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Abstract. Algebraic Fault Analysis (AFA) is a cryptanalysis for block ciphers pro-
posed by Courtois et al., which incorporates algebraic cryptanalysis to overcome the
complexity of manual analysis within the context of Differential Fault Analysis (DFA).
The effectiveness of AFA on lightweight block ciphers has been demonstrated. How-
ever, the complexity of the algebraic systems prevents it from attacking heavyweight
block ciphers efficiently. In this paper, we propose a novel cryptanalysis called
Redundancies-assisted Algebraic Fault Analysis (RAFA) to facilitate the solution of
algebraic systems in the setting of heavyweight block ciphers. The core idea of RAFA
is to expedite SAT solvers by modifying the algebraic systems, which is accomplished
via two methods. The first method introduces redundant constraints, which is pro-
posed for the first time in the context of algebraic cryptanalysis. The second one is a
sophisticated linearization of the nonlinear Algebraic Normal Form (ANF). It takes
RAFA for about 9.68 hours to attack AES-128. To the best of our knowledge, this is
the first work that uses a general SAT solver to attack AES with only a single injection
of byte-fault. Moreover, RAFA can attack AES-128 in 50.92 and 27.54 minutes for
nibble- and bit-based fault model, respectively. In comparison, the traditional DFA
algorithm implemented by pure C takes 4 ∼ 5 hours under all three fault models
investigated in this work. Moreover, in order to show the generality of RAFA, we
also apply it to other heavyweight block ciphers. The best results show that RAFA
could recover the key of Serpent-256 and SPEEDY-r-192 in 20.7 and 1.5 hours using
only three faults, respectively. In comparison, AFA could not break these two ciphers
even when 30 bits and 50 bits of their keys are known, respectively. Furthermore, no
DFA work on Serpent or SPEEDY is known using comparable fault models.
Keywords: AES-128 · DFA · AFA · RAFA · SAT · Redundant Constraints ·
Linearization.

1 Introduction
Fault Attack is a class of active attacks in which an attacker injects faults into the
cryptosystem before gathering the ciphertexts to recover the secret key. In the first stage
(referred to as Fault Injection), these faults can be produced by altering the power supply
voltage, the frequency of the external clock or by exposing the circuits to lasers during
computing [BECN+06]. In the second stage (abbreviated as FA for Fault Analysis), the
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attacker conducts cryptanalysis on the known information in order to retrieve the key. FA
was first proposed by Boneh et al. in 1997 [BDL97].

When analyzing block ciphers, the most popular choice for fault analysis is the Dif-
ferential Fault Analysis (DFA) [BS97], which combines fault analysis with differential
cryptanalysis. Typically, in the context of DFA, the faults are injected into the intermedi-
ate states close to the last round. Using a laser to manipulate the electronic circuit, Bar-El et
al. [BECN+06] effectively injected a fault into an intermediate state as the AES program
was executing, proving that DFA is a physically feasible threat to block ciphers. Since its
proposal, DFA has gained much attention. In the early years of DFA research, substantial
exploitations were conducted to examine AES in particular [BS03, DLV03, Gir04, AMT13].
Many types of DFA required multiple fault injections. In [TMA11], Tunstall et al. pro-
posed a DFA algorithm on AES-128 using a single fault injection. In general, DFA on
block ciphers is performed mostly by manual analysis. When fault injection occurs in a
deeper round, the paths of fault propagation will overlap. The intricacy of the analysis
on the overlapped pathways increases exponentially, making manual analysis exceedingly
difficult [ZGZ+16].

To overcome the difficulty of manual analysis in DFA, Courtois et al. [CJW10] proposed
to combine DFA with algebraic cryptanalysis [CP02]. This technique is known as Algebraic
Fault Analysis (AFA). In the context of AFA, the designer constructs an algebraic system by
describing the relationship between the known information (such as plaintexts, ciphertexts,
the fault model, etc.) and the unknown variables (such as the round keys), then a
machine solver is used to automatically recover the secret key. Due to their relatively basic
architectures, AFA can effectively solve algebraic systems for lightweight stream ciphers
like Trivium [MBB11] and block ciphers like LED [ZGZ+12] and DES [ZGZ+16].

However, when confronted with heavyweight block ciphers such as AES and SM4 [LJH+07],
where the key lengths, block sizes and S-boxes are large, AFA is currently encountering a
number of obstacles, most notably its considerable runtime of solving the algebraic system.
Larger block ciphers result in more complicated algebraic systems, which impedes the
viability of a general-purpose solution scheme despite the development of machine solvers.

In summary, AFA is preferable in terms of its generality, but is ineffective against
heavyweight block ciphers. This motivates us to improve its efficiency while maintaining its
generality. Another motivation of this work is the belief that since DFA can be considered
a special solution scheme for the algebraic system constructed in AFA derived through
manual analysis, AFA will be comparable to DFA if the algebraic systems accommodate the
machine solvers more effectively. Therefore, we attempt to expedite AFA by transforming
algebraic systems into equivalent ones, on which the performance of machine solvers will
be enhanced.

Our Contribution. In this paper, we outline the limitations of AFA on heavyweight block
ciphers (such as AES) and propose a generic variant of AFA to improve its efficiency. The
main contributions of this work can be summarized as follows:

(1) We propose the Redundancies-assisted Algebraic Fault Analysis (RAFA), whose
performance significantly surpasses that of previous AFA. Our RAFA framework
takes about 9.68 hours on average to recover the key when implemented on AES-128
with the byte-based fault model in the 8-th round used in [Muk09], which requires a
single injection of a byte-fault. While AFA outperforms DFA on several lightweight
block ciphers, to the best of our knowledge, there are no reports of AFA with a
single fault injection being effective on a heavyweight block cipher such as AES-
128. When the key length, the block size, and the size of the S-boxes increase, the
system becomes significantly more complicated, resulting in drastic decline in the
performance of AFA. However, our RAFA algorithm can circumvent this difficulty.
Moreover, in order to verify its generality, we apply RAFA to other heavyweight SPN
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block ciphers. The best results show that RAFA could recover the key of Serpent-256
and SPEEDY-r-192 in 20.7 and 1.5 hours using only three faults, respectively.

(2) We apply the concept of redundant constraints to the field of algebraic cryptanaly-
sis. We note that the major objective of SAT-based algebraic cryptanalysis is the
construction of an encoding for transforming Constraint Satisfaction Problem (CSP)
into Boolean Satisfiability Problem (SAT). This conceptual transition motivates us
to integrate redundant constraints into the system, a strategy recently studied in
the research of converting CSP into SAT [BHN14, Gav07, MS11, Bjö11]. Using
redundant constraints, RAFA becomes thousands of times more efficient than AFA.
When discussing the mechanism of incorporating redundant constraints, we will
focus on AES-128 to clarify the algorithms. But after that we will provide general
algorithms suitable for common SPN block ciphers, and conduct experiments to show
RAFA’s effectiveness on other block ciphers.

(3) We demonstrate the adaptability and efficiency of the proposed RAFA using different
fault models. Specifically, the performance of RAFA is improved when there are
fewer solutions to the algebraic system as a result of adopting slightly stronger fault
models. In contrast, the performance of non-algebraic analyses such as DFA tends
to be independent of the number of solutions if the algorithms are not adjusted
manually, as the search spaces of the first and second step are invariant. We validate
this assertion on AES-128 since it has known effective DFA algorithm with two
slightly stronger fault models, in which the expected number of solutions to the
algebraic system decreases from 256 to 16 or 8. Experimental results show that
our RAFA algorithm can complete in 50.92 or 27.54 minutes in these two scenarios,
respectively. In comparison, the traditional DFA algorithm implemented by pure C
takes 4 ∼ 5 hours under all three fault models investigated in this work.

2 Preliminary
2.1 Advanced Encryption Standard
Since October 2000, the Advanced Encryption Standard (AES) [DR99] has been the de
facto standard for symmetric key cryptography. Due to its great resistance to common
block cipher attacks [BS12, Mat93], the AES is extensively utilized in smart cards and
secure microprocessors. Due to its prevalence, numerous types of cryptanalysis of AES
have been documented in the literature.

There are three versions of AES, namely AES-128, AES-192 and AES-256, each with a
different number of rounds and key length. In this paper, AES-128 is the principal topic
of discussion. In AES, each of the round keys and intermediate data is represented by a
4× 4 array of bytes called the state matrix.

The architecture of AES is based on the Substitution-Permutation Network (SPN). Each
round of AES, excluding the final one, consists of a nonlinear operation SubBytes (SB) and
two linear operations ShiftRows (SR) and MixColumns (MC), followed by AddRoundKey
(AK), the single operation directly connected to the key operation. Note that each of
these operations is reversible. In the decryption, there are hence corresponding inversive
operations SB−1, SR−1, MC−1 and AK−1.

2.2 Differential Fault Analysis on AES-128
Notation. In this paper, we will use the following notations:

• SBr,i, SB∗r,i: the i-th byte of the correct (resp., faulty) output state of the SubBytes
operation at r-th round, 0 ≤ i < 16, 0 ≤ r ≤ 10.
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• SRr,i, SR∗r,i: similarly, SR stands for ShiftRows.

• MCr,i, MC∗r,i: similarly, MC stands for MixColumns.

• AKr,i, AK∗r,i: similarly, AK stands for AddRoundKey. In particular, xi := AK10,i

denotes the correct ciphertext and x∗i := AK∗10,i denotes the faulty ciphertext.

• K
(r)
i : the i-th byte of the r-th round key.

The DFA algorithm consists of two steps:

(1) In the first step, parts of the constraints imposed by information leakage resulting
from fault injection are recognized. In particular, each constraint equation in the
first step should have as few variables as feasible, so that brute-force algorithms may
quickly solve these relationships. Generally, the first step functions as a filter for
candidate keys.

(2) In the second step, which is the most time-consuming, an exhaustive search will be
conducted on the reduced key space generated in the first step, so that a very small
key space whose elements satisfy certain sophisticated constraints will be obtained.

The fault model employed in [Muk09, TMA11] injects a random byte fault f at the
input of the 8-th round. Without loss of generality, we may presume that the fault is
introduced into the 0-th byte as we can easily replicate the analysis in other scenarios. In
addition, since the SubBytes and ShiftRows operations will not diffuse the fault in the
0-th byte, we may presume that the fault is introduced into the 0-th byte of the output of
the ShiftRows in the 8-th round.

Appendix A lists the equations for the first step, where the values F0, F1, F2, F3 are
unknown intermediate fault values. In the first step, there are 4 sets of equations, each
of which comprises four bytes of the last round key as unknown variables. Using a basic
brute-force algorithm, the solutions to each set of equations can be found in seconds.

Theoretically, the size of key space is reduced from 2128 to 232 by the first step analysis.
To further restrict the key space, the authors of [TMA11] developed a set of additional
equations for the second step, which are found by evaluating the fault values at a deeper
round, where f is the unknown injected fault value, as shown in Eq. (1).

2f = AK8,0 ⊕AK∗8,0

f = AK8,1 ⊕AK∗8,1

f = AK8,2 ⊕AK∗8,2

3f = AK8,3 ⊕AK∗8,3

(1)

This set of constraints is then solved by exploring the reduced key space acquired in
the first step. Once an assignment of the last round key is set, the values appeared in the
equations are uniquely determined. A candidate key is a value of the last round key that
satisfies the second step constraints. According to a probabilistic reasoning, the expected
number of candidates following the second step is 28 [TMA11]. Using the plaintext and
the correct ciphertext, it is then possible to recover the master key. Notice that checking if
an assignment of the last round key satisfies Eq. (1) is several times faster than attempting
to encrypt the plaintext with the supplied last round key, due to the decline in the number
of rounds that need to be considered. The complexity of solving constraints in Eq. (1) via
brute-force algorithm can be characterized by 232. However, we remark that Charles et
al. [BDF11] developed an automatic tool to search for a dedicated solution scheme of these
two sets of constraints, which managed to reduce this complexity to 224.
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2.3 Algebraic Fault Analysis
Algebraic Fault Analysis (AFA) was first proposed in [CJW10] as a mechanism for aug-
menting algebraic cryptanalysis with fault analysis. It incorporates both the correct and
faulty encryption procedures into the algebraic system, in order to utilize the known
plaintexts, correct and faulty ciphertexts. This concept was refined in [CFGR12] and
implemented in [MBB11] to attack the stream cipher Trivium. Zhang et al. proposed
a generic framework of AFA in [ZGZ+16], which successfully break the ultra-lightweight
block cipher LBlock, and was applied to block ciphers with different structures, including
DES, PRESENT and Twofish.

The AFA’s algebraic system comprises a description of the encryption and fault
information. There are two disparate principles of constructing the algebraic system. The
first principle is to minimize the number of variables and equations [JKP12], in order to
reduce the instance size. The second one is to include all the intermediate variables and
encryption operations as described in [ZGZ+16], which makes the analysis simple and
generic. In this work, we will demonstrate the efficiency and usefulness of adopting the
second principle.

Once the algebraic system has been established, it can be translated to Boolean
constraints and ultimately solved by SAT solvers. Despite its theoretical complexity [Coo71],
remarkable improvements of SAT solvers [BHZ06, Hua08, Pet15, TTKB09] have made
SAT a viable foundation for addressing a wide range of problems. In addition, as a result
of the annual competition [SAT], SAT solvers are meticulously constructed to operate in
different contexts with no user adjusting necessary. As a consequence, there is a growing
interest in incorporating them to the problem-solving process. Indeed, SAT solvers have
recently become the standard for the majority of algebraic cryptanalysis solutions.

Most SAT solvers are based on the modest code base of MiniSAT [ES03] and take
as input DIMACS files, which contain lists of disjunction clauses. Furthermore, because
XOR operations are so prevalent in cryptographic applications, extensive research has
been conducted to translate linear equations over GF (2) into Conjunctive Normal Form
(CNF) clauses [BCJ07, SNC09]. In this work, we employ the CryptoMiniSAT [SNC09],
which extends the MiniSAT solver [SE05] to allow the input to contain XOR clauses.

3 Overview

3.1 Motivation and Challenges
The principal motivation of this work is to discover a variant of AFA that is generic and
efficient. While DFA described in Sec. 2.2 works well on AES-128, this framework is not
generic enough to be replicated on other block ciphers: the adversary must manually build
the constraint equations associated with unknown intermediate fault values, in a manner
that each equation in the first step uses as few available bytes of the round keys as possible.
In the meantime, the first step should be able to significantly limit the key search space,
making the second step’s brute-force search feasible. In other words, an elaborate balance
has to be maintained when designing the two sets of constraints.

On the other hand, even though AFA employs a generic algebraic method with the use
of machine solvers, it only works well on lightweight block ciphers, where the algebraic
systems are tractable because of smaller key length, block size and S-box. Indeed, to the
best of our knowledge, there are no reports of AFA with a single fault injection exploiting
heavyweight block ciphers such as AES-128. An example of AFA on AES-128 was given
in [vWBV+17], which, however, required at least two fault injections. And the faults were
introduced at the input of the 9-th round, hence the workload for fault analysis was rather
light and not comparable to the one we are evaluating (i.e. a single fault injection to
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the 8-th round). In order to make AFA work on heavyweight block ciphers, we need to
improve its efficiency to overcome the difficulty of increasing instance sizes.

3.2 Core Ideas
From our perspective, the primary objective of SAT-based algebraic cryptanalysis is to
design an encoding for transforming Constraint Satisfaction Problem (CSP) into Boolean
Satisfiability Problem (SAT). Recent trends in this math-related field include the intro-
duction of so-called redundant constraints [BHN14, Gav07, MS11, Bjö11]. Consequently,
we are inspired by the works of hybrid encodings [SBT17, BHN14], which combine differ-
ent encoding strategies, such as direct encoding [Wal00], log encoding [IM94] and order
encoding [TTKB09], into a single SAT instance. In this work, we propose the Redundancies-
assisted Algebraic Fault Analysis (RAFA), in which the insertion of redundant constraints
acts as the main component.

A potential issue of incorporating redundant constraints into the system is the increase
in the instance size. However, Björk et al. [Bjö11] found only a minor link between the
instance size and the difficulty for practical SAT solvers. They asserted that the number of
primary variables, whose assignment alone will determine the assignment of all variables, is
a much more significant factor than the number of variables and the number of clauses. For
instance, the bits of the last round key can be considered the primary variables since they
uniquely determine the entire system. Moreover, having more clauses tends to facilitate
the unit propagation, allowing SAT solvers to finish more quickly [Bjö11]. This ensures us
to focus more on the introduction of redundant constraints and less on the instance size.

In order to maintain the generality of the RAFA framework, we will not delve into the
specific properties of the AES-128 block cipher, instead, we will provide two strategies to
exploit the knowledge we may acquire from the fault propagation (Sec. 4.3.1) and the SPN
structure (Sec. 4.3.3), which provides the redundant constraints.

1. Utilizing the information provided by the path of fault propagation. Due to the
nature of the SPN structure, a diagram of fault propagation can be constructed
once a fault model has been defined. A sequence of equations can also be written to
describe the fault values (which may be zero) in the diagram, which aids the SAT
solvers in identifying nontrivial interactions caused by fault injection.

2. Utilizing the invertibility of each SPN layer. For a block cipher of SPN structure,
each operation must be invertible in order for an authentic decryption. We make
use of this fact and equip the algebraic system with both encryption and decryption
operations. This strategy improves the implicativity of SAT solvers by supporting
inferences on both directions.

3.3 Fault Models on AES-128
We discover that the performance of the RAFA algorithm is highly related to the number
of solutions due to the bottleneck of modern SAT solvers. To clarify this point, we evaluate
RAFA using various fault models. We call the fault model discussed in Sec. 2.2 the byte-
based fault model in the 8-th round, where a random byte fault is induced in the 0-th byte of
the output of the 8-th ShiftRows. Suppose the induced fault value is f , then 1 ≤ f < 256
in the byte-based fault model in the 8-th round. Two slightly stronger fault models are
also evaluated in this work. The first one is the nibble-based fault model in the 8-th round,
where it is known that the fault is injected into the first nibble (4 bits) of the same byte,
i.e. 1 ≤ f < 16; the second one is the bit-based fault model in the 8-th round, where it is
known that only one bit of the faulty byte is flipped, i.e. f ∈ {1, 2, 4, 8, 16, 32, 64, 128}.
The last two fault models help us reduce the number of candidate keys and thus result in
significant acceleration of the RAFA algorithm as shown by the experiments.
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4 Framework of RAFA
4.1 Overview
The comparison between the RAFA framework and the AFA framework is demonstrated
in Fig. 1, where the red dashed block depicts the procedures of RAFA and the blue one
describes the procedures of AFA.

As for AFA, it starts with including the known values of the correct and faulty ciphertext
into the algebraic system in ¬. Then, equations describing the fault values based on the
given fault model are established in ­, followed by a full encryption of the known plaintext
in ¯. The relationships between the known values are described by a sequence of forward
constraints in °, which include all the intermediate values and operations. In order to
linearize the nonlinear components, only Standard Strategy (SS, see Sec. 4.4) is adopted
in ³. Finally, the algebraic system of AFA is solved by a SAT solver to recover the key.

As for RAFA, it starts with the same procedure ¬. However, instead of merely
considering the injected fault value, it will establish equations describing all the intermediate
fault values according to the fault propagation in ­. Afterwards, in addition to the forward
constraints in °, RAFA also adds the backward constraints in ±, which corresponds to
the decryption operations. Moreover, prior to completing the linearization by SS in ³,
further linearizing strategies are adopted in ² (see Sec. 4.4). The algebraic system of
RAFA no longer requires the plaintext information during the online equation construction.
Instead, the plaintext information is merely used offline to check whether each output of
the SAT solver is correct or not by feeding the pair of correct plaintext and ciphertext.

In a glimpse, the proposed RAFA discards direct usage of plaintext ¯ in the equation
construction. Additionally, RAFA utilizes the techniques of incorporating redundant
constraints (® and ±), which is an augmentation of ­, and employing further linearizing
strategies (²) to facilitate the entire solving. All of these make it possible to solve the
algebraic equation of AES-128 with a single fault injection in the 8-th round.
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Figure 1: Comparison between RAFA Framework (Red) and AFA Framework (Blue).



Zehong (Zephyr) Qiu, Fan Zhang, Tianxiang Feng and Xue Gong 577

4.2 Construct Basic Algebraic System
Firstly, we construct the basic algebraic system of RAFA, which corresponds to the
procedures ¬ and ° in Fig. 1. We will focus our discussion on AES-128 for convenience,
but the algorithm is replicable on other SPN block ciphers by replacing the encryption
operations and the Key Expansion scheme.

The basic structure of the AES algorithm was given in Sec. 2.1. In the following we
recall the precise design of each operation, as specified in [DR99]. We follow the convention
that each byte is represented by a polynomial

7∑
i=0

aiX
i ∈ GF (2)[X]

(X8 + X4 + X3 + X + 1)
∼= GF (28),

where a0 is the least significant bit.

4.2.1 Encryption.

The operation ShiftRows and MixColumns can be characterized by two 128 × 128 0-1
matrices if we view each state as a column vector of 128 bits over GF (2). The operation
AddRoundKey is simply adding the state vector with the round key vector.

The operation SubBytes is the only nonlinear component in AES. It replaces each byte
in a state with its image under an invertible S-box mapping. Since we need eventually
to encode the relations in bits before feeding them into the SAT solver, it is helpful to
firstly transform the output of S-box into Algebraic Normal Form (ANF) [CB07], i.e.
representing each output bit of the S-box in terms of a multivariate polynomial of the
input bits. As the ANF of a Boolean function is known to be unique [SP09], we do not
worry about how it is computed. There are many open-source computer algebra tools that
can calculate ANF [MSP+17, The20].

4.2.2 Key Expansion

The encryption operations are invertible, hence the key of a single round is sufficient to
determine the full round keys in AES-128. In general, the primary concern is the last round
key, as it is the closest to the known output ciphertexts. Since the fault injection happens
in the 8-th round, and we do not include verification equations with plaintext into the
system according to Sec. 3.2, the only round keys we may utilize are (K(8)

i ), (K(9)
i ), (K(10)

i )
(see the notation in Sec. 2.2). We take them as variables and add the corresponding
constraints according to the Key Expansion scheme , without considering other round
keys.

4.2.3 Reservation of Round Function Operations

We adopt the convention of keeping the intermediates in the algebraic system as in [ZGZ+16],
i.e. when a state s0 is input to a sequence of operations f1, f2, · · · , fn, the algebraic system
would contain si = fi(si−1) for all 1 ≤ i ≤ n, instead of simply sn = fn ◦ · · · ◦f1(s0). While
Zhang et al. adopt this convention primarily to simplify the analysis, making it generic
enough to deploy the framework on any block cipher, we discover that this representation
actually boosts the SAT problem-solving process, which may be explained by the fact
that linearity of the system is maintained [SNC09] and the implicativity of SAT solvers is
enhanced due to the decrease in the length of the generated CNF clauses [Bjö11]:

• Firstly, the linearity of the system is maintained. Due to the nonlinear operation
SubBytes, all constraints become nonlinear multivariate polynomials if the operations
are compacted. In this situation, each linear operation is utilized exactly once during
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the substitutions, as can be seen. However, if the linear equations are kept in the
system, they can be accessed multiple times (in form of CNF clauses), allowing SAT
solvers to detect conflicts at an earlier stage. In addition, CryptoMiniSAT [SNC09]
exploits the additional information offered by linear equations to a great extent.

• Secondly, the length of the equations is reduced. Consequently, the generated CNF
clauses are shorter, resulting in higher implicativity [Bjö11]. Given that the key
spaces of block ciphers are so vast, the density of solutions is quite close to zero.
As a result, SAT solvers are likely to encounter a conflict in the majority of search
branches. Higher implicativity permits early detection of conflicts, which expedites
the SAT solvers.

Moreover, a key distinction between the basic algebraic system of RAFA and the one of
AFA proposed in [ZGZ+16] is that the plaintext information is not included into the system,
making the algebraic system of RAFA much simpler. In AFA, the incorporation of fault
information was regarded as an enhancement over the primitive algebraic analysis. Indeed,
the AFA framework described in [ZGZ+16] constructs an algebraic system that describes
not only relationships between the correct and faulty ciphertext, but also relationships
between the plaintext and the correct ciphertext. Since the fault injection occurs at a
distance from the plaintext, it is necessary to add constraint equations describing many
rounds of encryption to the algebraic system in order to include the plaintext; however,
the expense of doing so significantly outweighs the benefit of knowing the plaintext, in the
context of heavyweight block ciphers. Therefore, in this work, the plaintext information
has been omitted and thus the algebraic system remains incomplete. In other words, it
may contain several solutions that match to different candidate keys during the online
solving phase. During the offline phase, after identifying a candidate key for the master
key, its correctness can be immediately verified by encryption the plaintext using the
candidate key.

Besides, we wish to highlight one additional advantage of retaining the intermediates.
That is, it enables us to easily introduce redundant constraints into the RAFA framework,
as mentioned in Sec. 4.3.

4.3 Incorporate Redundant Constraints into the System
At this stage, we illustrate how to incorporate redundant constraints into the algebraic
system, which corresponds to procedures ® and ± in Fig. 1.

As specified in Sec. 3.2, the main task of algebraic cryptanalysis is transforming CSP
into SAT. We identify that one of the most significant challenges of this task is the loss
of information. For example, suppose x, y, z are Boolean variables, consider the following
constraints:

z = x ∧ y, y = x (2)
Based on inferences on the CSP instance, we obtain z = x ∧ x = 0.
The constraints in Eq. 2 can be expressed in CNF via logics:

z ↔ x ∧ y ≡ (z ∨ x) ∧ (z ∨ y) ∧ (x ∨ y ∨ z)
y ↔ x ≡ (y ∨ x) ∧ (x ∨ y)

Thus, when they are directly encoded into SAT instance, the following clauses are
generated: (i) z ∨ x; (ii) z ∨ y; (iii) x ∨ y ∨ z; (iv) y ∨ x; (v) y ∨ x.

A SAT solver may first try z = 1, which results in x = y = 1 via (i) and (ii), then a
contradiction is found in (iv). The SAT solver can then decide z = 0. We can see that
the SAT solving can be accelerated if we include the “lost information” z = 0 into the
instance, since the branch z = 1 does not need to be searched now. The constraint z = 0
is redundant because it can be derived from the existing constraints.
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To summarize, since CSP instance is in general described in an abstract manner, its
“nice” structure (e.g. z = x ∧ x = 0) might be completely lost after being converted to
SAT [Pet15]. This motivates us to utilize the knowledge gained from the CSP instances
and feed it into corresponding SAT instances, which is accomplished by incorporating
redundant constraints into the system in this paper. The redundant constraints arise from
the fault propagation and the SPN structure as specified in the following.

4.3.1 Fault Propagation on AES-128

The only information about the byte-based fault model in the 8-th round that has been
utilized when constructing the basic algebraic system in Sec. 4.2 is the position of the fault
injection, which specifies the starting point for constructing the basic algebraic systems.
Nevertheless, additional information can be obtained from the fault model, mostly via
constraints describing intermediate fault values generated by the diffusion layers of block
ciphers.
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Figure 2: Diagram of Fault Propagation from 8th SR.

For most block ciphers and known fault models, a fault propagation diagram similar to
that in Fig. 2 can be easily determined. We can derive two types of relations from the
diagram of fault propagation:

(1) Differences on the clean boxes in Fig. 2. By considering the bytes where faults have
not been spread, we have the following equations:

SR8,i = SR∗8,i,∀i ≥ 1
MC8,i = MC∗8,i,∀i ≥ 4
AK8,i = AK∗8,i,∀i ≥ 4
SB9,i = SB∗9,i,∀i ≥ 4
SR9,i = SR∗9,i,∀i 6= 0, 7, 10, 13

(2) Differences on the labelled boxes in Fig. 2, whose fault values are related to some
intermediate faults appearing multiple times. Faults after linear layers ShiftRows,
MixColumns, AddRoundKey are easily calculated by linearity. Fault after nonlinear
layers SubBytes are substituted by new fault variables. In Appendix B, we list the
equations calculating the fault values related to f, F0, F1, F2, F3.

4.3.2 Fault Propagation on General SPN Block Ciphers

In general, the common operations of SPN block ciphers are linear transformation, S-box,
and AddRoundKey. Suppose the block size is n, then each linear transformation corresponds
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to an n× n 0-1 matrix. Suppose the size of an S-box is k, WLOG we can assume it maps
the ik-, (ik + 1)-, ..., (ik + k − 1)-th input bits into the ik-, (ik + 1)-, ..., (ik + k − 1)-th
output bits for any i = 0, 1, · · · , n/k − 1, because we can append permutations before and
after the S-box operation.

Now we can consider the property of fault propagation on general SPN block ciphers.
Because of linearity, the input and output faults of a linear operation are linearly related.
The i-th output of an S-box is clean if and only if the ik-, (ik + 1)-, · · · , (ik + k − 1)-th
bits are clean, otherwise we would leave the output fault alone since the input and output
faults are related with the correct input and faulty input through high-degree ANF. The
AddRoundKey operation preserves the input and output fault because the key is invariant.

Furthermore, we note that when multiple faults are injected, we would add such redun-
dancies for every pair of the encryptions. The redundancies related to fault propagation
is summarized as follows. In the pseudo-code, we will use := for definition of Boolean
variable, i.e. the corresponding equation is fed into the SAT solver; we will use ← for the
usual assignment.

Algorithm 1: Redundancies related to Fault Propagation.
1 for Every pair of the encryptions do
2 Suppose the initial states are S1 and S2
3 Define f := S1 ⊕ S2
4 for i = 0, 1, · · · , n− 1 do
5 if the fault is not injected into the i-th bit in the adopted model then
6 fi := 0
7 fi ← 0
8 for operation T starting from the fault position do
9 S′1 = T (S1), S′2 = T (S2) // state variables are defined when

constructing the basic algebraic systems
10 if T is a linear operation then
11 Suppose the corresponding matrix is L.
12 Define f ′ := S′1 ⊕ S′2
13 for i = 0, 1, · · · , n− 1 do
14 eq ← f ′i
15 for j = 0, 1, · · · , n− 1 do
16 if Li,j = 1 and fj 6= 0 then
17 eq ← eq ⊕ fj

18 Add equality eq := 0
19 if eq = f ′i then
20 f ′i ← 0
21 else if T is an S-box operation then
22 Define f ′ := S′1 ⊕ S′2
23 for i = 0, 1, · · · , n/k − 1 do
24 if fik = fik+1 = · · · = fik+k−1 = 0 then
25 for j = 0, 1, · · · , k − 1 do
26 f ′ik+j := 0
27 f ′ik+j ← 0
28 else if T is AddRoundKey then
29 f ′ ← f
30 f ← f ′, S1 ← S′1, S2 ← S′2
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4.3.3 Enhancement of Forward-Backward Communication

Since all encryption operations in a block cipher with an SPN structure are invertible, we
can include both encryption operations and decryption operations in the system to boost
SAT solver inferences in both directions. Suppose the input state and output state of an
encryption operation T other than AddRoundKey are Si and Si+1, respectively. Both Si

and Si+1 are variables included in the algebraic system as described in Sec. 4.2. And we
can append the following constraints into the system:

Si+1 = T (Si)
Si = T−1(Si+1)

The inverse of a linear operation is just the inverse of a matrix over GF (2). The
inverse S-box can be handled by strategies mentioned in Sec. 4.4. Even though the search
process of SAT solvers is conducted on the variables according to the ordering of their
indices [Bjö11], the determination of the variables during the search does not have to be
sequential. For example, it may happen that when the solver is running, the byte value
of Si is fixed, then it can resort to the relation Si+1 = T (Si) to uniquely identify the
value of Si+1 via unit propagation. And the opposite may happen, where the relation
Si = T−1(Si+1) becomes helpful. Although the actual scenario is more complicated, as
the relations are encoded in CNF clauses, this argument shows an insight of functionality
of the Forward-Backward Communication. Note that such redundancies are naturally
applicable to all SPN block ciphers.

4.4 Handle Nonlinear ANF by Linearization
This section demonstrates the procedures ² and ³ in Fig. 1.

After constructing the basic algebraic system in Sec. 4.2 and introducing redundant
constraints in Sec. 4.3, we obtain a system of equations which can be divided into two
parts:

1. Nonlinear multivariate polynomials over GF (2), i.e. the ANF representing the
nonlinear S-box.

2. Linear equations over GF (2), i.e. in the form of x1 ⊕ x2 ⊕ · · · ⊕ xn = c, where
c ∈ GF (2) is a constant.

Most SAT solvers take CNF clauses as input, which means we have to further transform
all constraints into a standard format. However, XOR operations are so ubiquitous
in cryptographic problems that extensive research has been done to transform linear
equations over GF (2) into CNF clauses [BCJ07, SNC09]. In this paper, we utilize the
CryptoMiniSAT [SNC09], which extends the MiniSAT solver [SE05] to accept linear
equations over GF (2) (XOR operations) as input, besides CNF clauses. Therefore, we
only focus on how to transform the nonlinear ANF into linear equations and CNF clauses.

A basic idea for linearizing a nonlinear ANF is to introduce an auxiliary variable a for
each monomial x1x2 · · ·xn of order ≥ 2, resulting in a system of linear equations. The
equivalence of the monomial and the auxiliary variable a is described by the following
CNF formula:

a↔ x1x2 · · ·xn

≡(a→ x1 ∧ · · · ∧ xn) ∧ (x1 ∧ · · · ∧ xn → a)
≡(a ∨ x1) ∧ (a ∨ x2) ∧ · · · ∧ (a ∨ xn) ∧ (x1 ∨ x2 ∨ · · · ∨ xn ∨ a)

We can replace every monomial x1x2 · · ·xn with a by appending the preceding CNF
clauses to our algebraic system. When all nonlinear monomials are eliminated, linearization
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is completed. It is called Standard Strategy (SS) in [JK10], which is a common convention
adopted in AFA [ZGZ+16]. However, since the nonlinearity of AES S-box dominates, it is
costly to include an auxiliary variable for each monomial of order ≥ 2.

In order to decrease the length of the output linear equations and the number of
auxiliary variables, several supplementary strategies have been proposed in [JK10].

Cubic Partner Strategy (CPS). Replace x1x2x3 ⊕ x1x2x4 with an auxiliary variable
a ∈ GF (2), appending the following CNF clauses:

(x1 ∨ a) ∧ (x2 ∨ a) ∧ (x3 ∨ x4 ∨ a) ∧ (x3 ∨ x4 ∨ a)
∧ (x1 ∨ x2 ∨ x3 ∨ x4 ∨ a)
∧ (x1 ∨ x2 ∨ x3 ∨ x4 ∨ a)

Quadratic Partner Strategy (QPS). Replace x1x2 ⊕ x1x3 with an auxiliary variable
a ∈ GF (2), appending the following CNF clauses:

(x1 ∨ a) ∧ (x2 ∨ x3 ∨ a) ∧ (x2 ∨ x3 ∨ a)
∧(x1 ∨ x2 ∨ x3 ∨ a) ∧ (x1 ∨ x2 ∨ x3 ∨ a)

Double Partner Strategy (DPS). Replace x1x2 ⊕ x1 ⊕ x2 ⊕ 1 with an auxiliary variable
a ∈ GF (2), appending the following CNF clauses:

(a ∨ x1) ∧ (a ∨ x2) ∧ (x1 ∨ x2 ∨ a)

Linear Partner Strategy (LPS). Replace x1x2⊕x1 with an auxiliary variable a ∈ GF (2),
appending the following CNF clauses:

(a ∨ x1) ∧ (a ∨ x2) ∧ (x1 ∨ x2 ∨ a)

Inspired by these strategies, we here propose the following strategy to further reduce
monomials of higher order.

n-Partner Strategy (nPS). For any n ≥ 2, replace x1x2 · · ·xn⊕x2 · · ·xn with an auxiliary
variable a ∈ GF (2), appending the following CNF clauses:

(a ∨ x1) ∧ (a ∨ x2) ∧ (a ∨ x3) ∨ · · · ∧ (a ∨ xn)
∧(a ∨ x1 ∨ x2 ∨ x3 ∨ · · · ∨ xn)

In RAFA, we linearize the ANF of S-box using nPS, CPS, QPS, DPS, LPS and SS, then
feed the solver with auxiliary CNF clauses and the consequent linear system.

4.5 RAFA in a Nutshell

Finally, our RAFA scheme can be summarized as follows.
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Algorithm 2: RAFA Scheme.
input :Plaintext P , correct ciphertext C1 and a set of faulty ciphertexts

{C2, · · · , Cm}
1 // Construct basic algebraic system including intermediates
2 for i = 1, 2, · · · , m do
3 Start from the state of fault injection, declare the state Si

4 for operation T from current position to the output do
5 Declare S′i to be variables representing the intermediate outputs
6 // Forward Backward
7 Add forward constraints S′i := T (Si)
8 Add backward constraints Si := T−1(S′i)
9 Si ← S′i

10 Add constraints Si := Ci; // inclusion of known information
11 KeyConstraints()
12 RedundantFP() // redundancies from fault propagation
13 nPS() // linearize x1x2 · · ·xn ⊕ x2 · · ·xn,∀n ≥ 2
14 CPS() // linearize x1x2x3 ⊕ x1x2x4
15 QPS() // linearize x1x2 ⊕ x1x3
16 DPS() // linearize x1x2 ⊕ x1 ⊕ x2 ⊕ 1
17 LPS() // linearize x1x2 ⊕ x1
18 SS() // complete linearization
19 while The solver generates a candidate key K do
20 C ′ ← Encrypt(P, K)
21 if C ′ = C1 then
22 return K
23 else
24 Block the solution K.

The procedure KeyConstraints adds constraints representing the relationships between
previously used round keys according to the key expansion algorithm . The procedure
RedundantFP adds redundant constraints derived from the fault propagation as described
in Sec. 4.3.1. The procedures nPS, CPS, QPS, DPS, LPS, SS are linearizing strategies discussed
in Sec. 4.4. When a solution to the system is found by the solver, we attempt to encrypt
the plaintext P with the corresponding candidate key. If the output is C1, the candidate
key is correct; otherwise we avoid this solution by introducing blocking clauses and restart
the SAT solver.

5 Evaluation
All experiments were performed on a workstation having sixteen 2.10GHz Xeon cores and
8GB of RAM. We use CryptoMiniSAT 5.8.0 as the SAT solver. Unless otherwise specified,
a runtime recorded in the experiments is the average of ten random instances. Each
instance has a random plaintext, key and fault value satisfying the assumed fault model.
In addition, only the runtime of SAT solving is recorded, as the cost of preprocessing is
stable and negligible.

5.1 Evaluation on AES-128
Some experiments may take too much time to complete, hence we provide the SAT solver
with the first k bytes of the last round key in some scenarios, where 0 ≤ k ≤ 16. This is
equivalent to considering the first k bytes of the last round key as known.
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5.1.1 Evaluation of RAFA v.s. AFA

In this section, the byte-based fault model in the 8-th round is adopted for the experiments.
In previous sections, we indicated that there are no reports of effective AFA on

heavyweight block ciphers with a single fault injection, therefore we cannot execute a
complete AFA on AES-128 for all k. Indeed, we can only track the runtime of AFA when
k ≥ 13.

k Algorithm Runtime (s) Acceleration Ratio

13 AFA 81399.14 1.00
RAFA 2.20 36999.61

14 AFA 1449.28 1.00
RAFA 2.27 638.45

15 AFA 33.97 1.00
RAFA 1.64 20.71

Table 1: RAFA v.s. AFA for 13 ≤ k ≤ 15.
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Figure 3: log-runtime of RAFA for 0 ≤ k ≤ 15

In Table 1 and the followings, the metric “Acceleration Ratio” denotes the speedup over
the scenario where the “Acceleration Ratio” is set to be one with the same k. For example,
the “Acceleration Ratio” 36999.61 in Table 1 is computed by the quotient 81399.14/2.20.
The results shown in Table 1 demonstrate a significant improvement of RAFA over AFA
algorithm in the context of heavyweight block ciphers. Fig. 3 plots the log-runtime of
RAFA for 0 ≤ k ≤ 15.

5.1.2 Evaluation of Different Linearizing Strategies

In this section, the byte-based fault model in the 8-th round is adopted for the experi-
ments.

In Sec. 4.4, we discussed several linearizing strategies to deal with nonlinear ANF. In
the following experiments, we exhibit the functions of these techniques and demonstrate
that our linearization combining all of them yields the best performance. Similarly, we
set k = 2 to shorten the experiment duration time. If the “Linearizing Strategy” is
SS, only SS is adopted to linearize the nonlinear ANF; if it is LPS + SS, LPS is first
applied to the nonlinear ANF, followed by SS to complete the linearization. Likewise for
DPS +SS, QPS +SS, CPS +SS, nPS +SS, and nPS +CPS +QPS +DPS +LPS +SS,
where the last one is abbreviated as RAFA in the Tab. 2.

Table 2: Evaluation of RAFA with different linearizing strategies in Byte-based Fault
Model, where k = 2.

Linearizing Strategies Runtime (min) Acceleration Ratio Standard Deviation (min)
SS 10.58 1.00 3.69

LPS + SS 7.85 1.35 1.71
DPS + SS 9.75 1.09 3.59
QPS + SS 6.36 1.66 1.43
CPS + SS 7.62 1.39 4.24
nPS + SS 8.20 1.29 2.98

RAFA 6.09 1.74 1.63
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Table 2 shows that when augmented with supplementary strategies outlined in Sec. 4.4,
the resulting linearization is able to facilitate the SAT solving. In particular, when all
supplementary strategies are employed, RAFA completes in 6.09 minutes, attaining the
highest acceleration ratio (1.74). Therefore, we may conclude that when linearizing ANF,
the idea of minimizing the number of auxiliary variables and the length of the output
linear equations is beneficial.
5.1.3 Evaluation of Different RAFA Components

In this section, the byte-based fault model in the 8-th round is adopted for the experi-
ments.

We claim that the RAFA paradigm is predicated on the concept of incorporating
redundant constraints into the system. In Sec. 4.3, two strategies were presented to
implement this idea in the context of RAFA. Now, we conduct experiments to illustrate
their significance. We set k = 5 for the same reason as above.

The redundant constraints we include into the algebraic system are listed in the column
“Redundancies”. If it is “None”, it corresponds to RAFA without redundant constraints; if
it is “Inv”, only the invertibility is concerned (see Sec. 4.3.3); if it is “FP”, only the fault
propagation (see Sec. 4.3.1) is appended; if it is “RAFA”, it refers to the complete RAFA,
which includes both classes of redundant constraints.

Table 3: Evaluation of RAFA with different redundant constraints in Byte-based Fault
Model, where k = 5.

Redundancies time (min) Acceleration Ratio Standard Deviation (min)
None 168.27 1.00 90.52
Inv 51.43 3.27 14.09
FP 1.89 89.03 0.39

RAFA 0.59 285.20 0.22

As each individual class of redundant constraints results in significant speedup and
altogether these redundant constraints allow RAFA to attain the highest acceleration ratio
(285.20), we may conclude that the idea of introducing redundant constraints is grossly
beneficial to the SAT solvers.
5.2 Evaluation of Different Fault Models
In the following experiments, we will show that one of the advantages of RAFA over
DFA is that it responds to different fault assumptions easily and effectively. After using
a stronger fault assumption, the efficiency of DFA is unchanged if the algorithm is not
adjusted manually. On the other hand, the search space of RAFA will be reduced and
the efficiency will be improved automatically. Because there is a known effective DFA on
AES-128, we choose to conduct the experiments in this section on AES-128.

During the experiments, we found that if the ANF-to-CNF converter called Bospho-
rus [CSCM19] is used to convert the S-boxes, the performance may be improved in
practice, which may be explained by its discovery implicit linearity and compression of
the CNF formula. Bosphorus is an MIT-licensed open-source software, which is aimed
at simplifying ANF-to-CNT conversion over GF (2). It employs a variety of techniques,
including XL/XSL [CKPS00, CP02], Brickenstein’s ANF-to-CNF conversion [BD09] and
Gauss-Jordan elimination, etc. As a result, two alternatives for handling with the nonlin-
ear ANF arised in the basic algebraic system are available: Linearization (see Sec. 4.4)
and Bosphorus. We will use tLin to denote the time when Linearization is adopted to
handle ANF, and tBos to denote the runtime when Bosphorus is adopted. The remaining
components in RAFA are invariant.



586 RAFA

Table 4: Evaluation of RAFA with different options of handling nonlinear ANF, k ≤ 2.

Fault Model k tLin tBos

Byte-based
2 5.97 min 2.35 min
1 1.28h 0.74 h
0 16.99 h 9.68 h

Nibble-based
2 2.57 min 0.53 min
1 38.83 min 14.68 min
0 101.03 min 50.92 min

Bit-based
2 2.34 min 0.39 min
1 17.90 min 4.46 min
0 65.53 min 27.54 min

5.2.1 Byte-based Fault Model

First we experiment on the byte-based fault model in the 8-th round, where the fault value
induced in SR0 can be anything between 1 and 255. The results are shown in the first
three rows of Table 4.

Even though RAFA with Bosphorus completes in 9 hours when k = 0, it is still slower
than DFA, which takes 4 ∼ 5 hours under the same condition. The major problem, from
our point of view, is that the system has too many solutions. According to [TMA11], there
are about 28 theoretical solutions.

Meanwhile, modern SAT solvers are incapable of efficiently identifying multiple solutions.
A common strategy to find multiple solutions is that, when a solution is found by a SAT
solver, a new disjunction clause is added to the SAT solver to prohibit the answer from
being found again, then the SAT solver is restarted to search for a new solution. It is likely
that finding each individual solution takes the same amount of time. Indeed, the difficulty
of efficiently finding multiple solutions of a SAT instance is the core concern of another
study area called All-SAT [McM02, YSTM14]. All-SAT research, on the other hand, is
not as sophisticated as SAT research. For instance, there are no All-SAT benchmarks or
contests, and only a few open-source All-SAT solvers which are not frequently used or
evaluated are available.

To support our claim that the primary obstacle is locating multiple solutions, we also
monitor the time required to locate the first solution. The experiments shown in Fig. 4
are conducted on 100 random instances. In Fig. 4, AVG and SD represent the average
runtime and the standard deviation, respectively.
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Figure 4: Histogram of the Runtime of Finding the First Solution in Byte-based Fault
Model, where k = 0.
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We can observe that RAFA is able to efficiently find the first candidate key. It indicates
that the number of possible solutions to the algebraic system is negatively related to the
performance of the RAFA algorithm, and even of general SAT-based algebraic cryptanalysis.
To address this issue, we alter the fault model somewhat to reduce the number of solutions
to the algebraic system. We shall find that these slightly stronger assumptions assist
our RAFA significantly. In contrast, if no extra manual analysis is done to modify DFA
algorithm when adopting stronger assumptions, its runtime will be invariant because the
stronger fault models make no difference on the first step, which involves relations in the
9-th round, and consequently the second step, which iterates through the output of the
first step, will not be affected.

5.2.2 Nibble-based Fault Model

One of the most significant advantage of algebraic cryptanalysis, in particular the RAFA,
over DFA is that it is flexible to fit different assumptions of fault model. In this subsection,
we experiment on the nibble-based fault model in the 8-th round (see Sec. 3.3). Therefore,
the algebraic system can be appended by the constraint f4 ∧ f5 ∧ f6 ∧ f7, where fi is the
i-th bit of induced fault value f shown in Fig. 2.

Under this fault model, the expected number of solutions drops to 16 according to the
probabilistic argument provided in [TMA11], which should allow the SAT solver to recover
the master key more efficiently based on previous arguments. Meanwhile, we can observe
that this alternation of fault model has no effect on the DFA, since the equations from
first step and second step (see Sec. 2.2) stay the same, whose solution requires the same
iterations.

The results in the 6-th row of Table 4 show that RAFA with Bosphorus (resp. RAFA
with Linearization) can break AES-128 in 50.92 minutes (resp. 101.03 minutes) under the
nibble-based fault model in the 8-th round. In comparison, DFA takes 4 ∼ 5 hours under
the same condition.

5.2.3 Bit-based Fault Model

If we adopt the bit-based fault model in the 8-th round, the expected number of solutions
becomes 8, which again expedites the RAFA algorithm while having no effect on the DFA.
Since now f ∈ {1, 2, 4, 8, 16, 32, 64, 128}, we can add the following at-most-one constraint
into the algebraic system:

AMO(f) ≡
∧

0≤i<j<8
(fi ∨ fj)

The results in the last row of Table 4 shows that RAFA with Bosphorus (resp. RAFA
with Linearization) can break AES-128 in 27.54 minutes (resp. 65.53 minutes). The
decreases in runtime correspond to the decrease in the number of solutions.

5.2.4 Discussion

Finally, under various scenarios when k = 0, Fig. 5 shows the timings of finding the first
9 solutions to the algebraic system given a random instance. The results back up our
statement that the worst-case runtime is approximately proportional to the number of
solutions. In addition, three observations can be made with Fig. 5:

• RAFA with Bosphorus is more efficient than RAFA with Linearization because the
former can locate each individual solution more quickly.

• In RAFA with Bosphorus (the bottom three lines in Fig. 5), the time required to
find each individual solution tends to be irrelevant to the fault models.
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• In RAFA with Linearization (the top three lines in Fig. 5), the time required to
find each individual solution tends to be positively correlated to the number of
solutions. We conjecture that this phenomenon is due to the number of auxiliary
variables introduced by Linearization. Some of the state bits in deeper rounds may
be inferred sooner if the fault value is known to satisfy certain conditions. This
variation is amplified because a state bit can be related to many auxiliary variables.
For example, if a state bit x is set to be zero, any auxiliary variable associated with
a monomial containing x is immediately set to zero via unit propagation. Since the
auxiliary variables dominate in the algebraic system of RAFA with Linearization,
the performance of SAT solvers may be significantly affected.
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Figure 5: Timings of Finding the First 9 Solutions Given a Random Instance.

5.3 Extensions to Other Block Ciphers
5.3.1 Application to Serpent

Serpent [ABK98] is a SPN block cipher that was designed by Ross Anderson, Eli Biham,
and Lars Knudsen as a candidate for the Advanced Encryption Standard (AES). It is a
128-bit block cipher that uses a variable-length key, ranging in size from 128 bits to 256
bits. Serpent consists of linear operations IP, FP , and L, 4-bit S-boxes S0, S1, · · · , S7 and
AddRoundKey. The encryption can be described by the following equations:

B0 = IP (P )
Bi+1 = Ri(Bi) i = 0, 1, · · · , 31

C = FP (B32)

where
Ri(X) = L(Si mod 8(X ⊕Ki)) i = 0, 1, · · · , 30
Ri(X) = Si mod 8(X ⊕Ki)⊕K32 i = 31

The input key will be padded to 256 bits and separated into eight 32-bit words
w−8, · · · , w−1. The prekeys w0, · · · , w131 are generated by

wi := (wi−8 ⊕ wi−5 ⊕ wi−3 ⊕ wi−1 ⊕ 0x9e3779b9⊕ i) <<< 11

The round keys are generated by

Ki := S(35−i) mod 8(w4i||w4i+1||w4i+2||w4i+3) i = 0, 1, · · · , 32
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Since the length of S-boxes is 4 bits, the fault model we use is injecting nibble-faults
after the S-box operation at the 28-th round (again, the faults are assumed to be injected
to the 0-th nibble, analysis on other situations is replicable). We attempt to recover the
256-bit master key, which is determined by the last two round keys. The following table
documents the runtime of RAFA and AFA when three faults are injected. We use k to
denote the number of bits of the last round key fed to the SAT solver.

Table 5: RAFA v.s. AFA on Serpent-256 using three faults (an empty cell means failing
to solve in 48 hours.)

k 100 80 60 40 30 20 10 0
RAFA 1.6 s 5.3 s 18.6 s 4.4 m 7.6 m 16.1 m 18.9 min 20.7 h
AFA 34.7 s 50.7 s 6.2 m 1.0 h — — — —

The results show that RAFA demonstrates a significant speedup over AFA on Serpent-
256. Furthermore, with only three faults, RAFA is able to recover the master key of
Serpent-256 in a reasonable time, demonstrating real threat to this heavyweight block
cipher. In contrast, the only DFA on Serpent [WZD+14] requires 48 faults at 30th and
31st round on average to recover the master key.

5.3.2 Application to SPEEDY

SPEEDY-r-6` [LMMR21] is a family of ultra low-latency block ciphers with block and key
size 6`, iterating over r rounds. In the following experiments, we consider the situation
where ` = 32, which is the setting recommended by the authors. SPEEDY consists of linear
operations SC and MC, a 6-bit S-box, AddRoundKey and AddRoundConstant. It is clear
that AddRoundConstant preserves the input and output fault (indeed, AddRoundConstant
is a special case of AddRoundKey, where the round key is known constant). The round
functions are

Ri(X) = Ci ⊕ (MC ◦ SC ◦ SB ◦ SC ◦ SB(Ki ⊕X)) i = 0, 1, · · · , r− 2
Ri(X) = Kr ⊕ (SB ◦ SC ◦ SB(Kr−1 ⊕X)) i = r− 1

The input key will form the 0-th round key (k0), the round keys are generated by
ki+1 = PB(ki), where PB is a permutation of the bits.

Since the length of the S-box is 6 bits, the fault model we use is injecting 6-bit faults
after the S-box operation at the (r − 2)-th round (again, the faults are assumed to be
injected to the first 6 bits, analysis on other situations is replicable). We attempt to recover
the 192-bit master key. Note that the exact value of r does not matter because each round
key is a permutation of the master key. As a result, the constraints related to the key
schedule will not slow down the solution significantly, hence RAFA works successfully.

Table 6: RAFA v.s. AFA on SPEEDY-r-192 (an empty cell means failing to solve in 48
hours.)

k 130 120 110 100 80 60 50 40 30 20 10 0
RAFA 0.3 s 0.2 s 0.3 s 0.5 s 1.0 s 5.5 s 36.4 s 4.0 m 13.4 m 25.6 m 1.2 h 1.5 h
AFA 5.2 m 10.4 m 14.5 m 19.5 m 4.4 h 12.8 h — — — — — —

The results show that RAFA demonstrates a significant speedup over AFA on SPEEDY-r-192.
Furthermore, with only three faults, RAFA is able to recover the master key of SPEEDY-r-192
efficiently, demonstrating real threat to this heavyweight block cipher. Since the S-box has
small uniformity and linearity [LMMR21], SPEEDY was claimed to provide strong resistance
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against differential and linear attacks. Indeed, there is no known effective DFA breaking
SPEEDY.

5.3.3 Discussion

In this section, we have successfully broken two different heavyweight SPN ciphers using
RAFA. The results imply that RAFA is a generic and efficient variant of AFA.

However, we should point out that RAFA is not able to overcome the problem of
AFA related to the number of rounds. For example, we have implemented RAFA on
Kuznyechik [Dol16], which is a nine-round 128-bit block cipher with 256-bit key. Even
though RAFA turned out to be faster than AFA, at least 200 bits of the last two round keys
should be known if the fault is injected to the 8-th round, which implies the algorithm is
inefficient on Kuznyechik. The primary obstacle is the complicated key schedule algorithm
as shown in Fig. 6, where X represents the Xor layer, S represents the 8-bit S-box, and
L represents the linear transformation. Therefore, if we attempt to relate K7, K8 with
K9, K10 in the algebraic system, we have to include eight rounds of LSX operations, whose
cost is similar to the one of injecting the fault in a deep round on AES.

Figure 6: Key Schedule of Kuznyechik

This analysis explains why RAFA is able to break SPEEDY so efficiently: the key schedule
of SPEEDY is trivial. Since each round key is a permutation of the input master key, we
only need to maintain 192 Boolean variables to represent all round keys, which do not
need to be related using additional constraints. Similarly, even though the key schedules
of AES and Serpent are not trivial, a round key is related to the next round key through
few linear/nonlinear layers.

6 Conclusions and Future Work
This paper proposes the Redundancies-assisted Algebraic Fault Analysis (RAFA), which is
a novel variant of AFA, with the introduction of generic redundant constraints being the
focus. By modifying the representation of the algebraic system, RAFA is able to circumvent
the challenges encountered by AFA on heavyweight block ciphers . We implement RAFA
on AES-128 under three fault models, one of which was previously studied in the context
of DFA. The results demonstrate that RAFA is able to break heavyweight block ciphers
such as AES-128. In particular, when restricted to fault models with fewer solutions
to the algebraic system, the performance of RAFA will be significantly enhanced. The
experiments using stronger fault models show that RAFA’s adaptability to additional
information is stronger than DFA. In order to prove its generality, we also implement
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RAFA on Serpent-256 and SPEEDY. The results demonstrate that RAFA is significantly
more efficient than AFA on different SPN block ciphers and is able to break heavyweight
ciphers using a few fault injections.

Future work can be derived in three different directions. Firstly, even though RAFA
should work on most SPN block ciphers because its redundant components do not rely on
the specific arrangements and designs of the SPN networks, it is not efficient enough to
deal with the situations when the number of operation rounds is too large. For example,
RAFA fails on Kuznyechik [Dol16] because the relations between its round keys are
complicated, as shown in Fig. 6. It will be interesting to further enhance RAFA to handle
these situations. Secondly, as discussed in Sec. 5, we find that supplementary linearizing
strategies benefit the SAT solvers. Thus, we can discover further linearizing strategies
other than the ones presented in Sec. 4.4. Finally, we have shown that a main impediment
of SAT-based algebraic cryptanalysis is that modern SAT solvers lack the ability to locate
all solutions efficiently. Thus, building an efficient All-SAT solver may potentially increase
the performance of RAFA.

Acknowledgments
This work was supported in part by National Key R&D Program of China (2020AAA0107700),
by National Natural Science Foundation of China (62227805, 62072398), by SUTD-ZJU
IDEA Grant for visiting professors (SUTD-ZJUVP201901), by Alibaba-Zhejiang Uni-
versity Joint Institute of Frontier Technologies, by National Key Laboratory of Science
and Technology on Information System Security (6142111210301), by State Key Labora-
tory of Mathematical Engineering and Advanced Computing, and by Key Laboratory of
Cyberspace Situation Awareness of Henan Province (HNTS2022001).



592 RAFA

Appendix

A First-Step of DFA
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B Redundant Constraints Given by Labelled Boxes

f = SR8,0 ⊕ SR∗8,0, 2f = MC8,0 ⊕MC∗8,0, f = MC8,1 ⊕MC∗8,1,

f = MC8,2 ⊕MC∗8,2, 3f = MC8,3 ⊕MC∗8,3 2f = AK8,0 ⊕AK∗8,0,

f = AK8,1 ⊕AK∗8,1, f = AK8,2 ⊕AK∗8,2, 3f = AK8,3 ⊕AK∗8,3

F0 = SB9,0 ⊕ SB∗9,0 F1 = SB9,1 ⊕ SB∗9,1 F2 = SB9,2 ⊕ SR∗9,2

F3 = SB9,3 ⊕ SR∗9,3 F0 = SR9,0 ⊕ SR∗9,0 F1 = SR9,13 ⊕ SR∗9,13

F2 = SR9,10 ⊕ SR∗9,10 F3 = SR9,7 ⊕ SR∗9,7 2F0 = MC9,0 ⊕MC∗9,0

F0 = MC9,1 ⊕MC∗9,1 F0 = MC9,2 ⊕MC∗9,2 3F0 = MC9,3 ⊕MC∗9,3

F3 = MC9,4 ⊕MC∗9,4 F3 = MC9,5 ⊕MC∗9,5 3F3 = MC9,6 ⊕MC∗9,6

2F3 = MC9,7 ⊕MC∗9,7 F2 = MC9,8 ⊕MC∗9,8 3F2 = MC9,9 ⊕MC∗9,9

2F2 = MC9,10 ⊕MC∗9,10 F2 = MC9,11 ⊕MC∗9,11 3F1 = MC9,12 ⊕MC∗9,12

2F1 = MC9,13 ⊕MC∗9,13 F1 = MC9,14 ⊕MC∗9,14 F1 = MC9,15 ⊕MC∗9,15
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