
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2023, No. 4, pp. 1–31. DOI:10.46586/tches.v2023.i4.1-31

Automatic Search of Meet-in-the-Middle
Differential Fault Analysis on AES-like Ciphers
Qingyuan Yu1,4, Xiaoyang Dong∗2,6,7, Lingyue Qin3,6, Yongze Kang1,4,

Keting Jia5,6, Xiaoyun Wang2,4,6 and Guoyan Zhang∗1,4,7

1 School of Cyber Science and Technology, Shandong University, Qingdao, China,
{yuqy,yzkang,guoyanzhang}@mail.sdu.edu.cn

2 Institute for Advanced Study, BNRist, Tsinghua University, Beijing, China,
{xiaoyangdong,xiaoyunwang}@tsinghua.edu.cn

3 BNRist, Tsinghua University, Beijing, China, qinly@tsinghua.edu.cn
4 Key Laboratory of Cryptologic Technology and Information Security, Ministry of Education,

Shandong University, Jinan, China
5 Institute for Network Sciences and Cyberspace, BNRist, Tsinghua University, Beijing, China,

ktjia@tsinghua.edu.cn
6 Zhongguancun Laboratory, Beijing, China

7 Shandong Institute of Blockchain, Jinan, China

Abstract. Fault analysis is a powerful technique to retrieve secret keys by exploiting
side-channel information. Differential fault analysis (DFA) is one of the most powerful
threats utilizing differential information between correct and faulty ciphertexts and
can recover keys for symmetric-key cryptosystems efficiently. Since DFA usually
targets the first or last few rounds of the block ciphers, some countermeasures against
DFA only protect the first and last few rounds for efficiency. Therefore, to explore
how many rounds DFA can affect is very important to make sure how many rounds
to protect in practice. At CHES 2011, Derbez et al. proposed an improved DFA
on AES based on MitM approach, which covers one more round than previous DFAs.
To perform good (or optimal) MitM DFA on block ciphers, the good (or optimal)
attack configurations should be identified, such as the location where the faults
inject, the matching point with differential relationship, and the two independent
computation paths where two independent subsets of the key are involved. In this
paper, we formulate the essential ideas of the construction of the attack, and translate
the problem of searching for the best MitM DFA into optimization problems under
constraints in Mixed-Integer-Linear-Programming (MILP) models. With the models,
we achieve more powerful and practical DFA attacks on SKINNY, CRAFT, QARMA, PRINCE,
PRINCEv2, and MIDORI with faults injected in 1 to 9 earlier rounds than the best
previous DFAs.
Keywords: Differential fault analysis · Meet-in-the-middle · Automatic search

1 Introduction
Fault analysis (FA), first introduced by Boneh et al. [BDL97] against RSA-CRT implemen-
tations, is one of the most powerful attacks on implementations of cryptographic primitives.
It allows the attacker to get additional side-channel information and achieve the key recov-
ery attacks in practical time. At CRYPTO 1997, Biham and Shamir [BS97] proposed the
differential fault analysis (DFA) on DES block cipher. Since then, various fault attacks were

∗Corresponding authors

Licensed under Creative Commons License CC-BY 4.0.
Received: 2023-04-15 Accepted: 2023-06-15 Published: 2023-08-31

https://doi.org/10.46586/tches.v2023.i4.1-31
mailto:yuqy@mail.sdu.edu.cn, yzkang@mail.sdu.edu.cn, guoyanzhang@mail.sdu.edu.cn
mailto:xiaoyangdong@tsinghua.edu.cn, xiaoyunwang@tsinghua.edu.cn
mailto:qinly@tsinghua.edu.cn
mailto:ktjia@tsinghua.edu.cn
http://creativecommons.org/licenses/by/4.0/

2 Automatic Search of Meet-in-the-Middle Differential Fault Analysis

introduced, such as (statistical) ineffective fault analysis [Cla07, DEK+18, DEG+18], colli-
sion fault analysis [BK06, Hem04], statistical fault attacks [FJLT13, DEK+16], fault inten-
sity analysis [LSG+10], persistent fault attack [ZLZ+18], fault template attack [SBR+20],
fault correlation analysis [SMC21], and other fault attacks [JSC+14, DPdC+15, BHJ+18,
TLG+15, SHS16, HS13, GKPM18, MGV08, PAM19, RLK11]. For fault analysis on AES,
the fault can be induced in the round counter [CT05, AK97] to reduce the number
of rounds, or in the internal state during a round [PQ03, DLV03, BS03, Gir04] to ex-
ploit the confusion and diffusion characteristics of the fault, or in the key schedule
[CY03, Gir04, TFY07, DV12]. There are several fault models in [RSG21]. A less com-
mon model is the random bit fault model [BS03], which allows the adversary to flip one
particular bit. A more common model is the random byte fault model [PQ03].

Differential Fault Attack [BS97] exploits the difference between correct and faulty
ciphertexts by injecting a fault in the internal state of the last several rounds. With
the correct and faulty ciphertext pairs, the adversary can retrieve the secret key by a
cryptographic analysis. The key point of DFA is that it allows the adversary to analyse a
small number of rounds of a block cipher. DFA has been widely applied to the attacks on
DES [Hem04, Riv09], AES [PQ03, DLV03, BS03, Gir04, MSS06, DFL11, YSW18, SHS16],
PRESENT [SGSS14, GYS15, PBMB17] and others [FT09, TBM14]. The countermeasures
against DFA include cipher or mode level (e.g. FRIET [SBD+20], CRAFT [BLMR19],
DEFAULT [BBB+21], and others [MSGR10, MPR+11, DKM+15]) and implementation level
ways [LRT12], etc. A widely used implementation level countermeasure against DFA
is to perform the computation twice and check whether the same result is obtained
[MSY06, ML08, JMR07, BBK+10].

Since DFA against block ciphers usually targets the last few rounds, one does not need
to protect the whole cipher thus saving computation time [MSY06, CFGR10, BBK+10].
However, the number of rounds to protect must be chosen carefully in order to prevent
security flaws. In order to determine how many rounds to protect, one has to know how
many rounds DFA can work on. At CHES 2009, Rivain et al. [Riv09] studied against
DES by introducing some faults at the end of round R − 7, R − 6, R − 5 or R − 4. For
AES, most DFA techniques [PQ03, Gir04, Muk09] work by inducing faults at the end of
round R− 3, R− 2 or R− 1. Therefore, protecting the last and the first three rounds of
AES against DFA is usually suggested [CFGR10]. At CHES 2011, Derbez, Fouque, and
Leresteux [DFL11] introduced the Meet-in-the-Middle (MitM) and impossible differential
fault analysis on AES by inducing faults at the end of round R− 4 for the first time, that
broke those implementations only protecting the last three rounds.

The Meet-in-the-Middle (MitM) approach is a time-memory trade-off cryptanalysis
technique, which can be traced back to Diffie and Hellman’s attack on DES [DH77]. The
basic idea is to divide the key space into two independent subsets (also known as neutral
sets), and then find matches from the two subsets. Let EK(·) be a block cipher with block
size n-bit, such that C = EK(P) = FK2(FK1(P)), where K = K1‖K2 has n bits, and K1
and K2 are neutral key materials of n/2 bits. For a given plaintext-ciphertext pair (P,C),
a naive exhaust search attack needs a time complexity 2n to find the key. However, the
MitM attack computes independently FK1(P) and F−1

K2
(C) with independent guesses of

K1 and K2, and searches collision between FK1(P) and F−1
K2

(C) to find the K with a time
complexity about 2n/2. This approach has been widely applied in many cryptanalysis
methods, like preimage attacks on hash functions [SA09] and key recovery attacks on block
ciphers [BR10]. Derbez et al. [DFL11] for the first time combined the MitM approach
with DFA by utilizing the pairwise matching in the differential internal state getting
from correct and faulty ciphertexts with different subkey guessing. In the last decades,
automatic search has boosted cryptanalysis, e.g. [BDF11, DF16]. Using automatic tools

Qingyuan Yu et.al. 3

for solving problems like Mixed Integer Linear Programming (MILP), Satisfiability (SAT),
Satisfiability Modulo Theories (SMT) problems, or Constrained Programming (CP), better
cryptanalytic results have been achieved in topics including differential/linear attacks
[MWGP11, SHW+14, KLT15], impossible differential attacks [ST17, CCF+21, SGL+17],
cube or integral attacks based on division properties [XZBL16, TIHM17].

MILP is a method frequently used in business and economics to solve optimization prob-
lems. It deals with the problems of optimizing a linear objective function f(x1, x2, . . . , xn)
subject to linear inequalities involving variables xi, 1 ≤ i ≤ n. The first attempt to apply
the MILP model to cryptanalysis is to determine the minimum number of differential
active S-boxes for AES by Mouha et al. [MWGP11]. They assigned Boolean variable xi

for each S-box, where xi = 1 means the i-th S-box is active. The variables are restricted
by linear inequalities, which are derived from the differential propagation properties of
each operation of AES. For example, given XOR operation xi ⊕ xj = xk, if xk = 1 (active),
there is at least one active S-box for the i-th and j-th S-box, i.e., xi + xj ≥ 1. At
EUROCRYPT 2021, Bao et al. [BDG+21] introduced the MILP-based automatic tools for
MitM preimage attacks on AES-like hashing, and many further improved tools for MitM
have been proposed [DHS+21, BGST22, SS22]. At CRYPTO 2011, Bouillaguet, Derbez,
and Fouque [BDF11] proposed an ad-hoc automatic tool to search DFAs on round-reduced
AES. Their tool mainly used C++ programs to exhaust all possible DFA attacks on AES by
exploiting its details and properties. Applying their tool to other block ciphers does not
seem to be trivial, and many recent DFAs on other block ciphers are still done manually
[CZS16, KAKS22, VSBM20]. In this paper, we manage to propose an MILP modelling
method for the MitM DFAs, which is general for some popular block ciphers.

Our contributions. In this paper, we introduce an automatic search model based on
MILP for the good or optimal MitM differential fault analysis, which is then successfully
applied to several popular lightweight block ciphers. Under the fundamental assumptions
of DFA, we can inject a random byte (nibble) fault to the internal state of the block cipher,
and the location of the fault in the state could be controlled. We can obtain both correct
and faulty ciphertexts. Under the assumptions, we generalize the MitM differential fault
analysis, and translate the problems into MILP models by modelling the location and
propagation of the differential faults, the matching point with differential relationship, the
propagation of the two neutral sets, and the objective functions, etc.

Since many lightweight block ciphers adopt non-MDS (non-Maximum-Distance-Separable
Matrix) layer (e.g. SKINNY [BJK+16]), we develop the matching rules for non-MDS oper-
ations, which include the modellings for the differential equations and the propagation
of the two neutral sets. We develop the propagation rules of the two neutral sets, which
will dominate the overall time complexity and should be balanced and minimized. When
optimizing the computational complexity of the DFA attacks, the number of faults we
need to inject is also one of the parameters to evaluate the strength of the attacks, which is
one of the factors we considered in our objective function. To keep our DFA practical, we
perform multiple MitM DFAs to recover the full key, while each MitM DFA only recovers
a fraction of the key bits. Therefore, we develop the objective function to balance and
minimize the time complexities of different MitM DFAs. Our tool is generic by writing
down the linear inequalities on the matching part, the propagation of differential faults,
the propagation of neutral sets, and the objective function. So, implementing the model
for a different block cipher is just to replace the linear inequalities for each part.

As applications, we show better DFAs for SKINNY, CRAFT, QARMA, PRINCE, PRINCEv2,
and MIDORI found by our tools in Sect. 4, where the positions of fault injections can be in
1 to 9 earlier rounds than the best previous attacks. We also use our model to search for
DFAs on AES-128/-192/-256, but only get improvements to the secondary steps of Derbez
et al.’s attacks [DFL11] on AES-192 and AES-256. In [DFL11], Derbez et al. extended

4 Automatic Search of Meet-in-the-Middle Differential Fault Analysis

the DFA attacks to AES-192 and AES-256. In the first step, they use MitM approach to
recover the subkey in the last round, and in the second step they recover the remaining
key bytes following the idea of Piret and Quisquater [PQ03]. The time complexity of the
second step is about 240. In Section 4.6, we give an improvement on the second step,
instead of employing Piret and Quisquater’s method, we use another step of MitM attack.
The time complexity of our improved step is 210.6. However, the overall time complexity
of the DFA is dominated by the first step, so the time complexity of our attack is the
same as Derbez et al.’s. We summarise our improved differential fault attacks in Table 1.
The attacked “Round” means the number of non-linear layers between the position of
the fault injection and the ciphertext. More rounds attacked means that there are more
rounds need to be protected when implementing the cipher on devices. Columns with
“Round (Previous)” and “Round (Ours)” list the best results of previous DFAs and our
improved ones. The “Time” column and “Memory” column show the time complexities
and memory complexities of our attacks, and the “# of faults” list the number of byte
(nibble) faults need to inject in our attacks. Our model and source codes are publicly
available at https://github.com/yqy-yu/MITM-DFA.

Comparisons with previous MILP-based MitM attacks. In mathematic cryptanalysis,
MILP-based MitM automatic models [BDG+21, DHS+21, SS22] have been proposed. In
their models, they do not need to model the differential fault propagation. Therefore, their
matching point is easier and only related to the propagations of two neutral sets, while
our modelling for the matching point has to consider the propagations of both the neutral
sets and the differential fault. Since our MitM DFA is for the practical attack, the sizes of
two neutral sets are kept small, i.e., one MitM attack only recovers a small fraction of the
full key. To recover the full key, we perform multiple MitM DFAs. Therefore, the overall
time complexity is dominated by an MitM attack with the highest complexity. While
previous models [BDG+21, DHS+21, SS22] only consider one MitM attack. Therefore, the
objective function is different.

Table 1: Summary of DFA Results

Cipher Round(Previous) Round(Ours) Time Memory # of faults
SKINNY-128-128/256 5 [VBSM18] 9 224 224 9
SKINNY-64-64/128 5 [VBSM18] 10 224 224 10

CRAFT 1 [RVB22] 10 236 212 28
QARMA-64 - 5 216 216 28
QARMA-128 - 4 232 232 10

PRINCE/PRINCEv2 4 1[KAKS22] 4 220 220 10
MIDORI-64 3 [CZS16] 5 216 216 15
MIDORI-128 3 [CZS16] 5 224 224 9

1 The ability in [KAKS22] is stronger, where they need to inject one-bit faults and know which bit is injected.

2 Preliminaries
2.1 Differential Fault Analysis using MitM
At CHES 2011, Derbez et al. [DFL11] proposed a differential fault analysis on AES using
the MitM method shown in Figure 1. Note that R = 10 for AES-128. They induced a

https://github.com/yqy-yu/MITM-DFA

Qingyuan Yu et.al. 5

random byte fault injection at the end of round R − 4. For AES-128, according to the
differential propagation rules, they can obtain several differential equations of the state at
the beginning of Round 9 (i.e., X9) between the correct and faulty states, i.e.,

Round
1 to R−4

XR−3

SB

YR−3

SR

ZR−3

MC

WR−3

ARK

XR−2

SB

YR−2

SR

ZR−2

MC

WR−2

ARK

XR−1

SB

YR−1

SR

ZR−1

ARK

⊕

UR−1

XR

MC SB

YR

SR

ZR

ARK

⊕

KR

Round R−3

Round R−2

Round R−1

Round R

Other matching patterns

for column 1 of XR−1

Active Cell Inactive Cell Values for matching Subkey cells need not be guessed

Figure 1: MitM differential fault analysis on AES-128.

X9[0]⊕ X̃9[0] = I, X9[1]⊕ X̃9[1] = I, X9[2]⊕ X̃9[2] = 3I, X9[3]⊕ X̃9[3] = 2I, (1)

where X9[i] denotes the i-th byte in the correct state X9, X̃9[i] denotes the i-th byte in
the faulty state X̃9, and I ∈ F8

2. These differential equations can provide a filter of subkey
bits by constructing relationships, e.g.,

X9[0]⊕ X̃9[0] = X9[1]⊕ X̃9[1]. (2)

Use C to denote the ciphertext state, the state X9 can be represented as

X9 = SB−1(SR−1(MC−1(ARK−1(SB−1(SR−1(ARK−1(C))))))). (3)

Denote K0 as the whitening key, Ki (i = 1, 2, ..., 10) as the subkey of Round i and
Ui = MC−1(Ki). When computing X9[0] with Equ. (3), 5 key bytes, i.e., K10[0, 7, 10, 13]
and U9[0], need to be guessed. Similarly, to compute X9[1], another 5 key bytes also
need to be guessed, i.e., K10[3, 6, 9, 12] and U9[13]. Since X9[0] and X9[1] are computed
independently with two independent key subsets, we denote the two key subsets as neutral
key sets. For a given pair of correct and faulty ciphertexts, the relationship in Equ. (2) has
to be satisfied, which acts as a filter of 2−8 for the subkey space of 10 bytes involved in
Equ. (2). In order to identify the one right 10-byte subkey, one has to collect 10 pairs of
correct and faulty ciphertexts, which will provide a filter of 2−8×10 = 2−80. With the MitM
approach, one guesses 5 subkey bytes (K10[0, 7, 10, 13], U9[0]) to compute the 10-byte of
X9[0]⊕ X̃9[0] of the 10 pairs for matching and store the guessed subkeys in a hash table
indexed by the 10 matching bytes. Then, for each guess of K10[3, 6, 9, 12] and U9[13], one
computes X9[1]⊕ X̃9[1] for the 10 pairs and checks against the hash table to find a match.
One expects 1 match, which should be the correct 10-byte subkey. The time and memory
costs are both 240.

The key point of the MitM DFA is to exploit differential equations, e.g. Equ. (2),
whose expressions on both sides depend on different subsets of keys. At CRYPTO 2011,
Bouillaguet, Derbez, and Fouque introduced an ad-hoc and dedicated automatic tool to

6 Automatic Search of Meet-in-the-Middle Differential Fault Analysis

search MitM DFAs on AES [BDF11]. In this paper, we try to build generic automatic
models based on MILP for MitM DFAs to realize the optimal fault injection and key
recovery phase.

plaintext

Random FaultRandom Fault

Differential
Propagate

ciphertext

Set1 Set2K

match

Figure 2: A high-level overview of the DFA based on MitM.

Generalizations and Notations of MitM DFA. Use Round 1 to Round R to denote the
iterated round function of block ciphers, and assume we can inject random cell (byte or
nibble) faults at a specified internal state to obtain correct and faulty ciphertexts. Denote
the round we inject faults as Round Rs, and denote the round Rm as the matching point
if there exist differential equations that can act as a filter of subkeys, e.g., ∆S[i] = ∆S[j],
where ∆S[i] is only determined by key cells in the neutral set Set1 and ∆S[j] is determined
by neutral set Set2. Thereafter, a MitM DFA is performed to recover the subkey. Figure 2
gives a high-level framework.

2.2 Description of SKINNY

We will take the MILP-based automatic model of MitM DFA attack on SKINNY as an
example. Therefore, we briefly describe SKINNY here. SKINNY is a family of lightweight
block ciphers designed by Beierle et al. [BJK+16] based on the TWEAKEY framework
[JNP14]. The block size is n = 64 or 128. There are versions with tweakey size t = n-
bit TK1, 2n-bit (TK1,TK2), or 3n-bit (TK1,TK2,TK3). The r-th (1 ≤ r ≤ R) round
function shown in Figure 3 consists of five operations: SubCells (SC), AddConstants
(AC), AddRoundTweakey (ART), ShiftRows (SR) and MixColumns (MC).

For AddRoundTweakey (ART), the first and second rows of subtweakey STK are xored
to the internal state. Initially, STK = TK1 for SKINNY-n-n, STK = TK1 ⊕ TK2 when
t = 2n, and STK = TK1 ⊕ TK2 ⊕ TK3 for t = 3n version. The STK for each round is
obtained by tweakey update function, which consists of two parts: firstly, a permutation
PT = [9, 15, 8, 13, 10, 14, 12, 11, 0, 1, 2, 3, 4, 5, 6, 7] is applied to the tweakey arrays. Then,
use different LFSRs to update the the first and second rows of TK2 and TK3 if t = 2n or
t = 3n.

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

SC

Xr

AC

ART

>>> 1

>>> 2

>>> 3

ShiftRows

Yr

MixColumns

Zr Xr+1

Figure 3: Round function of SKINNY.

Qingyuan Yu et.al. 7

3 Programming the MitM-DFA with MILP
3.1 Formulate the MitM Differential Fault Analysis
In this section, we show the specific modelling schemes for SKINNY. To facilitate the
visualization of our analysis, each cell can take one of the five colors (White, Gray, Red,
Blue, and Orange) according to certain rules, and a valid coloring scheme in our model
corresponds to a configuration of the MitM differential fault analysis. The semantics of
the colors are listed as follows:

• White(W): Inactive in forward differential propagation.
• Gray(G): Active in forward differential propagation.
• Blue(B): Known cells by guessing the key cells in Set1.
• Red(R): Known cells by guessing the key cells in Set2.
• Orange(O): Cells determined by Set1 ∩ Set2.

For SKINNY with R rounds, we set the round of fault injection as Rs, and use Rm to
denote the round of the matching point. For each internal state A in the rounds Rs to
Rm − 1, we introduce the Binary variable aA

i to denote if the i-th cell of state A is active,
i.e., aA

i = 1 means active cell with Gray color; aA
i = 0 means inactive cell with White.

For the states in the rounds Rm to R, we introduce two additional Binary variables bA
i

and cA
i , such that (aA

i , b
A
i , c

A
i) = (1, 1, 0) represents Blue, (aA

i , b
A
i , c

A
i) = (1, 0, 1) represents

Red, (aA
i , b

A
i , c

A
i) = (1, 1, 1) represents Orange, (aA

i , b
A
i , c

A
i) = (1, 0, 0) represents Gray and

(aA
i , b

A
i , c

A
i) = (0, 0, 0) represents White. For rounds from Rs to R, the propagation of

Gray and White cells depends on the differential propagation. For rounds from R to Rm,
the propagation of R, B and O rely on the backward computation rules.

3.2 Programming the MILP Model
In this section, we show how to build constraints for each component and how to solve the
model for specific block ciphers. Use SKINNY as an example, we show the details below.

3.2.1 Constraints for the states from Round Rs to Round Rm − 1

According to the differential property of SKINNY, we model the constraints of active cells
before and after SC, SR and MC operations. Use Xr, Yr and Zr to denote the state before SC,
SR and MC operations in round r, respectively. Let STKr denote the tweakey state used in
round r. Since ARK and AC operations don’t affect the propagation of the differential, we
only list the the rules for SC, SR and MC operations below.

• SC: Because we only consider the cell-level truncated differential propagation, for each
S-box, the output difference is nonzero if and only if the input difference is nonzero. The
constraint for SC is aYr

i − a
Xr
i = 0, ∀ 0 ≤ i ≤ 15. We add the constraint

∑
i a

XRs
i = 1 to

make sure that random fault is injected to one cell at the starting point.

• SR: For the SR operation, a cell permutation P is applied, i.e., aZr
i − a

Yr

P [i] = 0, ∀ 0 ≤
i ≤ 15, where P = [0, 1, 2, 3, 7, 4, 5, 6, 10, 11, 8, 9, 13, 14, 15, 12].

• MC: For each column j of MC, we build constraints according to the following rules, where
0 ≤ j ≤ 3:

a
Xr+1
j = aZr

j ∨ a
Zr
8+j ∨ a

Zr
12+j , a

Xr+1
4+j = aZr

j , a
Xr+1
8+j = aZr

4+j ∨ a
Zr
8+j , a

Xr+1
12+j = aZr

j ∨ a
Zr
8+j .

Following the method by [SHW+14], we convert the above equations to inequalities.

8 Automatic Search of Meet-in-the-Middle Differential Fault Analysis

* * *

* *

* *

* * * *

Rule-1

A

B

Rule-2 Rule-3 Rule-4 Rule-5 Rule-6

Active Cell Inactive Cell Cell for matchingActive or Inactive Cell*

Figure 4: Rule for matching state of SKINNY.

For the matching point XRm = MC(ZRm−1), the possible matching rules are given as
follows (also in Figure 4):

• Rule-1: With input truncated differential form 1*00, the 0-th cell, the 1-th cell, and
the 3-th cell of the output difference are possible for matching.
For example, for MC(A) = B in Figure 4, since ∆A[2] = ∆A[3] = 0, ∆B[0] = ∆B[1] =
∆B[3] holds according to the property of MC of SKINNY. Therefore, if ∆B[0] can be
computed by key subset marked by Blue and ∆B[3] can be computed by another key
subset marked by Red, then a MitM attack can be performed with these two neutral
key subsets and the relation ∆B[0] = ∆B[3], i.e., a matching point exists. We restrict
that only the three cells B[0, 1, 3] can be marked by Blue or Red. In other words, if this
column has both Blue and Red cells, there exists one matching equation.

• Rule-2: With input truncated differential form 1*10, the 0-th cell and the 3-th cell of
the output difference are possible for matching.

• Rule 3: With input truncated differential form 1*01, the 1-th cell and the 3-th cell of
the output difference are possible for matching.

• Rule-4: With input truncated differential form 0010, the 0-th cell, the 2-th cell and
the 3-th cell of the output difference are possible for matching.

• Rule-5: With input truncated differential form 0110, the 0-th cell and the 3-th cell of
the output difference are possible for matching.

• Rule-6: With input truncated differential form 0011, the 2-th cell and the 3-th cell of
the output difference are possible for matching.

We introduce Binary variables matchi(0 ≤ i ≤ 3) for each column. If there exists at least
one Blue cell and one Red cell in the i-th column, then matchi = 1, otherwise matchi = 0
or the model is infeasible. This can be done with the constraints

matchi ≥ bXm
4j+i, matchi ≥ cXm

4j+i, matchi ≤
∑

j b
Xm
4j+i, matchi ≤

∑
j c

Xm
4j+i, for 0 ≤ j ≤ 3.

We call DoM =
∑

i matchi the degree of match, and add constraint DoM = 1 to make
sure that one differential equation is utilized to act as a filter in each injection phase.

3.2.2 Constraints for the states from Round R to Round Rm

In this section, we show the constraints for the known values by guessing two neutral key
subsets in DFA on SKINNY. Use bA

i and cA
i to denote the value of the i-th cell in the state

A, which is known by guessing subkey cells in Set1 and Set2 respectively. The propagation
rules of bA

i and cA
i are determined by operations in the decryption direction. We list the

rules for different operations for bA
i , and the constraints for cA

i are the same.

Qingyuan Yu et.al. 9

• SC: If the output of SC is known, the input is known, i.e., bXr
i − bYr

i = 0, ∀ 0 ≤ i ≤ 15.

• ARK: For SKINNY, the first and second rows of subtweakey array are XORed to the
internal state. If a cell is XORed with the subtweakey state, we can deduce the value of
the cell by guessing the corresponding cell in the subtweakey state, else we need not
guess any subtweakey cell. Thus we have the following constraints for ARK:

bST Kr
i − bYr

i = 0 (0 ≤ i ≤ 7), bST Kr
i = 0 (8 ≤ i ≤ 15).

• SR: For SR operation, a cell permutation P is applied on the internal state, i.e., bYr

P [i] −
bZr

i = 0, ∀ 0 ≤ i ≤ 15.

• MC: For each column j, the known cells in the input column deduced from the output
column follow the rules below, where 0 ≤ j ≤ 3:

bZr
j = b

Xr+1
4+j , bZr

4+j = b
Xr+1
4+j ∧b

Xr+1
8+j ∧b

Xr+1
12+j , b

Zr
8+j = b

Xr+1
4+j ∧b

Xr+1
12+j , b

Zr
12+j = b

Xr+1
j ∧bXr+1

12+j .

Following the method by [SHW+14], we convert the equations to inequalities.

According to these principles, we build constraints for internal states from round R to Rm.

3.2.3 Objective Function and Solving Process

To properly evaluate the performance of our attacks, we take into account two factors: the
number of faults required to inject and the time complexity of recovering the key cells for
each injection. Since multiple fault injections may be necessary to fully recover the key,
the solving phase is a multi-step process.

For SKINNY-n-n, the key schedule is linear, where a cell-wise permutation PT is applied
in each round to update the tweakey matrix. Denote the master tweakey state as tk,
where tki represents the i-th cell of the state. To prevent repeatedly guessing one byte of
the tweakey across multiple rounds, we introduce KBi and KRi (0 ≤ i ≤ 15) to indicate
whether each tweakey cell belongs to Set1 or Set2. We constrain the variables with

KBi =
R∨

r=Rm

bST Kr

P
(r−1)
T

[i]
, and KRi =

R∨
r=Rm

cST Kr

P
(r−1)
T

[i]
.

We introduce the auxiliary variables KGi (0 ≤ i ≤ 15) to represent whether tki has been
guessed or not, which are initialized as KGi = 0, ∀ 0 ≤ i ≤ 15. After each fault injection
and key recovery phase, we update the state with KGi = 1 if tki has been obtained in the
key recovery phase, i.e., we update the model according to the following equation after
each solving phase:

KGi = KGi ∨KBi ∨KRi, ∀ 0 ≤ i ≤ 15.

Use V to denote the “NOT” operation for any variable V . In each solving phase, n1 =∑15
i=0(KBi ∧KGi) and n2 =

∑15
i=0(KRi ∧KGi) denote the number of cells that we need

to guess in each tweakey subset (Set1 or Set2), and n3 =
∑15

i=0(KGi∧KBi∧KRi) denotes
the number of cells in tweakey state that we have not guessed. For each recovery phase,
the time complexity to recover the full tweakey state is about (2c·n1 + 2c·n2)× 2c·n3 . So we
set the objective function as

Minimize
(∑15

i=0

(
KGi ∧KBi ∧KRi

)
+ Max

(∑15
i=0

(
KBi ∧KGi

)
,
∑15

i=0

(
KRi ∧KGi

)))

10 Automatic Search of Meet-in-the-Middle Differential Fault Analysis

to search for the attack with the optimal time complexity. To ensure our attack can run in
a practical time, We add constraints for KBi and KRi. For example, we add constraints

Max {
15∑

i=0
KBi,

15∑
i=0

KRi} ≤ 5

to make sure the time complexity of each filter phase is bounded by 240.
To perform the key recovery attack with fewer fault injections, we expect to exhaust

the matching degree that can be got from each injection. Thus, we set the cell with a fault
injection at the starting point to always have a difference, and repeatedly solve the model
until there are no differential equations that can be used for matching. That is, if we get
a

XRs
i = 1 after the first solving phase, we add constraint aXRs

i = 1 to the model and run
the optimizing phase again, until the model is infeasible. Then we remove the constraint
a

XRs
i = 1. The results of each optimizing phase will be output.

4 Applications
In this section, we show some applications of our automatic search model. We applied our
algorithm to SKINNY, CRAFT, QARMA, PRINCE , PRINCEv2, and MIDORI block ciphers. All
the results are shown in Table 1.

4.1 Differential fault analysis on SKINNY-n-n and SKINNY-n-2n

4.1.1 DFA on SKINNY-n-n

By utilizing our automatic search model, we are able to develop better DFAs on SKINNY-n-n,
with fault injections at the beginning of round R− 8. Denote the i-th cell in the master
tweakey state as tki. In this section, we show the attack for SKINNY-128-128 by steps as
an example.

• Injection 1: As shown in Figure 5, firstly we inject random byte faults at XR−8[13],
and query for the correct and faulty ciphertext pairs. According to the matching rules we
build for SKINNY, we get two differential equations that correspond to filter phase Filter
1 and Filter 2, i.e. Filter 1 uses the differential equation ∆XR−2[1] = ∆XR−2[13]
to filter the wrong key bytes and Filter 2 uses ∆XR−2[4] = ∆XR−2[12] to do that.

Filter 1: We consider the filter process of

∆XR−2[1] = ∆XR−2[13]. (4)

Use X̃R−2 to denote the faulty state of XR−2 with fault injections. The differential
state ∆XR−2[1] = XR−2[1] ⊕ X̃R−2[1] can be calculated with the correct and faulty
ciphertext pairs by guessing the tweakey cells {tk2, tk9, tk13}, and the differential state
∆XR−2[13] can be calculated by guessing {tk3, tk10, tk15}. Equ. (4) provides a filter of
2−8. Therefore, we require 6 pairs of correct and faulty ciphertexts with differences at
XR−8[13] to recover the tweakey bytes {tk2, tk3, tk9, tk10, tk13, tk15}.

Such that we choose 6 plaintexts, and inject random byte faults at XR−8[13] to get the
corresponding ciphertexts, and guess the tweakey bytes to compute the differential state
∆XR−2[1] and ∆XR−2[13]. After the filter of Equ. (4), there is about 1 possible value of
{tk2, tk3, tk9, tk10, tk13, tk15} remaining. We use hash tables to reduce the complexity
of this process. Specifically, we calculate the differential state ∆XR−2[1] for 6 pairs of
correct and faulty ciphertexts, and store the corresponding tweakey bytes {tk2, tk9, tk13}
indexed by the value ∆Xj

R−2[1](1 ≤ j ≤ 6) of the 6 pairs. Then we calculate ∆XR−2[13]

Qingyuan Yu et.al. 11

round R−8

SC

AC

XR−8

SR

YR−8

MC

ZR−8

round R−7

SC

AC

XR−7

SR

YR−7

MC

ZR−7

round R−6

SC

AC

XR−6

SR

YR−6

MC

ZR−6

round R−5

SC

AC

XR−5

SR

YR−5

MC

ZR−5

round R−4

SC

AC

XR−4

SR

YR−4

MC

ZR−4

round R−3

SC

AC

XR−3

SR

YR−3

MC

ZR−3

round R−2

SC

AC

XR−2

SR

YR−2

TK1

⊕

MC

ZR−2

ciphertext

round R−1

SC

AC

XR−1

SR

YR−1

TK1

⊕

MC

ZR−1

ciphertext

round R

SC

AC

XR

SR

YR

TK1

⊕

MC

ZR ciphertext

round R−8

SC

AC

XR−8

SR

YR−8

MC

ZR−8

round R−7

SC

AC

XR−7

SR

YR−7

MC

ZR−7

round R−6

SC

AC

XR−6

SR

YR−6

MC

ZR−6

round R−5

SC

AC

XR−5

SR

YR−5

MC

ZR−5

round R−4

SC

AC

XR−4

SR

YR−4

MC

ZR−4

round R−3

SC

AC

XR−3

SR

YR−3

MC

ZR−3

round R−2

SC

AC

XR−2

SR

YR−2

TK1

⊕

MC

ZR−2

ciphertext

round R−1

SC

AC

XR−1

SR

YR−1

TK1

⊕

MC

ZR−1

ciphertext

round R

SC

AC

XR

SR

YR

TK1

⊕

MC

ZR ciphertext

round R−8

SC

AC

XR−8

SR

YR−8

MC

ZR−8

round R−7

SC

AC

XR−7

SR

YR−7

MC

ZR−7

round R−6

SC

AC

XR−6

SR

YR−6

MC

ZR−6

round R−5

SC

AC

XR−5

SR

YR−5

MC

ZR−5

round R−4

SC

AC

XR−4

SR

YR−4

MC

ZR−4

round R−3

SC

AC

XR−3

SR

YR−3

MC

ZR−3

round R−2

SC

AC

XR−2

SR

YR−2

TK1

⊕

MC

ZR−2

ciphertext

round R−1

SC

AC

XR−1

SR

YR−1

TK1

⊕

MC

ZR−1

ciphertext

round R

SC

AC

XR

SR

YR

TK1

⊕

MC

ZR ciphertext

round R−8

SC

AC

XR−8

SR

YR−8

MC

ZR−8

round R−7

SC

AC

XR−7

SR

YR−7

MC

ZR−7

round R−6

SC

AC

XR−6

SR

YR−6

MC

ZR−6

round R−5

SC

AC

XR−5

SR

YR−5

MC

ZR−5

round R−4

SC

AC

XR−4

SR

YR−4

MC

ZR−4

round R−3

SC

AC

XR−3

SR

YR−3

MC

ZR−3

round R−2

SC

AC

XR−2

SR

YR−2

TK1

⊕

MC

ZR−2

ciphertext

round R−1

SC

AC

XR−1

SR

YR−1

TK1

⊕

MC

ZR−1

ciphertext

round R

SC

AC

XR

SR

YR

TK1

⊕

MC

ZR ciphertext

PT
R−3 PT

PT

PT
R−3 PT

PT

PT
R−3 PT

PT

PT
R−3 PT

PT

Injection 1 (Filter 1) Injection 1 (Filter 2)

Injection 2 (Filter 3) Injection 2 (Filter 4)

Active Cell Inactive Cell Determined by Set1 (Set2) Determined by Set1∩Set2 Subkey cells need not be guessed

Figure 5: DFA on SKINNY-128-128.

12 Automatic Search of Meet-in-the-Middle Differential Fault Analysis

for all 6 pairs of ciphertexts with all possible hypotheses of {tk3, tk10, tk15}. If there
is an intersection with the index, the 6-byte key is potentially correct. We expect to
retrieve one correct value of the 6 tweakey bytes {tk2, tk3, tk9, tk10, tk13, tk15} due to
the 6 pairs match of ∆XR−2[1] = ∆XR−2[13]. The time complexity of this step is about
224 and the memory cost is also about 224.

Filter 2: We use the differential equation ∆XR−2[4] = ∆XR−2[12] to filter the tweakey
bytes, similar to the process in Filter 1. With already recovered {tk2, tk9, tk13} in
the previous phase, we guess tk12 to compute the value of differential state ∆XR−2[4],
and guess {tk4, tk11, tk12} to compute the value of differential state ∆XR−2[12]. We
build a hash table indexed by ∆XR−2[4] for the 6 ciphertext pairs obtained in Filter
1 to filter the key bytes, where about 1 candidate remaining. The time complexity of
this step is about 224 and the memory cost is about 28.

• Injection 2: In this stage, we inject random byte faults at XR−8[14] and filter the key
bytes. This is a two-step process involving Filter 3 and Filter 4.

Filter 3: We treat the differential equation ∆XR−2[2] = ∆XR−2[14] by guess-
ing {tk0, tk12, tk15} to compute ∆XR−2[2], and guessing {tk5, tk8, tk13} to compute
∆XR−2[14]. Note that we have retrieved {tk12, tk13, tk15} in Injection 1. Such that we
can build hash tables to filter {tk0, tk5, tk8} with 3 pairs of correct and faulty ciphertexts
with fault injections at XR−8[14]. This step costs about 216 time complexity and 28

memory.

Filter 4: We compute ∆XR−2[13] with known key bytes {tk3, tk10, tk15}, and compute
∆XR−2[5] using known key bytes {tk0, tk10, tk12, tk15} and guessed tk14. Then we can
filter the value of tk14 by ∆XR−2[13] = ∆XR−2[5] using the 3 ciphertext pairs in
Filter 3. This costs 28 time complexity. So far, we have retrieved the value of
{tk0, tk2, tk3, tk4, tk5, tk8, tk9, tk10, tk11, tk12, tk13, tk14, tk15}.

• Exhaustively Search: For the remaining 3 bytes of tweakey that we have not guessed,
we test all possible values and check the plaintext and ciphertext. This step costs a
time complexity of about 224.

The overall time and memory complexities of our attack are about 224, and we need to
inject 9 random bytes faults to recover the full key.

For SKINYY-64-64, the process is similar, which only alters the positions of tweakey
cells guessed because of the difference in encryption round. And we can inject faults at
the beginning of round R− 9 to get a more powerful differential fault analysis.

Similar to the attack on SKINNY-128-128, we inject random faults at XR−9[13] and
get the differential equation ∆XR−3[1] = ∆XR−3[13]. Then we guess the tweakey nibbles
in Set1 and Set2 to get the values of the left and the right side of the equation respectively,
where Set1 = {tk2, tk5, tk9, tk11, tk12, tk15}, Set2 = {tk6, tk7, tk10, tk13, tk15}. We can
utilize 10 pairs of correct and faulty ciphertexts with differences in XR−9[13] to reduce the
number of possible values of the 10 tweakey nibbles. We choose 10 random plaintexts and
inject random faults at XR−9[13]. This phase costs about 224 time and 220 memory. And
for the remaining 6 nibbles {tk0, tk1, tk3, tk4, tk8, tk14}, we exhaustively search and test
with the correct plaintext and ciphertext, which costs 224 time for encryption.

4.1.2 Simulation results

We perform the simulation experiments according to our methods in Sect. 4.1.1. We
randomly choose keys and repeat the attack process for 1000 times. In each experiment,
we vary the number of injected faults in each filter step and calculate the average number
of key candidates after filtering. Our results are summarized in Figure 6, where the x-axis

Qingyuan Yu et.al. 13

represents the number of fault injections in each filter step, and the y-axis represents the
average number of remaining key candidates across 1000 simulations. For example, the
red triangle point with the x-axis coordinate of 3 represents the number of remaining keys
after filtering by 3 pairs of ciphertexts in Filter 2, which is 258.2. In our experiments,
with all 9 fault injections, the number of remaining key candidates after Filter 1-4 is
always 224, which validates that our attack is effective. All simulations are performed on a
PC using C code, and each key recovery operation takes a few minutes. Our codes are
available at https://github.com/yqy-yu/MITM-DFA.

Injection 1 Injection 2

224
232

256

280

2128

0 1 2 3 4 5 6 7 8 9

Number of Fault Injections

#
of

A
ve
ra
g
e
R
em

ai
n
in
g
K
ey

C
an

d
id
a
te
s

Filter 1
Filter 2
Filter 3
Filter 4

Figure 6: Simulation results

4.1.3 DFA on SKINNY-n-2n

The attack in Sect. 4.1.1 targets at the SKINNY-n-n, where only TK1 is used. SKINNY
also supports versions with t = 2n and t = 3n. In the TWEAKEY framework, users can
choose what part of the tweakey serves as input key material or tweak material, and TK1
is recommended for processing the public tweak material. In this section, we consider the
case of SKINNY-n-2n, where TK1 is used for tweak and TK2 is used for key material.

According to our injection model in Figure 5, we can extract LR−3
1 (TK1)⊕LR−3

2 (TK2)[1],
LR−2

1 (TK1)⊕LR−2
2 (TK2)[0, 6] and LR−1

1 (TK1)⊕LR−1
2 (TK2)[4, 5, 7] in Filter 1, where

L1 and L2 denote the linear operations on TK1 and TK2. L1 only represents the per-
mutation PT whereas L2 denotes the combination of PT and LFSR on TK2. Since the
tweak TK1 can be seen as public, we can compute LR−3

2 (TK2)[1], LR−2
2 (TK2)[0, 6] and

LR−1
2 (TK2)[4, 5, 7] straightforwardly from Filter 1. Then we can determine the corre-

sponding bytes in TK2 by inverting the LFSR and the permutation PT round by round.
The same for other filter phases.

In the actual situation, the security does not rely on the privacy of tweak material, and
it is also unrealistic to keep privacy in practice. So we can retrieve the key material for
SKINNY-n-2n as same as for SKINNY-n-n. It indicates that the tweak material does not
provide any extra protection against fault attack if keeping fixed.

4.2 Differential fault attack on CRAFT

4.2.1 Description of CRAFT

CRAFT [BLMR19] is a lightweight tweakable block cipher with a 64-bit block size, a 128-bit
key K, and a 64-bit tweak T . The cipher’s internal state can be represented as a 4× 4
square array of nibbles or as a 16-nibble vector by concatenating the rows of the square
array. Use the index 4 × i + j to denote the nibble at row i and column j of the 4 × 4
array, where 0 ≤ i ≤ 3, 0 ≤ j ≤ 3.

For CRAFT, each round function applies five involutory round operations: SubSbox(SB),
MixColumn(MC), PermuteNibbles(PN), AddConstant(ARC) and AddTweakey(ATK). The

https://github.com/yqy-yu/MITM-DFA

14 Automatic Search of Meet-in-the-Middle Differential Fault Analysis

SB

round R−10

ZR−10

round R−9

MC

ARC

XR−9

PN

YR−9

SB

ZR−9

round R−8

MC

ARC

XR−8

PN

YR−8

SB

ZR−8

round R−7

MC

ARC

XR−7

PN

YR−7

SB

ZR−7

round R−6

MC

ARC

XR−6

PN

YR−6

SB

ZR−6

round R−5

MC

ARC

XR−5

PN

YR−5

SB

ZR−5

round R−4

MC

ARC

XR−4

PN

YR−4

SB

ZR−4

round R−3

MC

ARC

XR−3

PN

YR−3

SB

ZR−3

round R−2

MC

ARC

XR−2

MC−1
(K1)

⊕

PN

YR−2

SB

ZR−2

round R−1

MC

ARC

XR−1

MC−1
(K0)

⊕

PN

YR−1

SB

ZR−1

round R0

MC

ARC

XR0

MC−1
(K1)

⊕

ciphertext

Injection 1

Active Cell Inactive Cell Determined by Set1 (Set2) Determined by Set1∩Set2 Subkey cells need not be guessed

Figure 7: DFA on CRAFT.

last round omits SubSbox(SB) and PermuteNibbles(PN). The r-th round function Rr is
defined as Rr = SB◦PN◦ATK◦ARC◦MC (1 ≤ r ≤ 31), and the last round R32 = ATK◦ARC◦MC.
The involutory binary matrix M used in MixColumn(MC) is non-MDS, where

M =

1 0 1 1
0 1 0 1
0 0 1 0
0 0 0 1

 .

In the key schedule, four 64-bit tweakeys TK0, TK1, TK2, TK3 are derived from K =
(K0||K1) and T , as TK0 = K0⊕T, TK1 = K1⊕T, TK2 = K0⊕Q(T), TK3 = K1⊕Q(T),
where Q is a permutation and TK(i−1) mod 4 is applied in the i-th round.

When guessing the key cells, we can choose the nibbles in equivalent subkeys, i.e. we
can adjust the operations in round function as Ri = SB ◦ PN ◦ ARC ◦ MC ◦ ATK′, the key used
in ATK′ is the equivalent subkey MC−1(TKi).

4.2.2 DFA on CRAFT

CRAFT [BLMR19] is designed to be efficiently protected in its implementations against
differential fault analysis. However, we assume that the target implementation of CRAFT
does not use such countermeasures, as studied in [RVB22]. In round r, denote the state at
the beginning of round r as Xr, the state after MC as Yr, and the internal state after PN as
Zr. Further, A[i] denotes the i-th nibble of the state A, where 0 ≤ i ≤ 15.

• Injection 1: As shown in Figure 7, we inject random nibble faults at ZR−10[7], the
differential equation ∆YR−3[5] = ∆YR−3[13] can be derived. And we guess the subkey
nibbles {MC−1(K0)[3, 4, 13], MC−1(K1)[0, 1, 2, 7, 10, 14]} to compute ∆YR−3[13] by partial
decryption. Similarly, guess {MC−1(K0)[5], MC−1(K1)[2, 9]} to obtain ∆YR−3[5].
Because the differential equation provides a filter of one nibble, we can retrieve the
subkey nibbles with 11 pairs of correct and faulty ciphertexts. We choose 11 plaintexts
and obtain the ciphertexts, then inject random faults at ZR−10[7] to each and query 11
faulty ciphertexts. Filtering the subkey nibbles with differential equation ∆YR−3[5] =
∆YR−3[13], there is about 1 value of the key nibbles remaining. We need to inject 11
random nibble faults. The time complexity is about 236 and the memory cost is about
212.

Qingyuan Yu et.al. 15

• Injection 2: In this step, we inject random nibble faults at ZR−10[5], and get the differen-
tial equation ∆YR−3[7] = ∆YR−3[15]. We can filter the subkey nibbles {MC−1(K0)[7], MC−1(K1)[11]}
and {MC−1(K0)[1, 6, 15], MC−1(K1)[3, 5, 8, 12]} with 9 pairs of correct and faulty cipher-
texts. The time complexity is about 228 and the memory complexity is about 28.

• Injection 3: Then we inject random nibble faults at ZR−10[6], filter the subkey nibbles
{MC−1(K0)[2, 12], MC−1(K1)[4, 13]} by ∆YR−3[4] = ∆YR−3[12] with 4 pairs of correct
and faulty ciphertexts. The time cost is 216.

• Injection 4: Finally we inject random nibble faults at ZR−10[4], filter the subkey
nibbles {MC−1(K0)[0, 14], MC−1(K1)[6, 15]} by ∆YR−3[6] = ∆YR−3[14] with 4 pairs of
correct and faulty ciphertexts. And then exhaustively search the remaining four subkey
nibbles, the time cost is 216.

The overall time complexity of the attack is about 236, and the memory cost is about
212. The number of faults we need to inject in all phases is 11 + 9 + 4 + 4 = 28.

4.3 Differential fault attack on QARMA

4.3.1 Description of QARMA

QARMA [Ava17] is a family of lightweight tweakable block cipher. It supports two kinds
of block sizes n = 64 and n = 128, denoted by QARMA-64 and QARMA-128. Each version
applies a master key of 2n bits. QARMA uses an Even-Mansour scheme with a keyed
pseudo-reflector. The first r rounds of the cipher use the forward round function R(IS, tk),
which is composed of four operations in order: AddRoundTweakey, ShuffleCells(τ),
MixColumns(M) and SubCells(S). The (r + 1)-th round function omits ShuffleCells
and MixColumns operations. The last r rounds use the backward round function R(IS, tk),
which is the inverse of R(IS, tk). The round function used in the first and last rounds
omits ShuffleCells and MixColumns. The matrix M used in MixColumns is defined as

M4 = circ(0, ρ, ρ2, ρ) and M8 = circ(0, ρ, ρ4, ρ5),

where M4 is uesd for QARMA-64 and M8 is used for QARMA-128. ρ can be seen as a simple
circular left rotation of the bits. The 2n-bit K is partitioned as ω0||k0. In encryption,
k1 = k0 is used for each round and whitening keys ω0 and ω1 = o(ω0) are added at the
beginning and the end, respectively. In the key-recovery phase, we will guess the equivalent
key M(τ(k0)).

4.3.2 DFA on QARMA-64

Because the matrix M used in MixColumns is different in each version, QARMA-64 and
QARMA-128 have different differential matching rules. In this section, we show how to
achieve the key recovery attack on QARMA-64. Part of the attack is shown in Figure 8.

• Injection 1: Inject random nibble faults at XR−4[15] (ZR−5[13]), filter the subkey
nibbles {M(τ(k0))[10], k0⊕ω1[6, 9, 12]} and {M(τ(k0))[15], k0⊕ω1[7, 8, 13]} by the dif-
ferential equation ∆ZR−2[4] = ∆ZR−2[12] with 8 pairs of correct and faulty ciphertexts.

• Injection 2: Inject random nibble faults atXR−4[12] (ZR−5[6]), filter the subkey nibbles
{M(τ(k0))[5], k0 ⊕ ω1[4, 11, 14]} and {M(τ(k0))[0], k0 ⊕ ω1[5, 10, 15]} by ∆ZR−2[8] =
∆ZR−2[0] with 8 pairs of correct and faulty ciphertexts.

• Injection 3: Inject random nibble faults at XR−4[0] (ZR−5[0]), filter the subkey nibbles
{M(τ(k0))[6], k0 ⊕ ω1[3]} and {M(τ(k0))[3], k0 ⊕ ω1[18]} by ∆ZR−2[2] = ∆ZR−2[10]
with 4 pairs of correct and faulty ciphertexts.

16 Automatic Search of Meet-in-the-Middle Differential Fault Analysis

round R−4

S

XR−4

M

YR−4

τ

ZR−4

round R−3

S

XR−3

M

YR−3

τ

ZR−3

round R−2

S

XR−2

M

YR−2

τ

ZR−2

round R−1

S

XR−1

M(τ(k0))

⊕

M

YR−1

τ

ZR−1

round R

S

XR

k0⊕ω1

⊕

ciphertext

τ

round R−5

ZR−5

Injection 1

Active Cell Inactive Cell Determined by Set1 (Set2) Subkey cells need not be guessed

Figure 8: DFA on QARMA-64.

• Injection 4: Inject random nibble faults at XR−4[6] (ZR−5[2]), filter the subkey nibbles
{M(τ(k0))[1], k0⊕ω1[1]} and {M(τ(k0))[4], k0⊕ω1[0]} by ∆ZR−2[5] = ∆ZR−2[13] with
4 pairs of correct and faulty ciphertexts.

• Injection 5 and Injection 6 respectively inject random faults at XR−4[3] and XR−4[4].
Injection 5 filter M(τ(k0))[9, 12] by ∆ZR−2[6] = ∆ZR−2[14], and Injection 6 filter
M(τ(k0))[11, 14] by ∆ZR−2[1] = ∆ZR−2[9]. Each filter phase needs 2 pairs of correct
and faulty ciphertexts.

After the six injection phases, we exhaustively search for the remaining 4 subkey
nibbles M(τ(k0))[2, 7, 8, 13] and retrieve subkey k0 by linear transformation τ ◦M . Then
we compute ω1 by k0 and k0 ⊕ ω1. The overall time complexity of our attack is about 216

and the memory complexity is about 216. It requires the injection of 28 nibble faults.

4.3.3 DFA on QARMA-128

In this section, we show the process of our fault attack on QARMA-128 with 232 time
complexity and 232 memory complexity.

• Injection 1: We inject random faults at XR−3[15] and get following equation system: ∆ZR−2[5] = ρ3 ·∆ZR−2[9], ρ ·∆ZR−2[0] = ∆ZR−2[12],
ρ3 ·∆ZR−2[3] = ∆ZR−2[15], ρ4 ·∆ZR−2[1] = ∆ZR−2[9],
∆ZR−2[11] = ρ ·∆ZR−2[15], ρ4 ·∆ZR−2[4] = ∆ZR−2[12].

(5)

Each equation provides a one-byte filter for involved subkey bytes. For example, we
choose 8 plaintexts and inject random faults to get the correct and faulty ciphertexts.
We can then guess the subkey bytes {M(τ(k0))[1], k0⊕ω1[1, 4, 14]} to compute ∆ZR−2[5]
and guess {M(τ(k0))[14], k0 ⊕ ω1[3, 6, 12]} to compute ∆ZR−2[14] for the 8 pairs. By
filtering with ρ3 ·∆ZR−2[5] = ∆ZR−2[9], we can retrieve the value of the 8 subkey bytes.
Similarly, we can retrieve the subkey bytes M(τ(k0))[0, 2, 8, 10, 11, 13, 15] and k0 ⊕
ω1[0, 2, 5, 7, 8, 9, 10, 11, 13, 15] with the remaining equations. We can use the 8 pairs of
correct and faulty ciphertexts obtained in the first step to accomplish this.

• Injection 2: Then we inject random faults at XR−3[6] and get 2 differential equations
for a further filter of subkey bytes,

ρ3 ·∆ZR−2[2] = ∆ZR−2[14], ∆ZR−2[7] = ρ4 ·∆ZR−2[15]. (6)

Qingyuan Yu et.al. 17

round R−3

S

XR−3

M

YR−3

τ

ZR−3

round R−2

S

XR−2

M

YR−2

τ

ZR−2

round R−1

S

XR−1

M(τ(k0))

⊕

M

YR−1

τ

ZR−1

round R

S

XR

k0⊕ω1

⊕

ciphertext

Injection 1 (Filter 1)

round R−3

S

XR−3

M

YR−3

τ

ZR−3

round R−2

S

XR−2

M

YR−2

τ

ZR−2

round R−1

S

XR−1

M(τ(k0))

⊕

M

YR−1

τ

ZR−1

round R

S

XR

k0⊕ω1

⊕

ciphertext

Injection 2 (Filter 7)

Other matching patterns
of ZR−1 (Injection 1)

Filter 2 Filter 3

Filter 4 Filter 5

Filter 6

Other matching patterns
of ZR−1 (Injection 2)

Filter 8

Active Cell Inactive Cell Determined by Set1 (Set2) Subkey cells need not be guessed

Figure 9: DFA on QARMA-128.

Only at most one unknown subkey byte is involved in one hand of each equation. So
we choose 2 plaintexts and inject faults to get the correct and faulty ciphertexts. We
expect to get the right value of M(τ(k0))[6, 7, 9].

Then we exhaustively search for the remaining 4 subkey bytes M(τ(k0))[3, 4, 5, 12]
to retrieve the full key. The overall time complexity of this attack is about 232 and the
memory cost is 232. The number of faults we need to inject in the attack is 10.

4.4 Differential fault attack on PRINCE and PRINCEv2

4.4.1 Description of PRINCE

PRINCE [BCG+12] is a lightweight block cipher that follows FX-construction with a 64-bit
block size and a 128-bit key size. The 128-bit key K = K0||K1 is split into two 64-bit parts.
K0 is used as a whitening key and K1 is used as round keys for the core of the structure,
named as PRINCEcore. The round function R of PRINCEcore applies an S-box layer SB,
followed by a linear layer consisting of a MixColumns operation MC and a ShiftRows SR. SR
is the same as AES, and the matrices in MC-layer are built from the following four matrices:

m1 =

0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,m2 =

1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

 ,m3 =

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

 ,m4 =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 .

In MC-layer, bit-wise matrix M0 is multiplied with the first and the last columns of the
internal state, and M1 is multiplied with the second and the third columns.

M0 =

m1 m2 m3 m4
m2 m3 m4 m1
m3 m4 m1 m2
m4 m1 m2 m3

 ,M1 =

m2 m3 m4 m1
m3 m4 m1 m2
m4 m1 m2 m3
m1 m2 m3 m4

 .

18 Automatic Search of Meet-in-the-Middle Differential Fault Analysis

round R−3

SB−1

ZR−3

round R−2

SR−1

XR−2

MC

YR−2

SB−1

ZR−2

round R−1

SR−1

XR−1

MC

YR−1

SB−1

ZR−1

round R

SR−1

XR

MC

YR

K1

⊕

SB−1

ZR ciphertext

K′
0⊕K1

⊕

Filter 1
Other matching
patterns of ZR−1

Filter 2 Filter 3

Filter 4 Filter 5

Filter 6

Active Cell Inactive Cell Determined by Set1 (Set2) Subkey cells need not be guessed

Figure 10: DFA on PRINCE.

The last five rounds apply the inverse of the forward round function R−1, and the middle
layer applies R′. The round function R, R′ and R−1 are shown as:

R = SR ◦ MC ◦ SB, R′ = SB−1 ◦ MC ◦ SB, and R−1 = SB−1 ◦ MC ◦ SR−1.

PRINCEv2 [BEK+20] modifies the middle layer and key schedule of PRINCE. The 128-bit
key is departed into K = (K0||K1) and alternately used in each function. The subkeys
used in the last two rounds are K0 ⊕ α and K1 ⊕ β, where α and β are constants. The
process for retrieving the full key is similar to that for PRINCE.

4.4.2 DFA on PRINCE

We can recover the full key of PRINCE with random faults injected at ZR−3[0]. As shown in
Figure 10, we can build the following equation system according to differential characters: m1 ·∆ZR−1[3] = m4 ·∆ZR−1[7], m2 ·∆ZR−1[3] = m4 ·∆ZR−1[11],

m3 ·∆ZR−1[3] = m4 ·∆ZR−1[15], m2 ·∆ZR−1[7] = m1 ·∆ZR−1[11],
m3 ·∆ZR−1[7] = m1 ·∆ZR−1[15], m3 ·∆ZR−1[11] = m2 ·∆ZR−1[15].

(7)

We guess {K1[11], K ′0 ⊕K1[1, 5, 9, 13]} to compute ∆ZR−1[11] and filter the values
of {K1[15], K ′0 ⊕K1[2, 6, 10, 14]} by m3 ·∆ZR−1[11] = m2 ·∆ZR−1[15]. This equation
provides a 2-bit filter for each correct and faulty ciphertext pair. With 10 pairs of correct
and faulty ciphertext pairs, we get 20-bit information on these 10 subkey nibbles.

Similarly, we can get 20-bit information of {K1[3, 7], K ′0 ⊕K1[0, 3, 4, 7, 8, 11, 12, 15]}
by the filter of m1 ·∆ZR−1[3] = m4 ·∆ZR−1[7]. We can obtain further filters by other
equations in Equ. (7). For example, m3 ·∆ZR−1[7] = m1 ·∆ZR−1[15] provides one more
bit filter for ∆ZR−1[15] and ∆ZR−1[7].

Then we can build equation systems for other columns of ∆ZR−1, like

m4 ·∆ZR−1[8] = m3 ·∆ZR−1[12], m2 ·∆ZR−1[0] = m1 ·∆ZR−1[4] (8)

to filter the subkey nibbles. We expect to get the correct value of K ′0 ⊕K1 and at least
48-bit information of K1. We exhaustively search for the remaining possible values of K1,
which costs about 216 time, and compute K ′0 to retrieve the full key. The overall time and
memory complexities are both about 220, with 10 fault injections.

Qingyuan Yu et.al. 19

4.5 Differential fault attack on MIDORI

4.5.1 Description of MIDORI

MIDORI [BBI+15] is a family of low-energy block cipher, which includes two versions with
block size n = 64 and n = 128, i.e., MIDORI-64 and MIDORI-128. Both versions accept a
128-bit keys K. For MIDORI-64, K is denoted as two 64-bit parts K = K0‖K1. The whiten-
ing key is WK = K0 ⊕K1 and the round key is RKr = K(r−1) mod 2 ⊕ αr for 1 ≤ r ≤ 15.
For MIDORI-128, WK = K and RKr = K ⊕ βr for 1 ≤ r ≤ 19, where αr and βr are
constants. The round function of MIDORI consists of SubSbox(SB), ShuffleCell(SC),
MixColumn(MC), and KeyAdd(AK). The ShuffleCell(SC) applies a cellwise permuta-
tion P to the internal state, where P = [0, 11, 6, 13, 10, 1, 12, 7, 5, 14, 3, 8, 15, 4, 9, 2]. In
MixColumn(MC) operation, each column of the state array is multiplied by the matrix M
cellwise, where M = circ(0, 1, 1, 1). The last round only applies SubSbox(SB) operation
and adds the whitening key WK to the internal state.

4.5.2 DFA on MIDORI

DFA on MIDORI-64. We firstly inject random faults at XR−4[2] as shown in Figure 11,
and get three differential equations

∆XR−1[5] = ∆XR−1[13], ∆XR−1[0] = ∆XR−1[4], ∆XR−1[7] = ∆XR−1[11]. (9)

Each equation represents a filter step (Filter 1-3). Filter 1 guess {MC−1(K0)[8], K0 ⊕
K1[0, 4, 12]} to compute ∆XR−1[5], and guess {MC−1(K0)[3], K0⊕K1[7, 11, 15]} to compute
∆XR−1[13], then filter the subkey nibbles by ∆XR−1[5] = ∆XR−1[13]. We expect to get
one candidate of {MC−1(K0)[0, 1, 3, 7, 8, 13], K0 ⊕K1[0, 1, 3, 4, 5, 7, 8, 9, 11, 12, 13, 15]} after
Filter 1-3 with 8 pairs of correct and faulty ciphertexts.

Secondly, we inject faults at XR−4[9] and filter the subkey nibbles with equations

∆XR−1[3] = ∆XR−1[15], ∆XR−1[8] = ∆XR−1[12]. (10)

We expect to get one right value of {MC−1(K0)[6, 10, 11, 12],K0 ⊕K1[2, 6, 10, 14]} with 5
pairs of correct and faulty ciphertexts (Filter 4-5).

Then we inject faults at XR−4[4] and filter MC−1(K0)[2, 5, 9, 14] with the equations
∆XR−1[1] = ∆XR−1[9] and ∆XR−1[6] = ∆XR−1[14]. We expect to get the right value
with 2 pairs of correct and faulty ciphertexts.

Finally, we exhaustively search for the values of MC−1(K0)[4, 15] and compute K0 and
K1 to recover the full key. The overall time complexity is about 216 and the memory
complexity is 216, and the number of faults we need to inject is 15.

DFA on MIDORI-128. For MIDORI-128, the key used in the last two rounds is the
same except for the constant addition. We can recover K[0, 1, 3, 4, 5, 7, 8, 9, 11, 12, 13, 15]
according to the filter of Equ. (9) with faults injected to XR−4[2]. To compute the value of
each side in Equ. (9), we need to guess 3 bytes of K, for example, K[0, 1, 12] for ∆XR−1[5].
This phase can be done with 6 pairs of correct and faulty ciphertexts. Then, we inject
faults at XR−4[9] and filter the subkey bytes according to Equ. (10). We expect to get
the right value of the full key with a filter of 3 pairs. Thus, the overall time complexity
of the attack on MIDORI-128 is about 224, and the memory cost is also 224, with 9 fault
injections.

4.6 Extended Attack on AES-192

In [DFL11], Derbez et al. extended the DFA attack on AES-128 to AES-192. The DFA
attack on AES-128 is stated in Sect. 2.1. The extended DFA attack on AES-192 is briefly
given as follows, Figure 1 represents the last four rounds of AES-192.

20 Automatic Search of Meet-in-the-Middle Differential Fault Analysis

round R−4

SB

XR−4

SC

YR−4

MC

ZR−4

round R−3

SB

XR−3

SC

YR−3

MC

ZR−3

round R−2

SB

XR−2

SC

YR−2

MC

ZR−2

round R−1

SB

XR−1

SC

YR−1

MC−1
(K0)

⊕

MC

round R

ZR−1 XR

SB

ciphertext

K0⊕K1

⊕

Injection 1 (Filter 1)

Other matching
patterns of XR−1

Filter 2

Filter 3

Active Cell Inactive Cell Determined by Set1 (Set2) Subkey cells need not be guessed

Figure 11: DFA on MIDORI.

Step I: They first recover the key cells of K12 for AES-192 using the same MitM algorithm
as AES-128. Substitute R with 12, and denote differential state X11⊕ X̃11 as ∆X11. Filter
the values of {K12[1, 4, 11, 14], U11[7]}, {K12[2, 5, 8, 15], U11[10]}, {K12[0, 7, 10, 13], U11[0]}
and {K12[3, 6, 9, 12], U11[13]} according to the equations between ∆X11[0], ∆X11[1], ∆X11[2]
and ∆X11[3]. The time of this step is the same as the DFA on AES-128, which is 3× 240.

Step II: After recovering the 128-bit subkey K12, in order to recover the full 192-bit key,
they peel off the last round of AES-192 to perform a 3-round (Round 9-11) differential
fault attacks following the idea of Piret and Quisquater [PQ03] with the same correct
and faulty pairs. Therefore, an additional time complexity is required to implement Piret
and Quisquater’s attack, which is estimated as 240 “Piret and Quisquater resolution” by
Derbez et al. [DFL11].

4.6.1 Our Improved Step II

We introduce a new MitM DFA on AES-192, which uses the same Step I as Derbez et al.
[DFL11] to recover K12. But we do not use Piret and Quisquater’s attack (Step II) to
recover the remaining key bits.

A new Step II: After recovering K12, we also peal off the last round. In order to recover
the full 192-bit key, we need to recover the last two columns of K11, which is equivalent to
recovering U11[8− 15]. Among those bytes, U11[10, 13] are already recovered in Step I.

After peel off Round 12, we can derive ∆X11[8] = 3 ·∆X11[11], which is equivalent to

(SB−1(A⊕U11[8])⊕SB−1(Ã⊕U11[8])) = 3·SB−1(B⊕U11[15])⊕SB−1(B̃⊕U11[15]), (11)

where A and B are known values at this stage and only depend on the correct ciphertext
and K12, similar to Ã and B̃. Then, we use Eq. (11) as a filter to build a local MitM
attack, where two correct-faulty ciphertext pairs will provide a filter of 2−16. Therefore,
only one candidate of U11[8, 15] will remain. The time complexity of local MitM is 2× 28

with about 28 memory.
Similarly, we can recovery U11[11, 14] and U11[9, 12] with matching equations like

Eq. (11). The last two columns of K11 are recovered. The total time complexity of our
new Step II is 6× 28 = 210.6 with about 28 memory, which is smaller than Derbez et al.’s

Qingyuan Yu et.al. 21

Step II. Two correct-faulty ciphertext pairs needed in our new Step II can reuse the pairs
from Step I, and no additional fault injections are needed here. However, since Step I
dominates the overall time complexity of the DFA on AES-192, the overall time complexity
of the full attack is the same as Derbez et al.’s [DFL11]. This process can be also applied
to AES-256 to improve Step II.

5 Discussion
In order to achieve lightweight, many lightweight ciphers adopt sparser diffusion layers.
For example, MIDORI, PRINCE and QARMA adopt the so-called 4×4 almost MDS layer. Note
that the branch numbers (the smallest nonzero sum of active inputs and outputs of the
matrix) of MDS and almost MDS matrices are 5 and 4. Therefore, the algorithms need
more rounds to achieve full diffusion (any input bit nonlinearly affects all the state bits).
For example, MIDORI needs 3 rounds to achieve full diffusion while AES needs 2 rounds.
Ciphers with more lightweight diffusion layers, like SKINNY and CRAFT, respectively need 6
and 7 rounds to achieve full diffusion.

The main idea behind MitM DFA is to explore the potentially low diffusion of the
target ciphers. The lower diffusion layers can cause more rounds that need to be protected
against DFAs. With the MitM approach, a differential matching rule (e.g., Eq. (2)) exists
with higher probability after more rounds of diffusion for one-byte faults, which will act as
the matching to filter the wrong key guessing. Besides, with the lower diffusion layers, the
number of key bits involved in the two neutral key sets (e.g., Set1 and Set2 in Figure 2)
are smaller. It dominates the time complexity of the MitM DFAs, because the keys in
Set1 (and Set2) must be enumerated to compute and filter with the differential equation
(e.g., Eq. (2)). These are the reasons behind the attacks summarized in Table 1, where for
SKINNY and CRAFT, the MitM DFA can achieve 9 and 10 rounds, but for MIDORI, PRINCE
and QARMA, the attack can only work on 4 or 5 rounds.

Countermeasures The double-check mechanism is a common countermeasure against
fault injection attacks [MSY06, ML08, JMR07, BBK+10]. The crucial operations of
encryption devices, which are vulnerable to fault analysis, should run twice. If the results
of the two executions match each other, the results are credible. Indeed, this mechanism is
always accompanied by a loss of efficiency. Our improved DFAs in Sect. 4 provide new
insight into how many rounds of encryption devices need to be protected. For example, we
suggest protecting at least the last 9 rounds of SKINNY-128-128, with the double-check
mechanism, the running procedure of SKINNY-128-128 is shown below:

1. Compute State1 = Round1−31(Message,Key), State2 = State1.

2. Compute Res1 = Round32−40(State1,Key), and Res2 = Round32−40(State2,Key).

3. After a random delay, check whether Res1 = Res2. If yes, output Res1 as ciphertext,
else discard the result.

The number of rounds for SKINNY-128-128 is 40, in our fault detection scheme, 49 rounds
need to be implemented. Such that the scheme requires about 49/40 computational sources
of SKINNY-128-128.

6 Conclusion
In this paper, we present the MILP-based automatic tools for MitM DFAs and apply
to SKINNY, CRAFT, QARMA, PRINCE, MIDORI and AES-192/256. We make full use of the
differential matching rules and reach better key-recovery attacks for these block ciphers in

22 Automatic Search of Meet-in-the-Middle Differential Fault Analysis

practical time. We achieve fault attacks with faults injected in earlier rounds, which imply
that more rounds of the encryption devices of these ciphers should be protected against
DFA.

Acknowledgments
We thank the anonymous reviewers and the shepherd for their valuable comments. This
work is supported by the National Key R&D Program of China (2022YFB2702804,
2018YFA0704701), the Natural Science Foundation of China (62272257, 62072270), Shan-
dong Key Research and Development Program (2020ZLYS09), the Major Scientific and
Technological Innovation Project of Shandong, China (2019JZZY010133), the Major Pro-
gram of Guangdong Basic and Applied Research (2019B030302008), Key Research Project
of Zhejiang Province, China (2023C01025).

References
[AK97] Ross J. Anderson and Markus G. Kuhn. Low cost attacks on tamper resistant

devices. In Bruce Christianson, Bruno Crispo, T. Mark A. Lomas, and Michael
Roe, editors, Security Protocols, 5th International Workshop, Paris, France,
April 7-9, 1997, Proceedings, volume 1361 of Lecture Notes in Computer
Science, pages 125–136. Springer, 1997.

[Ava17] Roberto Avanzi. The QARMA block cipher family. almost MDS matrices over
rings with zero divisors, nearly symmetric even-mansour constructions with
non-involutory central rounds, and search heuristics for low-latency s-boxes.
IACR Trans. Symmetric Cryptol., 2017(1):4–44, 2017.

[BBB+21] Anubhab Baksi, Shivam Bhasin, Jakub Breier, Mustafa Khairallah, Thomas
Peyrin, Sumanta Sarkar, and Siang Meng Sim. DEFAULT: cipher level resis-
tance against differential fault attack. In Mehdi Tibouchi and Huaxiong Wang,
editors, Advances in Cryptology - ASIACRYPT 2021 - 27th International
Conference on the Theory and Application of Cryptology and Information
Security, Singapore, December 6-10, 2021, Proceedings, Part II, volume 13091
of Lecture Notes in Computer Science, pages 124–156. Springer, 2021.

[BBI+15] Subhadeep Banik, Andrey Bogdanov, Takanori Isobe, Kyoji Shibutani,
Harunaga Hiwatari, Toru Akishita, and Francesco Regazzoni. Midori: A
block cipher for low energy. In Tetsu Iwata and Jung Hee Cheon, editors, Ad-
vances in Cryptology - ASIACRYPT 2015 - 21st International Conference on
the Theory and Application of Cryptology and Information Security, Auckland,
New Zealand, November 29 - December 3, 2015, Proceedings, Part II, volume
9453 of Lecture Notes in Computer Science, pages 411–436. Springer, 2015.

[BBK+10] Alessandro Barenghi, Luca Breveglieri, Israel Koren, Gerardo Pelosi, and
Francesco Regazzoni. Countermeasures against fault attacks on software
implemented AES: effectiveness and cost. In Proceedings of the 5th Workshop
on Embedded Systems Security, WESS 2010, Scottsdale, AZ, USA, October
24, 2010, page 7. ACM, 2010.

[BCG+12] Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif Bilge Kavun, Miroslav
Knezevic, Lars R. Knudsen, Gregor Leander, Ventzislav Nikov, Christof Paar,
Christian Rechberger, Peter Rombouts, Søren S. Thomsen, and Tolga Yalçin.
PRINCE - A low-latency block cipher for pervasive computing applications

Qingyuan Yu et.al. 23

- extended abstract. In Xiaoyun Wang and Kazue Sako, editors, Advances
in Cryptology - ASIACRYPT 2012 - 18th International Conference on the
Theory and Application of Cryptology and Information Security, Beijing,
China, December 2-6, 2012. Proceedings, volume 7658 of Lecture Notes in
Computer Science, pages 208–225. Springer, 2012.

[BDF11] Charles Bouillaguet, Patrick Derbez, and Pierre-Alain Fouque. Automatic
search of attacks on round-reduced AES and applications. In Phillip Rogaway,
editor, Advances in Cryptology - CRYPTO 2011 - 31st Annual Cryptology
Conference, Santa Barbara, CA, USA, August 14-18, 2011. Proceedings, vol-
ume 6841 of Lecture Notes in Computer Science, pages 169–187. Springer,
2011.

[BDG+21] Zhenzhen Bao, Xiaoyang Dong, Jian Guo, Zheng Li, Danping Shi, Siwei Sun,
and Xiaoyun Wang. Automatic search of meet-in-the-middle preimage attacks
on aes-like hashing. In Anne Canteaut and François-Xavier Standaert, editors,
Advances in Cryptology - EUROCRYPT 2021 - 40th Annual International
Conference on the Theory and Applications of Cryptographic Techniques,
Zagreb, Croatia, October 17-21, 2021, Proceedings, Part I, volume 12696 of
Lecture Notes in Computer Science, pages 771–804. Springer, 2021.

[BDL97] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the importance
of checking cryptographic protocols for faults (extended abstract). In Walter
Fumy, editor, Advances in Cryptology - EUROCRYPT ’97, International Con-
ference on the Theory and Application of Cryptographic Techniques, Konstanz,
Germany, May 11-15, 1997, Proceeding, volume 1233 of Lecture Notes in
Computer Science, pages 37–51. Springer, 1997.

[BEK+20] Dusan Bozilov, Maria Eichlseder, Miroslav Knezevic, Baptiste Lambin, Gregor
Leander, Thorben Moos, Ventzislav Nikov, Shahram Rasoolzadeh, Yosuke
Todo, and Friedrich Wiemer. Princev2 - more security for (almost) no overhead.
In Orr Dunkelman, Michael J. Jacobson Jr., and Colin O’Flynn, editors,
Selected Areas in Cryptography - SAC 2020 - 27th International Conference,
Halifax, NS, Canada (Virtual Event), October 21-23, 2020, Revised Selected
Papers, volume 12804 of Lecture Notes in Computer Science, pages 483–511.
Springer, 2020.

[BGST22] Zhenzhen Bao, Jian Guo, Danping Shi, and Yi Tu. Superposition meet-in-
the-middle attacks: Updates on fundamental security of aes-like hashing. In
Yevgeniy Dodis and Thomas Shrimpton, editors, Advances in Cryptology -
CRYPTO 2022 - 42nd Annual International Cryptology Conference, CRYPTO
2022, Santa Barbara, CA, USA, August 15-18, 2022, Proceedings, Part I,
volume 13507 of Lecture Notes in Computer Science, pages 64–93. Springer,
2022.

[BHJ+18] Jakub Breier, Xiaolu Hou, Dirmanto Jap, Lei Ma, Shivam Bhasin, and Yang
Liu. Practical fault attack on deep neural networks. In David Lie, Mohammad
Mannan, Michael Backes, and XiaoFeng Wang, editors, Proceedings of the
2018 ACM SIGSAC Conference on Computer and Communications Security,
CCS 2018, Toronto, ON, Canada, October 15-19, 2018, pages 2204–2206.
ACM, 2018.

[BJK+16] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The
SKINNY family of block ciphers and its low-latency variant MANTIS. In

24 Automatic Search of Meet-in-the-Middle Differential Fault Analysis

Matthew Robshaw and Jonathan Katz, editors, Advances in Cryptology -
CRYPTO 2016 - 36th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 14-18, 2016, Proceedings, Part II, volume 9815 of
Lecture Notes in Computer Science, pages 123–153. Springer, 2016.

[BK06] Johannes Blömer and Volker Krummel. Fault based collision attacks on AES.
In Luca Breveglieri, Israel Koren, David Naccache, and Jean-Pierre Seifert,
editors, Fault Diagnosis and Tolerance in Cryptography, Third International
Workshop, FDTC 2006, Yokohama, Japan, October 10, 2006, Proceedings,
volume 4236 of Lecture Notes in Computer Science, pages 106–120. Springer,
2006.

[BLMR19] Christof Beierle, Gregor Leander, Amir Moradi, and Shahram Rasoolzadeh.
CRAFT: lightweight tweakable block cipher with efficient protection against
DFA attacks. IACR Trans. Symmetric Cryptol., 2019(1):5–45, 2019.

[BR10] Andrey Bogdanov and Christian Rechberger. A 3-subset meet-in-the-middle
attack: Cryptanalysis of the lightweight block cipher KTANTAN. In Alex
Biryukov, Guang Gong, and Douglas R. Stinson, editors, Selected Areas in
Cryptography - 17th International Workshop, SAC 2010, Waterloo, Ontario,
Canada, August 12-13, 2010, Revised Selected Papers, volume 6544 of Lecture
Notes in Computer Science, pages 229–240. Springer, 2010.

[BS97] Eli Biham and Adi Shamir. Differential fault analysis of secret key cryptosys-
tems. In Burton S. Kaliski Jr., editor, Advances in Cryptology - CRYPTO
’97, 17th Annual International Cryptology Conference, Santa Barbara, Cali-
fornia, USA, August 17-21, 1997, Proceedings, volume 1294 of Lecture Notes
in Computer Science, pages 513–525. Springer, 1997.

[BS03] Johannes Blömer and Jean-Pierre Seifert. Fault based cryptanalysis of the
advanced encryption standard (AES). In Rebecca N. Wright, editor, Financial
Cryptography, 7th International Conference, FC 2003, Guadeloupe, French
West Indies, January 27-30, 2003, Revised Papers, volume 2742 of Lecture
Notes in Computer Science, pages 162–181. Springer, 2003.

[CCF+21] Tingting Cui, Shiyao Chen, Kai Fu, Meiqin Wang, and Keting Jia. New
automatic tool for finding impossible differentials and zero-correlation linear
approximations. Sci. China Inf. Sci., 64(2), 2021.

[CFGR10] Christophe Clavier, Benoit Feix, Georges Gagnerot, and Mylène Roussellet.
Passive and active combined attacks on AES combining fault attacks and side
channel analysis. In Luca Breveglieri, Marc Joye, Israel Koren, David Naccache,
and Ingrid Verbauwhede, editors, 2010 Workshop on Fault Diagnosis and
Tolerance in Cryptography, FDTC 2010, Santa Barbara, California, USA, 21
August 2010, pages 10–19. IEEE Computer Society, 2010.

[Cla07] Christophe Clavier. Secret external encodings do not prevent transient fault
analysis. In Pascal Paillier and Ingrid Verbauwhede, editors, Cryptographic
Hardware and Embedded Systems - CHES 2007, 9th International Workshop,
Vienna, Austria, September 10-13, 2007, Proceedings, volume 4727 of Lecture
Notes in Computer Science, pages 181–194. Springer, 2007.

[CT05] Hamid Choukri and Michael Tunstall. Round reduction using faults. In
Proceedings of the Workshop on Fault Diagnosis and Tolerance in Cryptography,
FDTC 2005, volume 5, pages 13–24, 2005.

Qingyuan Yu et.al. 25

[CY03] Chien-Ning Chen and Sung-Ming Yen. Differential fault analysis on AES key
schedule and some coutnermeasures. In Reihaneh Safavi-Naini and Jennifer
Seberry, editors, Information Security and Privacy, 8th Australasian Con-
ference, ACISP 2003, Wollongong, Australia, July 9-11, 2003, Proceedings,
volume 2727 of Lecture Notes in Computer Science, pages 118–129. Springer,
2003.

[CZS16] Wei Cheng, Yongbin Zhou, and Laurent Sauvage. Differential fault analysis
on midori. In Kwok-Yan Lam, Chi-Hung Chi, and Sihan Qing, editors,
Information and Communications Security - 18th International Conference,
ICICS 2016, Singapore, November 29 - December 2, 2016, Proceedings, volume
9977 of Lecture Notes in Computer Science, pages 307–317. Springer, 2016.

[DEG+18] Christoph Dobraunig, Maria Eichlseder, Hannes Groß, Stefan Mangard, Flo-
rian Mendel, and Robert Primas. Statistical ineffective fault attacks on masked
AES with fault countermeasures. In Thomas Peyrin and Steven D. Galbraith,
editors, Advances in Cryptology - ASIACRYPT 2018 - 24th International
Conference on the Theory and Application of Cryptology and Information
Security, Brisbane, QLD, Australia, December 2-6, 2018, Proceedings, Part II,
volume 11273 of Lecture Notes in Computer Science, pages 315–342. Springer,
2018.

[DEK+16] Christoph Dobraunig, Maria Eichlseder, Thomas Korak, Victor Lomné, and
Florian Mendel. Statistical fault attacks on nonce-based authenticated en-
cryption schemes. In Jung Hee Cheon and Tsuyoshi Takagi, editors, Advances
in Cryptology - ASIACRYPT 2016 - 22nd International Conference on the
Theory and Application of Cryptology and Information Security, Hanoi, Viet-
nam, December 4-8, 2016, Proceedings, Part I, volume 10031 of Lecture Notes
in Computer Science, pages 369–395, 2016.

[DEK+18] Christoph Dobraunig, Maria Eichlseder, Thomas Korak, Stefan Mangard, Flo-
rian Mendel, and Robert Primas. SIFA: exploiting ineffective fault inductions
on symmetric cryptography. IACR Trans. Cryptogr. Hardw. Embed. Syst.,
2018(3):547–572, 2018.

[DF16] Patrick Derbez and Pierre-Alain Fouque. Automatic search of meet-in-the-
middle and impossible differential attacks. In Matthew Robshaw and Jonathan
Katz, editors, Advances in Cryptology - CRYPTO 2016 - 36th Annual In-
ternational Cryptology Conference, Santa Barbara, CA, USA, August 14-18,
2016, Proceedings, Part II, volume 9815 of Lecture Notes in Computer Science,
pages 157–184. Springer, 2016.

[DFL11] Patrick Derbez, Pierre-Alain Fouque, and Delphine Leresteux. Meet-in-the-
middle and impossible differential fault analysis on AES. In Bart Preneel
and Tsuyoshi Takagi, editors, Cryptographic Hardware and Embedded Systems
- CHES 2011 - 13th International Workshop, Nara, Japan, September 28 -
October 1, 2011. Proceedings, volume 6917 of Lecture Notes in Computer
Science, pages 274–291. Springer, 2011.

[DH77] Whitfield Diffie and Martin E. Hellman. Special feature exhaustive cryptanal-
ysis of the NBS data encryption standard. Computer, 10(6):74–84, 1977.

[DHS+21] Xiaoyang Dong, Jialiang Hua, Siwei Sun, Zheng Li, Xiaoyun Wang, and Lei Hu.
Meet-in-the-middle attacks revisited: Key-recovery, collision, and preimage
attacks. In Tal Malkin and Chris Peikert, editors, Advances in Cryptology -

26 Automatic Search of Meet-in-the-Middle Differential Fault Analysis

CRYPTO 2021 - 41st Annual International Cryptology Conference, CRYPTO
2021, Virtual Event, August 16-20, 2021, Proceedings, Part III, volume 12827
of Lecture Notes in Computer Science, pages 278–308. Springer, 2021.

[DKM+15] Christoph Dobraunig, François Koeune, Stefan Mangard, Florian Mendel,
and François-Xavier Standaert. Towards fresh and hybrid re-keying schemes
with beyond birthday security. In Naofumi Homma and Marcel Medwed,
editors, Smart Card Research and Advanced Applications - 14th International
Conference, CARDIS 2015, Bochum, Germany, November 4-6, 2015. Revised
Selected Papers, volume 9514 of Lecture Notes in Computer Science, pages
225–241. Springer, 2015.

[DLV03] Pierre Dusart, Gilles Letourneux, and Olivier Vivolo. Differential fault analysis
on A.E.S. In Jianying Zhou, Moti Yung, and Yongfei Han, editors, Applied
Cryptography and Network Security, First International Conference, ACNS
2003. Kunming, China, October 16-19, 2003, Proceedings, volume 2846 of
Lecture Notes in Computer Science, pages 293–306. Springer, 2003.

[DPdC+15] Louis Dureuil, Marie-Laure Potet, Philippe de Choudens, Cécile Dumas,
and Jessy Clédière. From code review to fault injection attacks: Filling the
gap using fault model inference. In Naofumi Homma and Marcel Medwed,
editors, Smart Card Research and Advanced Applications - 14th International
Conference, CARDIS 2015, Bochum, Germany, November 4-6, 2015. Revised
Selected Papers, volume 9514 of Lecture Notes in Computer Science, pages
107–124. Springer, 2015.

[DV12] François Dassance and Alexandre Venelli. Combined fault and side-channel
attacks on the AES key schedule. In Guido Bertoni and Benedikt Gierlichs,
editors, 2012 Workshop on Fault Diagnosis and Tolerance in Cryptography,
Leuven, Belgium, September 9, 2012, pages 63–71. IEEE Computer Society,
2012.

[FJLT13] Thomas Fuhr, Éliane Jaulmes, Victor Lomné, and Adrian Thillard. Fault
attacks on AES with faulty ciphertexts only. In Wieland Fischer and Jörn-
Marc Schmidt, editors, 2013 Workshop on Fault Diagnosis and Tolerance in
Cryptography, Los Alamitos, CA, USA, August 20, 2013, pages 108–118. IEEE
Computer Society, 2013.

[FT09] Toshinori Fukunaga and Junko Takahashi. Practical fault attack on a crypto-
graphic LSI with ISO/IEC 18033-3 block ciphers. In Luca Breveglieri, Israel
Koren, David Naccache, Elisabeth Oswald, and Jean-Pierre Seifert, editors,
Sixth International Workshop on Fault Diagnosis and Tolerance in Cryptog-
raphy, FDTC 2009, Lausanne, Switzerland, 6 September 2009, pages 84–92.
IEEE Computer Society, 2009.

[Gir04] Christophe Giraud. DFA on AES. In Hans Dobbertin, Vincent Rijmen,
and Aleksandra Sowa, editors, Advanced Encryption Standard - AES, 4th
International Conference, AES 2004, Bonn, Germany, May 10-12, 2004,
Revised Selected and Invited Papers, volume 3373 of Lecture Notes in Computer
Science, pages 27–41. Springer, 2004.

[GKPM18] Aymeric Genêt, Matthias J. Kannwischer, Hervé Pelletier, and Andrew
McLauchlan. Practical fault injection attacks on SPHINCS. IACR Cryptol.
ePrint Arch., page 674, 2018.

Qingyuan Yu et.al. 27

[GYS15] Nahid Farhady Ghalaty, Bilgiday Yuce, and Patrick Schaumont. Differential
fault intensity analysis on PRESENT and LED block ciphers. In Stefan
Mangard and Axel Y. Poschmann, editors, Constructive Side-Channel Analysis
and Secure Design - 6th International Workshop, COSADE 2015, Berlin,
Germany, April 13-14, 2015. Revised Selected Papers, volume 9064 of Lecture
Notes in Computer Science, pages 174–188. Springer, 2015.

[Hem04] Ludger Hemme. A differential fault attack against early rounds of (triple-)des.
In Marc Joye and Jean-Jacques Quisquater, editors, Cryptographic Hardware
and Embedded Systems - CHES 2004: 6th International Workshop Cambridge,
MA, USA, August 11-13, 2004. Proceedings, volume 3156 of Lecture Notes in
Computer Science, pages 254–267. Springer, 2004.

[HS13] Michael Hutter and Jörn-Marc Schmidt. The temperature side channel and
heating fault attacks. In Aurélien Francillon and Pankaj Rohatgi, editors,
Smart Card Research and Advanced Applications - 12th International Con-
ference, CARDIS 2013, Berlin, Germany, November 27-29, 2013. Revised
Selected Papers, volume 8419 of Lecture Notes in Computer Science, pages
219–235. Springer, 2013.

[JMR07] Marc Joye, Pascal Manet, and Jean-Baptiste Rigaud. Strengthening hardware
AES implementations against fault attacks. IET Inf. Secur., 1(3):106–110,
2007.

[JNP14] Jérémy Jean, Ivica Nikolic, and Thomas Peyrin. Tweaks and keys for block
ciphers: The TWEAKEY framework. In Palash Sarkar and Tetsu Iwata,
editors, Advances in Cryptology - ASIACRYPT 2014 - 20th International
Conference on the Theory and Application of Cryptology and Information
Security, Kaoshiung, Taiwan, R.O.C., December 7-11, 2014, Proceedings,
Part II, volume 8874 of Lecture Notes in Computer Science, pages 274–288.
Springer, 2014.

[JSC+14] Anju P. Johnson, Sayandeep Saha, Rajat Subhra Chakraborty, Debdeep
Mukhopadhyay, and Sezer Gören. Fault attack on AES via hardware trojan
insertion by dynamic partial reconfiguration of FPGA over ethernet. In Ting
Yu and Shengqi Yang, editors, Proceedings of the 9th Workshop on Embedded
Systems Security, WESS ’14, New Delhi, India, October 17, 2014, pages
1:1–1:8. ACM, 2014.

[KAKS22] Anup Kumar Kundu, Aikata, Banashri Karmakar, and Dhiman Saha. Fault
analysis of the PRINCE family of lightweight ciphers. J. Cryptogr. Eng.,
12(4):475–494, 2022.

[KLT15] Stefan Kölbl, Gregor Leander, and Tyge Tiessen. Observations on the SIMON
block cipher family. In Rosario Gennaro and Matthew Robshaw, editors,
Advances in Cryptology - CRYPTO 2015 - 35th Annual Cryptology Conference,
Santa Barbara, CA, USA, August 16-20, 2015, Proceedings, Part I, volume
9215 of Lecture Notes in Computer Science, pages 161–185. Springer, 2015.

[LRT12] Victor Lomné, Thomas Roche, and Adrian Thillard. On the need of ran-
domness in fault attack countermeasures - application to AES. In Guido
Bertoni and Benedikt Gierlichs, editors, 2012 Workshop on Fault Diagnosis
and Tolerance in Cryptography, Leuven, Belgium, September 9, 2012, pages
85–94. IEEE Computer Society, 2012.

28 Automatic Search of Meet-in-the-Middle Differential Fault Analysis

[LSG+10] Yang Li, Kazuo Sakiyama, Shigeto Gomisawa, Toshinori Fukunaga, Junko
Takahashi, and Kazuo Ohta. Fault sensitivity analysis. In Stefan Mangard and
François-Xavier Standaert, editors, Cryptographic Hardware and Embedded
Systems, CHES 2010, 12th International Workshop, Santa Barbara, CA, USA,
August 17-20, 2010. Proceedings, volume 6225 of Lecture Notes in Computer
Science, pages 320–334. Springer, 2010.

[MGV08] Nele Mentens, Benedikt Gierlichs, and Ingrid Verbauwhede. Power and fault
analysis resistance in hardware through dynamic reconfiguration. In Elisabeth
Oswald and Pankaj Rohatgi, editors, Cryptographic Hardware and Embedded
Systems - CHES 2008, 10th International Workshop, Washington, D.C., USA,
August 10-13, 2008. Proceedings, volume 5154 of Lecture Notes in Computer
Science, pages 346–362. Springer, 2008.

[ML08] Paolo Maistri and Régis Leveugle. Double-data-rate computation as a coun-
termeasure against fault analysis. IEEE Trans. Computers, 57(11):1528–1539,
2008.

[MPR+11] Marcel Medwed, Christophe Petit, Francesco Regazzoni, Mathieu Renauld,
and François-Xavier Standaert. Fresh re-keying II: securing multiple parties
against side-channel and fault attacks. In Emmanuel Prouff, editor, Smart Card
Research and Advanced Applications - 10th IFIP WG 8.8/11.2 International
Conference, CARDIS 2011, Leuven, Belgium, September 14-16, 2011, Revised
Selected Papers, volume 7079 of Lecture Notes in Computer Science, pages
115–132. Springer, 2011.

[MSGR10] Marcel Medwed, François-Xavier Standaert, Johann Großschädl, and
Francesco Regazzoni. Fresh re-keying: Security against side-channel and
fault attacks for low-cost devices. In Daniel J. Bernstein and Tanja Lange,
editors, Progress in Cryptology - AFRICACRYPT 2010, Third International
Conference on Cryptology in Africa, Stellenbosch, South Africa, May 3-6,
2010. Proceedings, volume 6055 of Lecture Notes in Computer Science, pages
279–296. Springer, 2010.

[MSS06] Amir Moradi, Mohammad T. Manzuri Shalmani, and Mahmoud Salmasizadeh.
A generalized method of differential fault attack against AES cryptosystem.
In Louis Goubin and Mitsuru Matsui, editors, Cryptographic Hardware and
Embedded Systems - CHES 2006, 8th International Workshop, Yokohama,
Japan, October 10-13, 2006, Proceedings, volume 4249 of Lecture Notes in
Computer Science, pages 91–100. Springer, 2006.

[MSY06] Tal Malkin, François-Xavier Standaert, and Moti Yung. A comparative
cost/security analysis of fault attack countermeasures. In Luca Breveglieri,
Israel Koren, David Naccache, and Jean-Pierre Seifert, editors, Fault Diagnosis
and Tolerance in Cryptography, Third International Workshop, FDTC 2006,
Yokohama, Japan, October 10, 2006, Proceedings, volume 4236 of Lecture
Notes in Computer Science, pages 159–172. Springer, 2006.

[Muk09] Debdeep Mukhopadhyay. An improved fault based attack of the advanced
encryption standard. In Bart Preneel, editor, Progress in Cryptology -
AFRICACRYPT 2009, Second International Conference on Cryptology in
Africa, Gammarth, Tunisia, June 21-25, 2009. Proceedings, volume 5580 of
Lecture Notes in Computer Science, pages 421–434. Springer, 2009.

[MWGP11] Nicky Mouha, Qingju Wang, Dawu Gu, and Bart Preneel. Differential and
linear cryptanalysis using mixed-integer linear programming. In Chuankun Wu,

Qingyuan Yu et.al. 29

Moti Yung, and Dongdai Lin, editors, Information Security and Cryptology -
7th International Conference, Inscrypt 2011, Beijing, China, November 30 -
December 3, 2011. Revised Selected Papers, volume 7537 of Lecture Notes in
Computer Science, pages 57–76. Springer, 2011.

[PAM19] Antoon Purnal, Victor Arribas, and Lauren De Meyer. Trade-offs in protecting
keccak against combined side-channel and fault attacks. In Ilia Polian and
Marc Stöttinger, editors, Constructive Side-Channel Analysis and Secure
Design - 10th International Workshop, COSADE 2019, Darmstadt, Germany,
April 3-5, 2019, Proceedings, volume 11421 of Lecture Notes in Computer
Science, pages 285–302. Springer, 2019.

[PBMB17] Sikhar Patranabis, Jakub Breier, Debdeep Mukhopadhyay, and Shivam Bhasin.
One plus one is more than two: A practical combination of power and
fault analysis attacks on PRESENT and present-like block ciphers. In 2017
Workshop on Fault Diagnosis and Tolerance in Cryptography, FDTC 2017,
Taipei, Taiwan, September 25, 2017, pages 25–32. IEEE Computer Society,
2017.

[PQ03] Gilles Piret and Jean-Jacques Quisquater. A differential fault attack technique
against SPN structures, with application to the AES and KHAZAD. In
Colin D. Walter, Çetin Kaya Koç, and Christof Paar, editors, Cryptographic
Hardware and Embedded Systems - CHES 2003, 5th International Workshop,
Cologne, Germany, September 8-10, 2003, Proceedings, volume 2779 of Lecture
Notes in Computer Science, pages 77–88. Springer, 2003.

[Riv09] Matthieu Rivain. Differential fault analysis on DES middle rounds. In
Christophe Clavier and Kris Gaj, editors, Cryptographic Hardware and Embed-
ded Systems - CHES 2009, 11th International Workshop, Lausanne, Switzer-
land, September 6-9, 2009, Proceedings, volume 5747 of Lecture Notes in
Computer Science, pages 457–469. Springer, 2009.

[RLK11] Thomas Roche, Victor Lomné, and Karim Khalfallah. Combined fault and
side-channel attack on protected implementations of AES. In Emmanuel
Prouff, editor, Smart Card Research and Advanced Applications - 10th IFIP
WG 8.8/11.2 International Conference, CARDIS 2011, Leuven, Belgium,
September 14-16, 2011, Revised Selected Papers, volume 7079 of Lecture Notes
in Computer Science, pages 65–83. Springer, 2011.

[RSG21] Jan Richter-Brockmann, Pascal Sasdrich, and Tim Güneysu. Revisiting fault
adversary models - hardware faults in theory and practice. IACR Cryptol.
ePrint Arch., page 296, 2021.

[RVB22] Hamed Ramzanipour, Navid Vafaei, and Nasour Bagheri. Practical differential
fault analysis on craft, a lightweight block cipher. The ISC International
Journal of Information Security, 14(3):21–31, 2022.

[SA09] Yu Sasaki and Kazumaro Aoki. Finding preimages in full MD5 faster than
exhaustive search. In Antoine Joux, editor, Advances in Cryptology - EU-
ROCRYPT 2009, 28th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Cologne, Germany, April 26-30,
2009. Proceedings, volume 5479 of Lecture Notes in Computer Science, pages
134–152. Springer, 2009.

[SBD+20] Thierry Simon, Lejla Batina, Joan Daemen, Vincent Grosso, Pedro Maat Costa
Massolino, Kostas Papagiannopoulos, Francesco Regazzoni, and Niels Samwel.

30 Automatic Search of Meet-in-the-Middle Differential Fault Analysis

Friet: An authenticated encryption scheme with built-in fault detection. In
Anne Canteaut and Yuval Ishai, editors, Advances in Cryptology - EURO-
CRYPT 2020 - 39th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Zagreb, Croatia, May 10-14, 2020,
Proceedings, Part I, volume 12105 of Lecture Notes in Computer Science,
pages 581–611. Springer, 2020.

[SBR+20] Sayandeep Saha, Arnab Bag, Debapriya Basu Roy, Sikhar Patranabis, and
Debdeep Mukhopadhyay. Fault template attacks on block ciphers exploiting
fault propagation. In Anne Canteaut and Yuval Ishai, editors, Advances in
Cryptology - EUROCRYPT 2020 - 39th Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Zagreb, Croatia,
May 10-14, 2020, Proceedings, Part I, volume 12105 of Lecture Notes in
Computer Science, pages 612–643. Springer, 2020.

[SGL+17] Siwei Sun, David Gérault, Pascal Lafourcade, Qianqian Yang, Yosuke Todo,
Kexin Qiao, and Lei Hu. Analysis of aes, skinny, and others with constraint
programming. IACR Trans. Symmetric Cryptol., 2017(1):281–306, 2017.

[SGSS14] Fabrizio De Santis, Oscar M. Guillen, Ermin Sakic, and Georg Sigl. Ciphertext-
only fault attacks on PRESENT. In Thomas Eisenbarth and Erdinç Öztürk,
editors, Lightweight Cryptography for Security and Privacy - Third Inter-
national Workshop, LightSec 2014, Istanbul, Turkey, September 1-2, 2014,
Revised Selected Papers, volume 8898 of Lecture Notes in Computer Science,
pages 85–108. Springer, 2014.

[SHS16] Bodo Selmke, Johann Heyszl, and Georg Sigl. Attack on a DFA protected AES
by simultaneous laser fault injections. In 2016 Workshop on Fault Diagnosis
and Tolerance in Cryptography, FDTC 2016, Santa Barbara, CA, USA, August
16, 2016, pages 36–46. IEEE Computer Society, 2016.

[SHW+14] Siwei Sun, Lei Hu, Peng Wang, Kexin Qiao, Xiaoshuang Ma, and Ling Song.
Automatic security evaluation and (related-key) differential characteristic
search: Application to simon, present, lblock, DES(L) and other bit-oriented
block ciphers. In Palash Sarkar and Tetsu Iwata, editors, Advances in Cryp-
tology - ASIACRYPT 2014 - 20th International Conference on the Theory
and Application of Cryptology and Information Security, Kaoshiung, Taiwan,
R.O.C., December 7-11, 2014. Proceedings, Part I, volume 8873 of Lecture
Notes in Computer Science, pages 158–178. Springer, 2014.

[SMC21] Albert Spruyt, Alyssa Milburn, and Lukasz Chmielewski. Fault injection as
an oscilloscope: Fault correlation analysis. IACR Trans. Cryptogr. Hardw.
Embed. Syst., 2021(1):192–216, 2021.

[SS22] André Schrottenloher and Marc Stevens. Simplified MITM modeling for
permutations: New (quantum) attacks. In Yevgeniy Dodis and Thomas
Shrimpton, editors, Advances in Cryptology - CRYPTO 2022 - 42nd Annual
International Cryptology Conference, CRYPTO 2022, Santa Barbara, CA,
USA, August 15-18, 2022, Proceedings, Part III, volume 13509 of Lecture
Notes in Computer Science, pages 717–747. Springer, 2022.

[ST17] Yu Sasaki and Yosuke Todo. New impossible differential search tool from
design and cryptanalysis aspects - revealing structural properties of several
ciphers. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, Advances
in Cryptology - EUROCRYPT 2017 - 36th Annual International Conference

Qingyuan Yu et.al. 31

on the Theory and Applications of Cryptographic Techniques, Paris, France,
April 30 - May 4, 2017, Proceedings, Part III, volume 10212 of Lecture Notes
in Computer Science, pages 185–215, 2017.

[TBM14] Harshal Tupsamudre, Shikha Bisht, and Debdeep Mukhopadhyay. Differential
fault analysis on the families of SIMON and SPECK ciphers. In Assia Tria
and Dooho Choi, editors, 2014 Workshop on Fault Diagnosis and Tolerance in
Cryptography, FDTC 2014, Busan, South Korea, September 23, 2014, pages
40–48. IEEE Computer Society, 2014.

[TFY07] Junko Takahashi, Toshinori Fukunaga, and Kimihiro Yamakoshi. DFA mech-
anism on the AES key schedule. In Luca Breveglieri, Shay Gueron, Israel
Koren, David Naccache, and Jean-Pierre Seifert, editors, Fourth International
Workshop on Fault Diagnosis and Tolerance in Cryptography, 2007, FDTC
2007: Vienna, Austria, 10 September 2007, pages 62–74. IEEE Computer
Society, 2007.

[TIHM17] Yosuke Todo, Takanori Isobe, Yonglin Hao, and Willi Meier. Cube attacks
on non-blackbox polynomials based on division property. In Jonathan Katz
and Hovav Shacham, editors, Advances in Cryptology - CRYPTO 2017 -
37th Annual International Cryptology Conference, Santa Barbara, CA, USA,
August 20-24, 2017, Proceedings, Part III, volume 10403 of Lecture Notes in
Computer Science, pages 250–279. Springer, 2017.

[TLG+15] Shahin Tajik, Heiko Lohrke, Fatemeh Ganji, Jean-Pierre Seifert, and Christian
Boit. Laser fault attack on physically unclonable functions. In Naofumi Homma
and Victor Lomné, editors, 2015 Workshop on Fault Diagnosis and Tolerance
in Cryptography, FDTC 2015, Saint Malo, France, September 13, 2015, pages
85–96. IEEE Computer Society, 2015.

[VBSM18] Navid Vafaei, Nasour Bagheri, Sayandeep Saha, and Debdeep Mukhopadhyay.
Differential fault attack on SKINNY block cipher. In Anupam Chattopadhyay,
Chester Rebeiro, and Yuval Yarom, editors, Security, Privacy, and Applied
Cryptography Engineering - 8th International Conference, SPACE 2018, Kan-
pur, India, December 15-19, 2018, Proceedings, volume 11348 of Lecture Notes
in Computer Science, pages 177–197. Springer, 2018.

[VSBM20] Navid Vafaei, Sayandeep Saha, Nasour Bagheri, and Debdeep Mukhopadhyay.
Fault attack on SKINNY cipher. J. Hardw. Syst. Secur., 4(4):277–296, 2020.

[XZBL16] Zejun Xiang, Wentao Zhang, Zhenzhen Bao, and Dongdai Lin. Applying
MILP method to searching integral distinguishers based on division property
for 6 lightweight block ciphers. In Jung Hee Cheon and Tsuyoshi Takagi,
editors, Advances in Cryptology - ASIACRYPT 2016 - 22nd International
Conference on the Theory and Application of Cryptology and Information
Security, Hanoi, Vietnam, December 4-8, 2016, Proceedings, Part I, volume
10031 of Lecture Notes in Computer Science, pages 648–678, 2016.

[YSW18] Bilgiday Yuce, Patrick Schaumont, and Marc Witteman. Fault attacks on
secure embedded software: Threats, design, and evaluation. J. Hardw. Syst.
Secur., 2(2):111–130, 2018.

[ZLZ+18] Fan Zhang, Xiaoxuan Lou, Xinjie Zhao, Shivam Bhasin, Wei He, Ruyi Ding,
Samiya Qureshi, and Kui Ren. Persistent fault analysis on block ciphers.
IACR Trans. Cryptogr. Hardw. Embed. Syst., 2018(3):150–172, 2018.

	Introduction
	Preliminaries
	Differential Fault Analysis using MitM
	Description of SKINNY

	Programming the MitM-DFA with MILP
	Formulate the MitM Differential Fault Analysis
	Programming the MILP Model

	Applications
	Differential fault analysis on SKINNY-n-n and SKINNY-n-2n
	Differential fault attack on CRAFT
	Differential fault attack on QARMA
	Differential fault attack on PRINCE and PRINCEv2
	Differential fault attack on MIDORI
	Extended Attack on AES-192

	Discussion
	Conclusion

