.0 28,498.6

SecB2AModp 3,350.2 3,104.8 9,993.8 9,516.7 18,967.1 18,235.5 29,081.0 28,128.4
Sampling 9,193.9 79.7 28,062.1 165.9 51,802.5 253.7 84,079.6 339.0

Ay 382.2 382.3 764.4 764.4 1,146.7 1,146.6 1,528.8 1,528.8
Decompose 2,369.0 2,369.1 8,142.3 8,142.3 16,382.8 16,376.8 25,076.9 25,080.8
H(µ||w1) 94.9 94.9 94.9 94.9 94.9 94.9 94.9 94.9
y + s1c 174.9 174.9 349.7 349.7 524.6 524.6 699.5 699.5
w0 − s2c 209.9 210.0 419.6 419.7 629.4 629.5 839.3 839.4
SecBoundCheck 4,354.6 4,354.6 15,472.8 15,472.8 31,234.4 31,221.3 48,376.4 48,386.4
UnMask 378.3 378.4 1,185.7 1,185.7 2,260.7 2,260.6 3,046.8 3,047.0

time from which 74 % are due to the masked XOF. As the randomized Dilithium does not
require this masked XOF, only 25 % are imputable to ExpandMask.

The cost of the other operations are similar for both versions. Concretely, the overall cost
is dominated by the operations that have quadratic overheads in the number of shares (even
for d = 2). These operations are H(K||µ), ExpandMask, SecDecompose, SecBoundCheck
and UnMask. We note that for the deterministic version, the most expensive operation
is ExpandMask, while it is SecBoundCheck for the randomized version. Additionally, the
cost of polynomial arithmetic (NTT(s), y + s1c and w0 − s2c) is limited. As expected, the
cost of the public matrix expansion ExpandA remains constant with the number of shares.
Eventually, we note that the SecB2AModp is slightly more expensive in the deterministic
case, as it includes the linear overheads needed in order to map the output of the masked
XOF into the correct bitslice representation. This operation is not needed in the randomized
case as the output of the TRNG already has the appropriate layout.

More generally, we also stress that the randomized version does not allow the adversary
to average traces for the same inputs, which is beneficial for security. The combination of
these observations and performance gains naturally calls for considering the randomized
Dilithium in application contexts where side-channel attacks are a concern.

6.4 Protecting w1 with masking
We finally discuss the cost of a more conservative implementation keeping w1 masked
before the bound checks on z and r̃ are passed. The resulting block diagram for signature
generation is given in Figure 4, where the only difference with Figure 2 is that both w1 and
H(µ||w1) are in red (i.e., sensitive). This change implies that w1 must remain masked in
SecDecompose (see Algorithm 7). Hence, SecDecompose is adapted to keep w1 masked by
performing a SecB2AModp on its Boolean sharing (instead of unmasking). The computation
of w0 can then be applied share-wise similarly as in Algorithm 7, Line-9. The resulting
increase in the run time of SecDecompose is detailed in Figure 3.

The impact of protecting w1 on the full signature is detailed in Table 3. The main
difference with Table 2 is that the cost of SecDecompose increases as discussed above. A
second difference is that the hash function H(µ||w1) now also needs to be masked. As a
result, this hashing represents a total of 9 % of the run time for deterministic signatures,

Azouaoui et al. 75

tr

M

H µ

K

H ρ′

ρ ExpandA A

ExpandMask y

κ

◦ w Decompose

w1 w0

H c̃

SampleInBall

c

c

s1

y

◦

+ z

z

c

s2

w0

◦

+
−

r̃

r̃

t0

c

◦

+

w1

MakeHint h

Figure 4: Graphical representation of the signing procedure with masked w1, taking
as input sk,M and outputting σ = (c̃, z,h). Curved arrows represent rejection checks.
Red filled circles: sensitive variables. Blue: no side-channel protection required.

and 13.7 % for randomized ones. Hence, protecting w1 decreases the benefit of randomized
signatures, from 66 % of the run time when w1 does not need to be protected to 56 %
when it has. Overall, the run time of deterministic (resp., randomized) signatures increases
by a factor 1.3 (resp., 1.53) when we need to protect w1 with masking.

Table 3: Performance of the masked Dilithium Level-3 components for randomized
and deterministic versions with masked w1: number of clock cycles when running on a
STM32L4R5 and using the TRNG for generating the masking randomness (32-bit randomness
every 53 Cycles). Reported numbers are in kCycles. The numbers are for a single execution
of the component (does not consider repetitions due to rejections). Rand. ∗: The vector
polynomial y is sampled from the TRNG and not from a XOF.
d 2 4 6 8

Deter. Rand.∗ Deter. Rand.∗ Deter. Rand.∗ Deter. Rand.∗
Sign 30,254.8 20,532.1 88,912.9 59,512.8 166,748.8 112,397.1 259,743.1 171,692.1

NTT(s) 185.4 185.4 370.7 370.8 556.2 556.2 741.6 741.7
ExpandA 2,160.7 2,160.7 2,160.7 2,160.7 2,160.7 2,160.7 2,160.7 2,160.7
H(K||µ) 370.1 0.0 1,126.7 0.0 2,082.8 0.0 3,377.8 0.0
ExpandMask 12,551.3 3,198.6 38,057.4 9,712.6 70,783.2 18,514.4 113,185.7 28,495.5

SecB2AModp 3,350.3 3,104.8 9,982.3 9,528.9 18,962.0 18,235.4 29,081.7 28,126.1
Sampling 9,193.9 79.9 28,062.1 164.1 51,802.5 253.7 84,079.6 338.4

Ay 382.3 382.2 764.4 764.4 1,146.6 1,146.6 1,528.7 1,528.8
Decompose 6,527.5 6,527.4 20,767.0 20,813.1 40,448.2 40,447.9 61,779.3 61,790.4
H(µ||w1) 2,576.9 2,576.9 7,860.8 7,860.8 14,514.4 14,514.5 23,560.8 23,560.8
y + s1c 174.9 174.9 349.7 349.7 524.5 524.6 699.5 699.4
w0 − s2c 209.9 209.9 419.7 419.8 629.5 629.5 839.3 839.3
SecBoundCheck 4,354.7 4,354.7 15,447.0 15,471.9 31,221.1 31,221.1 48,380.3 48,389.1
UnMask 584.8 584.7 1,832.4 1,832.6 3,493.6 3,493.6 4,708.8 4,708.9

76 Protecting Dilithium against Leakage

7 Conclusion and open problems

In this work, we analyzed side-channel protected implementations of Dilithium by mixing
different contributions. First, we presented an updated sensitivity analysis for its key
generation and signing algorithms. Our results show that a previous work in this direction
was slightly flawed, with some parts leading to insecurities and other parts leading to
inefficiencies. Second, our new masking gadgets improve over the state-of-the-art, leading
to performance gains of factors up to of 3.8. They also fill gaps for which it was previously
unknown how to efficiently apply masking and we propose the first masking gadgets that
are compatible with all the Dilithium parameter sets. Overall, our analysis and benchmark
highlight that the randomized variant of Dilithium evaluated in this paper provides notably
better performances, thanks to additional flexibility in the sampling of random values.
In addition, it also offers a smaller side-channel attack surface as signatures cannot be
repeated. We therefore believe that it should be the default variant for embedded devices
when side-channel leakage needs to be taken into account.

These results lead to a number of natural open problems. First, they highlight that for
now, the leveling concept (i.e., the idea of protecting different parts of an implementations
with different countermeasures, in order to limit the overheads) cannot be fully exploited
for Dilithium, as initially thought (see the cautionary note in Section 1). For example,
most of the signature operations in our implementations need to be secure against DPA,
which requires (expensive) masked gadgets. Hence it is a natural open question to find out
whether more leveled implementations could be obtained, which could be considered in
different fashions. A light leveling option, directly applicable to Dilithium, would be to
try exploiting that even when masking, all operations may not leak in a similar manner.
For example, one could try leveraging the recent observation that prime masking is more
resilient to low-noise leakages than Boolean masking, and study whether the number
of shares in the Boolean and arithmetic masking used for protecting Dilithium against
leakage could be leveled [MMMS23]. A more ambitious direction would be to study how
to enable a stronger leveling again (i.e., mixing operations that require security against
SPA and operations that require security against DPA). One potential direction could be
to rely on hard physical learning problems like introduced in [DMMS21], possibly at the
cost of some design tweaks in Dilithium (e.g., in order to deal with the challenges raised
by the manipulation of non-uniform and low-norm secrets). In general, designing a PQ
signature scheme with a better performance vs. side-channel security tradeoff appears as
an interesting long-term goal. Besides, our work only focuses on side-channel attacks and
therefore raises the question of how to additionally protect Dilithium against fault attacks,
and whether its randomized version also provides (security or performance) benefits in
this context, which is yet another interesting direction for further research.

The source codes of the implementations described in this work are available from the
following link: https://github.com/uclcrypto/pqm4_masked/tree/master.

Acknowledgments.

François-Xavier Standaert is a senior research associate of the Belgian Fund for Scientific
Research (FNRS-F.R.S.). This work and its presentation have been funded in parts by
the ERC Consolidator Grant number 724725 (acronym SWORD) and the ERC Advanced
Grant number 101096871 (acronym BRIDGE).

https://github.com/uclcrypto/pqm4_masked/tree/master

Azouaoui et al. 77

References
[ABC+22] Melissa Azouaoui, Olivier Bronchain, Gaëtan Cassiers, Clément Hoffmann,

Yulia Kuzovkova, Joost Renes, Markus Schönauer, Tobias Schneider, François-
Xavier Standaert, and Christine van Vredendaal. Leveling dilithium against
leakage: Revisited sensitivity analysis and improved implementations. Fourth
PQC Standardization Conference, 2022.

[ABD+19] Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim
Lyubashevsky, John M Schanck, Peter Schwabe, Gregor Seiler, and Damien
Stehlé. Crystals-kyber algorithm specifications and supporting documentation.
NIST PQC Round, 3:4, 2019.

[ABH+22] Melissa Azouaoui, Olivier Bronchain, Clément Hoffmann, Yulia Kuzovkova,
Tobias Schneider, and François-Xavier Standaert. Systematic study of decryp-
tion and re-encryption leakage: The case of kyber. In COSADE, volume 13211
of Lecture Notes in Computer Science, pages 236–256. Springer, 2022.

[AHKS22] Amin Abdulrahman, Vincent Hwang, Matthias J. Kannwischer, and Daan
Sprenkels. Faster kyber and dilithium on the cortex-m4. In ACNS, volume
13269 of Lecture Notes in Computer Science, pages 853–871. Springer, 2022.

[BC22] Olivier Bronchain and Gaëtan Cassiers. Bitslicing arithmetic/boolean masking
conversions for fun and profit with application to lattice-based kems. IACR
Trans. Cryptogr. Hardw. Embed. Syst., 2022(4):553–588, 2022.

[BVC+23] Alexandre Berzati, Andersson Calle Viera, Maya Chartouni, Steven Madec,
Damien Vergnaud, and David Vigilant. A practical template attack on crystals-
dilithium. IACR Cryptol. ePrint Arch., page 50, 2023.

[CGMZ23] Jean-Sébastien Coron, François Gérard, Simon Montoya, and Rina Zeitoun.
High-order polynomial comparison and masking lattice-based encryption.
IACR Trans. Cryptogr. Hardw. Embed. Syst., 2023(1):153–192, 2023.

[CJRR99] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi. Towards
sound approaches to counteract power-analysis attacks. In CRYPTO, volume
1666 of Lecture Notes in Computer Science, pages 398–412. Springer, 1999.

[CS20] Gaëtan Cassiers and François-Xavier Standaert. Trivially and efficiently
composing masked gadgets with probe isolating non-interference. IEEE Trans.
Inf. Forensics Secur., 15:2542–2555, 2020.

[CS21] Jean-Sébastien Coron and Lorenzo Spignoli. Secure wire shuffling in the
probing model. In CRYPTO (3), volume 12827 of Lecture Notes in Computer
Science, pages 215–244. Springer, 2021.

[DFPS23] Julien Devevey, Pouria Fallahpour, Alain Passelègue, and Damien Stehlé. A
detailed analysis of fiat-shamir with aborts. IACR Cryptol. ePrint Arch., page
245, 2023.

[DLL+17] Léo Ducas, Tancrède Lepoint, Vadim Lyubashevsky, Peter Schwabe, Gregor
Seiler, and Damien Stehlé. CRYSTALS - dilithium: Digital signatures from
module lattices. IACR Cryptol. ePrint Arch., page 633, 2017.

[DMMS21] Sébastien Duval, Pierrick Méaux, Charles Momin, and François-Xavier Stan-
daert. Exploring crypto-physical dark matter and learning with physical
rounding towards secure and efficient fresh re-keying. IACR Trans. Cryptogr.
Hardw. Embed. Syst., 2021(1):373–401, 2021.

78 Protecting Dilithium against Leakage

[FO99] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric
and symmetric encryption schemes. In CRYPTO, volume 1666 of Lecture
Notes in Computer Science, pages 537–554. Springer, 1999.

[HHP+21] Mike Hamburg, Julius Hermelink, Robert Primas, Simona Samardjiska,
Thomas Schamberger, Silvan Streit, Emanuele Strieder, and Christine van
Vredendaal. Chosen ciphertext k-trace attacks on masked CCA2 secure kyber.
IACR Trans. Cryptogr. Hardw. Embed. Syst., 2021(4):88–113, 2021.

[HS01] Nick Howgrave-Graham and Nigel P. Smart. Lattice attacks on digital signature
schemes. Des. Codes Cryptogr., 23(3):283–290, 2001.

[ISW03] Yuval Ishai, Amit Sahai, and David A. Wagner. Private circuits: Securing
hardware against probing attacks. In CRYPTO, volume 2729 of Lecture Notes
in Computer Science, pages 463–481. Springer, 2003.

[KPP20] Matthias J. Kannwischer, Peter Pessl, and Robert Primas. Single-trace attacks
on keccak. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2020(3):243–268,
2020.

[KRSS] Matthias J. Kannwischer, Joost Rijneveld, Peter Schwabe, and Ko Stoffelen.
PQM4: Post-quantum crypto library for the ARM Cortex-M4. https://
github.com/mupq/pqm4.

[LS15] Adeline Langlois and Damien Stehlé. Worst-case to average-case reductions
for module lattices. Des. Codes Cryptogr., 75(3):565–599, 2015.

[LZS+21] Yuejun Liu, Yongbin Zhou, Shuo Sun, Tianyu Wang, Rui Zhang, and Jingdian
Ming. On the security of lattice-based fiat-shamir signatures in the presence of
randomness leakage. IEEE Trans. Inf. Forensics Secur., 16:1868–1879, 2021.

[MGTF19] Vincent Migliore, Benoît Gérard, Mehdi Tibouchi, and Pierre-Alain Fouque.
Masking dilithium - efficient implementation and side-channel evaluation. In
ACNS, volume 11464 of Lecture Notes in Computer Science, pages 344–362.
Springer, 2019.

[MMMS23] Loïc Masure, Pierrick Méaux, Thorben Moos, and François-Xavier Standaert.
Effective and efficient masking with low noise using small-mersenne-prime
ciphers. In EUROCRYPT (4), volume 14007 of Lecture Notes in Computer
Science, pages 596–627. Springer, 2023.

[MUTS22] Soundes Marzougui, Vincent Ulitzsch, Mehdi Tibouchi, and Jean-Pierre Seifert.
Profiling side-channel attacks on dilithium: A small bit-fiddling leak breaks it
all. IACR Cryptol. ePrint Arch., page 106, 2022.

[Nat] National Institute of Standards and Technology. Post-
quantum cryptography standardization. https://
csrc.nist.gov/Projects/Post-Quantum-Cryptography/
Post-Quantum-Cryptography-Standardization.

[PPM17] Robert Primas, Peter Pessl, and Stefan Mangard. Single-trace side-channel
attacks on masked lattice-based encryption. In CHES, volume 10529 of Lecture
Notes in Computer Science, pages 513–533. Springer, 2017.

[REB+22] Prasanna Ravi, Martianus Frederic Ezerman, Shivam Bhasin, Anupam Chat-
topadhyay, and Sujoy Sinha Roy. Will you cross the threshold for me? generic
side-channel assisted chosen-ciphertext attacks on ntru-based kems. IACR
Trans. Cryptogr. Hardw. Embed. Syst., 2022(1):722–761, 2022.

https://github.com/mupq/pqm4
https://github.com/mupq/pqm4
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization

Azouaoui et al. 79

[RJH+18] Prasanna Ravi, Mahabir Prasad Jhanwar, James Howe, Anupam Chattopad-
hyay, and Shivam Bhasin. Side-channel assisted existential forgery attack on
dilithium - A NIST PQC candidate. IACR Cryptol. ePrint Arch., page 821,
2018.

[RPBC20] Prasanna Ravi, Romain Poussier, Shivam Bhasin, and Anupam Chattopadhyay.
On configurable SCA countermeasures against single trace attacks for the
NTT - A performance evaluation study over kyber and dilithium on the ARM
cortex-m4. In SPACE, volume 12586 of Lecture Notes in Computer Science,
pages 123–146. Springer, 2020.

[RRCB20] Prasanna Ravi, Sujoy Sinha Roy, Anupam Chattopadhyay, and Shivam Bhasin.
Generic side-channel attacks on cca-secure lattice-based PKE and kems. IACR
Trans. Cryptogr. Hardw. Embed. Syst., 2020(3):307–335, 2020.

[SETA22] Chao Sun, Thomas Espitau, Mehdi Tibouchi, and Masayuki Abe. Guessing
bits: Improved lattice attacks on (EC)DSA with nonce leakage. IACR Trans.
Cryptogr. Hardw. Embed. Syst., 2022(1):391–413, 2022.

[UXT+22] Rei Ueno, Keita Xagawa, Yutaro Tanaka, Akira Ito, Junko Takahashi, and
Naofumi Homma. Curse of re-encryption: A generic power/em analysis on post-
quantum kems. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2022(1):296–322,
2022.

[VMKS12] Nicolas Veyrat-Charvillon, Marcel Medwed, Stéphanie Kerckhof, and François-
Xavier Standaert. Shuffling against side-channel attacks: A comprehensive
study with cautionary note. In ASIACRYPT, volume 7658 of Lecture Notes
in Computer Science, pages 740–757. Springer, 2012.

	Introduction
	Background
	Polynomial arithmetic notations
	Dilithium

	Sensitivity analysis
	Key generation sensitivity
	Signature generation sensitivity
	Differences with DBLP:conf/acns/MiglioreGTF19
	Differences with DBLP:journals/iacr/AzouaouiBCHKRSS22

	Improved masked gadgets
	Masking background
	SecLeq
	SecBoundCheck
	SecSampleModp
	SecDecompose

	Implementation
	Deterministic Dilithium
	Randomized Dilithium

	Benchmarks
	Benchmarking setup
	Gadgets improvements
	Deterministic vs. randomized performances
	Protecting w1 with masking

	Conclusion and open problems

