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Abstract. The bottleneck in the proving algorithm of most of elliptic-curve-based
SNARK proof systems is the Multi-Scalar-Multiplication (MSM) algorithm. In this
paper we give an overview of a variant of the Pippenger MSM algorithm together
with a set of optimizations tailored for curves that admit a twisted Edwards form.
We prove that this is the case for SNARK-friendly chains and cycles of elliptic curves,
which are useful for recursive constructions. Our contribution is twofold: first, we
optimize the arithmetic of finite fields by improving on the well-known Coarsely
Integrated Operand Scanning (CIOS) modular multiplication. This is a contribution
of independent interest that applies to many different contexts. Second, we propose
a new coordinate system for twisted Edwards curves tailored for the Pippenger MSM
algorithm.

Accelerating the MSM over these curves is critical for deployment of recursive proof
systems applications such as proof-carrying-data, blockchain rollups and blockchain
light clients. We implement our work in Go and benchmark it on two different CPU
architectures (x86 and arm64). We show that our implementation achieves a 40-47%
speedup over the state-of-the-art implementation (which was implemented in Rust).
This MSM implementation won the first place in the ZPrize competition in the
open division “Accelerating MSM on Mobile” and will be deployed in two real-world
applications: Linea zkEVM by ConsenSys and probably Celo network.

Keywords: elliptic curves - multi-scalar-multiplication - implementation - zero-
knowledge proof

1 Introduction

A SNARK is a cryptographic primitive that enables a prover to prove to a verifier the
knowledge of a satisfying witness to a non-deterministic (NP) statement by producing a
proof 7 such that the size of m and the cost to verify it are both sub-linear in the size of
the witness. Today, the most efficient SNARKS use elliptic curves to generate and verify
the proof. A SNARK usually consists in three algorithms Setup, Prove and Verify.

The Setup and Prove algorithms involve solving multiple large instances of tasks
about polynomial arithmetic in F,.[X] (where r is a prime) and multi-scalar multiplication
(MSM) over the points of an elliptic curve. Fast arithmetic in F,.[X], when manipu-
lating large-degree polynomials, is best implemented using the Fast Fourier Transform
(FFT) [Pol71] and MSMs of large sizes are best implemented using a variant of Pippenger’s
algorithm [BDLO12, Section 4]. For example, Table 1 reports the numbers of MSMs
required in the Setup, Prove and Verify algorithms in the [Grol6] SNARK and the KZG-
based PLONK universal SNARK [GWC19]. The sizes of the MSMs are given in terms of
the number of gates in the arithmetic circuits defining the computation to be proved by
the SNARK (notation in the Table caption). The report excludes the number of FFTs as
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the dominating cost for such constructions is the MSM computation (~ 80% of the overall
time).

Table 1: Cost of Setup, Prove and Verify algorithms for [Grol6] and PLONK. m =
number of wires, n = number of multiplication gates, a = number of addition gates and

¢ = number of public inputs. Mg,., , = multiplication in G;c1,2 and P=pairing.

Setup Prove Verify
3n Mg, (Bn+m —{) Mg, 3P
[Gr016] m MGQ n MGQ Y4 MG1
d(>n+a) Mg, 2P
PLONK (KZG) | Mg, 9(n+a) Mg, 18 Mg,
Given a set of n elements Gy, - - , G, (bases) in G a cyclic group (e.g. cyclic subgroup
of the group of points on an elliptic curve) whose order #G has b bits and a set of n
integers ay,--- ,a, (scalars) between 0 and #G, the goal is to compute efficiently the

group element [a;]G1 + - -+ + [a,]Gr. In SNARK applications, we are interested in large
instances of variable-base MSMs (n = 107,108,10°) — with random bases and random
scalars — over the pairing groups G; and Gs.

The naive algorithm uses a double-and-add strategy to compute each [a;]G; then adds
them all up, costing on average 3/2-b-n group operations (+). On the one hand, there are
several algorithms that optimize the total number of group operations as a function of n
such as Strauss [Str64], Bos—Coster [dR94, Sec. 4] and Pippenger [Pip76] algorithms. For
large instances of a variable-base MSM, the fastest approach is a variant of Pippenger’s
algorithm [BDLO12, Sec. 4]. For simplicity, we call it the bucket method. On the other
hand, efficient implementation of finite fields arithmetic impacts directly the performance
of the group operation and therefore the performance of the whole MSM algorithm. In
this paper we are interested in the bucket-method MSM on inner curves of 2-chains and
2-cycles of elliptic curves.

Contributions. Our contribution is twofold: first, we discovered an optimization that
reduces the number of operations needed to compute the modular multiplication of two
big integers for most (but not all) choices of modulus. To the best of our knowledge, we
are not aware of any prior art describing this optimization. Our multiplication algorithm
improves on the CIOS algorithm [Aca98] by saving 5N + 2 additions, where N is the
number of 64-bit machine words in the modulus. When N = 6 for instance, this yields a
8% improvement. On arm64, our implementation achieves an additional 17% thanks to a
collection of assembly optimizations explained in Sec. 6.

Second, we analyse the complexity of the bucket method variant of the Pippenger MSM
algorithm. We propose a new coordinate system for twisted Edwards curves tailored for
this algorithm. We finally show how to use the algebraic structure of elliptic curves to
further reduce the complexity of the algorithm.

We choose, as an example, the widely used BLS12-377 elliptic [BCG'20] as an inner
2-chain. We implement both the finite field arithmetic using our algorithm and the bucket
MSM algorithm using the twisted Edwards new coordinate system. Our implementation
in Go outperforms the state-of-the-art implementation in Rust [aC22] by 40-47%.

Our implementation won the first place in the ZPrize competition in the open division
“Accelerating MSM on Mobile” (https://www.zprize.io/) and will be deployed in two
real-world applications: Linea zkEVM by ConsenSys (https://consensys.net/zkevm/)
and probably Celo network (https://celo.org/). The zkEVM use-case uses our CPU
MSM implementation to generate a PLONK proof of a batch of transactions to scale
the Ethereum blockchain, while the Celo network would use our techniques to reduce its
Groth16 proof generation time on a mobile from 3s to 400ms.


https://www.zprize.io/
https://consensys.net/zkevm/
https://celo.org/
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Organization of the paper. Section 2 provides preliminaries on CIOS modular multi-
plication and proofs of our new algorithm. Section 3 provides definitions of 2-chains
and 2-cycles of elliptic curves and some results we prove. In section 4, we explain the
bucket method and provide its complexity analysis. Section 5 provides our optimizations
to the bucket method for both generic elliptic curves and the twisted Edwards curves.
We prove that inner 2-chains and 2-cycles always fall into the second more optimized
case. Finally, section 6 reports on our implementation of the bucket method alongside
our optimizations. We choose to tailor the implementation to the widely used BLS12-377
curve and to benchmark our results on two different CPU architectures(x86 and arm64).

2 Optimizing modular multiplication

2.1 The Montgomery multiplication: theory

The modular multiplication problem. Given integers a, b and p the modular multiplica-
tion problem is to compute the remainder of the product

ab mod p .

On computers a division operation is much slower than other operations such as
multiplication. Thus, a naive implementation of ab mod p using a division operation
is prohibitively slow. In 1985, Montgomery introduced a method to avoid costly divi-
sions [Mon85]. This method, now called the Montgomery multiplication, is among the
fastest solutions to the problem and it continues to enjoy widespread use in modern

cryptography.

Overview of the solution: the Montgomery multiplication. There are many good
expositions of the Montgomery multiplication (e.g. [BM17]). As such, we do not go into
detail on the mathematics of the Montgomery multiplication. Instead, this paragraph is
intended to establish notation that is used throughout this section.

The Montgomery multiplication algorithm does not directly compute ab mod p. In-
stead it computes abR~! mod p for some carefully chosen number R called the Montgomery
radix. Typically, R is set to the smallest power of two exceeding p that falls on a computer
word boundary. For example, if p is 381 bits then R = 26%64 = 2384 on a 64-bit architecture.

In order to make use of the Montgomery multiplication the numbers a and b must
be encoded into the Montgomery form: instead of storing (a,b), we store the numbers
(a,b) given by @ = aR mod p and b = bR mod p. A simple calculation shows that the
Montgomery multiplication produces the product ab mod p, encoded in the Montgomery
form: (aR)(bR)R™' = abR mod p. The idea is that numbers are always stored in the
Montgomery form so as to avoid costly conversions to and from the Montgomery form.

Other arithmetic operations such as addition, subtraction are unaffected by the Mont-
gomery form encoding. But the modular inverse computation ¢~ mod p must be adapted
to account for the Montgomery form. We do not discuss modular inversion in this section
(cf. [BY19] and [Por20]).

2.2 The Montgomery multiplication: implementation

For security purposes, cryptographic protocols use large moduli — a,b and p are stored
on multiple machine words (multi-precision). In this section, we let D denote the base
in which integers are represented. (For example, D = 254 if a word is 64 bits). A large
number a can be represented by its base-D digits ao,...,an stored in machine words
(uint) such that a = SN a, D'
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There are several variations of multi-precision Montgomery multiplication. To compute
¢ =abR™', we need to multiply the operands (P = dl;) and then compute PR~! mod p.
This second step (Montgomery reduction) can be computed efficiently (see Algorithm 1
[BM17]) when we precompute the number —p~! mod R.

A popular choice is the Coarsely Integrated Operand Scanning (CIOS) variant [Aca98]
which interleaves the operands multiplication and the reduction step. In some settings,
factors such as modulus size, CPU cache management, optimization techniques, architecture
and available instruction set might favor other variants.

How fast is the CIOS method? Let NV denote the number of machine words needed to
store the modulus p. For example, if p is a 381-bit prime and the hardware has 64-bit word
size then N = 6. The CIOS method solves modular multiplication using 4N? + 4N + 2
unsigned integer additions and 2N2 + N unsigned integer multiplications.

Our optimization reduces the number of additions needed in the CIOS Montgomery
multiplication to only 4N? — N, a saving of 5N + 2 additions. This optimization can be
used whenever the highest bit of the modulus is zero (and not all of the remaining bits are
set — see below for details).

The core of the state-of-the-art CIOS Montgomery multiplication is reproduced below.
This listing is adapted from Section 2.3.2 of Tolga Acar’s thesis [Aca98]. The symbols in
this listing have the following meanings:

e N is the number of machine words needed to store the modulus p.

o D is the word size. For example, on a 64-bit architecture D is 264.

« ali],bli], p[i] are the i-th words of the integers @, b and p.

1

o p'[0] is the lowest word of the number —p~ mod R. This quantity is precomputed,

as it does not depend on the inputs @ and b.
e tis an array of N 4+ 2 words.

o (C, S are machine words. A pair (C,S) refers to (high-bits, low-bits) of a two-word
number. For short we denote them (hi, 1o).

Next, we show that we can avoid the additions in lines 5 and 12 of Alg. 1 when the
highest word of the modulus p is at most (D — 1)/2 — 1. This condition holds if and only
if the highest bit of the modulus is zero and not all of the remaining bits are set. With
64bits machine words (D = 264) the most significant word of the modulus should be at
most 0x7FFFFFFFFFFFFFFE.

Our optimization. Observe that lines 4 and 10 have the form (hi, 1o) := my+mgy-B+msg,
where hi, lo, mq, mg, m3 and B are machine-words where each is at most D — 1. If
B < (D —1)/2 —1 then a simple calculation shows that
mi+mo-B+ms<(D—-1)+(D-1)(22-1)+(D-1)
< D (P5h)+ (P - 1)
hi 1
From which we derive the following Lemma:

Lemma 1. If B< (D —1)/2—1, then hi < (D —1)/2.

We use Lemma 1 to prove the following Proposition:
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Algorithm 1: The CIOS Montgomery multiplication
Input: @ = aR and b = bR with a,b < R
Output: abR mod p

m = t[0] - p’'[0] mod D;
(C, ) = t[0] + m - p[0];
for j=1to N—1do

1 fori=0to N—1do

2 C =0;

3 for j=0to N—1do

a | | (Ctl]) =tlj] +alj]-bli) + C
5 (t[N + 1],¢[N]) = t[N] + C}

6 C =0

7

8

9

o || (Cotlj - 1)) = tlj]+m-plj]+ C
11 (C,t[N —1]) = t[N] + C;
12 t{N] =t[N+1]+C;

13 t{N +1] =0;

14 if ¢t < p then

15 ‘ return t; // abR mod p
16 else

17 ‘ return t — p; // abR mod p

Proposition 1. If the highest word of p is at most (D —1)/2 — 1, then the variables t[N]
and t[N + 1] always store the value 0 at the beginning of each iteration of the outer i-loop.

Proof. We prove this proposition by induction. The base case i = 0 is trivial, since the
t array is initialized to 0. For the inductive step at the iteration ¢, we suppose that
t[N] = ¢t[N + 1] = 0 and trace the execution through the iteration. Begin at the final
iteration of the first inner loop (j = N — 1) on line 4. Because a < p and because the
highest word of p is smaller than (D — 1)/2, we may use Lemma 1 to see that the carry C
is at most (D — 1)/2. Then line 5 sets
tIN]=C
tIN+1]=0.
A similar observation holds at the end of the second inner loop (j = N — 1) on line 10:

Lemma 1 implies that the carry C' is at most (D — 1)/2. We previously observed that ¢[N]
is also at most (D —1)/2, so t[N] + C' is at most

D—1 D—1 __
5t =Dl

which fits entirely into a single word. Then line 11 sets C' to 0 and line 12 sets ¢t[N] to 0.
The proof by induction is now complete. O

With this proposition, we no longer need the addition at line 5, and guarantee that
addition on line 11 will fit in one machine word. ¢ size is reduced to N 4+ 1 words.

Performance. In practice (cf. Sec.6.) Algorithm 2 yields a 5-10% improvement over
Algorithm 1 given different N values. For N = 4, we measure 5.9% improvement. For
N = 6, which is the value that corresponds to a field on which a 128-bit secure elliptic
curve should be defined, our algorithm achieves a 8% improvement. The improvement
peaks at N = 8 (10%) and decreases afterwards. We measure 5% for N = 10. This is
expected as the number of additions we saved is linear whereas the total number of word
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Algorithm 2: Our optimized CIOS Montgomery multiplication
Input: @ = aR mod p,b = bR mod p
Output: abR mod p

1 fori=0to N—1do

2 C =0;

3 for j=0to N—1do

a || (Clh]) = i) +alj) - oli] + ©

5 t[N]:C,

6 = 7

7 m = t[0] - p'[0] mod D;

s | (C,)= H+m~p[0];

9 for j=1to N—1do

o || ( A= 1)) =t +m-pljl+C

11 t[N — 1] = t[N] + C;

12 [N] =

13 1ft<pthen

14 ‘ return ¢; // abR mod p
15 else

16 ‘ return t — p; // abR mod p

multiplications and additions in the algorithm is quadratic. Moreover, as N grows it
becomes necessary to push/pop registers to the stack which overshadows the gains.

The same reasoning applies as well to the squaring algorithm (cf. Alg. 5 in the
appendix A). Note that the condition on the modulus p i.e. p[N —1] < (D —-1)/2 —11is
a relaxed condition compared to other techniques that impose a specific form for p such
as Montgomery-friendly primes [BD21] (e.g. p = 2°2av £ 1 where 2°2 is an upper bound
for the reduction coefficient R). However, in our method, we impose the inputs a,b to be
reduced mod p. This can limit lazy reduction techniques [Sco07] for multiplication over
the extensions of Fp,.

3 2-chain and 2-cycle of elliptic curves

3.1 2-chains

Following [HG22], a 2-chain of elliptic curves is a set of two curves as in Definition 2.

Definition 1. A 2-chain of elliptic curves is a list of two distinct curves E;/F,, and
E,/F,, where p; and p, are large primes and p; | #E>(Fp,). SNARK-friendly 2-chains
are composed of two curves that have highly 2-adic subgroups of orders r1 | #E1(F,,) and
o | #E5(F,,) such that r1 =y =1 mod 2 for a large integer L > 1. This also means
that p; =1 mod 2%.

In a 2-chain, the first curve is denoted the inner curve, while the second curve whose
order is the characteristic of the inner curve, is denoted the outer curve (cf. Fig. 1).

Inner curves from polynomial families. The best elliptic curves amenable to efficient
implementations arise from polynomial based families. These curves are obtained by
parameterizing the Complex Multiplication (CM) equation with polynomials p(z), t(z), r(z)
and y(z). The authors of [HG22] showed that the polynomial-based pairing-friendly Barreto—
Lynn—Scott families of embedding degrees k = 12 (BLS12) and k = 24 (BLS24) [BLS02]
are the most suitable to construct inner curves in the context of pairing-based SNARKSs.
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EQ(sz)
#E5(Fp,) =h-m

Ey (F])l)

Figure 1: A 2-chain of elliptic curves.

These curves require the seed z to satisfy z = 1 mod 3-2% to have the 2-adicity requirement
with respect to both r and p.

A particular example of an efficient 2-chain for SNARK applications is composed of
the inner curve BLS12-377 [BCGT20] and the outer curve BW6-761 [HG20].

We prove useful a result 2 that will be needed later to optimize the MSM computation.

Proposition 2 ([HG22, Sec. 3.4]). All inner BLS curves admit a short Weierstrass form
Y2 =X341.

Lemma 2. All inner BLS curves admit a twisted Edwards form ay® + 2% = 1 + dx?y?
with a = 2v/3 — 3 and d = —2v/3 — 3 over Fy,. If further —a is a square, the equation
becomes —z% + y? = 1+ d'z*y? with d' =7+ 43 € F,,.

Proof. Proposition 2 shows that all inner BLS curves are of the form Wy : y? = 23 + 1.
The following map

Wo1 — Ea,a
(2.5) > (:c+1 x+1\/§>
’ y ‘r+1+V3
defines the curve E, 4 : ay2 +a22=1 +dx2y2 with a = 2¢/3 —3 and d = —2v/3 — 3. The

inverse map is

Ea,d — WO,l
(z.9) > <(1+y)¢§ ) (1+y)\/§)

1—y " (l-ye
If —a is a square in Fp,, the map (z,y) — (z/v/—a,y) defines from E, g4 the curve E_q g
of equation —22 + y? = 1 + d'2%y? with d’ = —d/a = (2v/3 + 3)/(2V/3 — 3) = T+ 4/3.
These maps work only if v/3 is defined in F,, that is 3 is a quadratic residue. This is

always the case in IF,, on which an inner BLS curve is defined. Let <3> be 3”2 mod P,
p

3 P—
the Legendre symbol. The quadratic reciprocity theorem tells us that () (B) = (—1)71.

p 3
3
We have p =1 mod 4 from the 2-adicity condition, so (p) = (g) Now (%) =p mod 3

which is always equal to 1 for all BLS curves (x =1 mod 3 and 2 — 1 | p — 1). More
generally one can prove that when p =2 or p =1 or 11 mod 12 then 3 is a quadratic
residue in F,,. For inner BLS, we have p =1 mod 3 - 2% with L > 2. O

3.2 2-cycles

Definition 2. A 2-cycle of elliptic curves is a list of two distinct prime-order curves
E,/F,, and E1/F,, where p; and po are large primes, p1 = #E»(F,,) and ps = #E1(Fp,).
SNARK-friendly 2-cycles are composed of two curves that have highly 2-adic subgroups,
i.e. #F1(F,,) = #F2(Fp,) =1 mod 2% for a large integer L > 1. This also means that
p1 =p2 =1 mod 2.
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This notion was initially introduced under different names, for example amicable pairs
(or equivalently dual elliptic primes [Mih07]) for 2-cycles of ordinary curves, and aliquot
cycles for the general case [SS11]. Some examples of SNARK-friendly 2-cycles include
MNT4-MNTG6 curves [BCTV14], Tweedle curves [BGH19] and Pasta curves [Hop20].

In particular a 2-cycle is a 2-chain where both curves are inner and outer curves with
respect to each other (cf. Fig. 2). This means that both curves in a 2-cycle admit a twisted
Edwards form following the same reasoning as in subsection 3.1. In the sequel we will
focus on the case of BLS12 inner curves that form a 2-chain but we stress that these results
apply to 2-chain inner curves from other families (e.g. BLS24 and BN [AHG22]) and to
2-cycles as well.

#Ea(Fp,) = p1

Figure 2: A cycle of elliptic curves.

4 The bucket method

The high-level strategy of the bucket-method MSM can be given in three steps:
e Step 1: reduce the b-bit MSM to several c-bit MSMs for some fixed ¢ < b
e Step 2: solve each c-bit MSM efficiently

e Step 3: combine the c-bit MSMs into the final b-bit MSM

4.1 Step 1: reduce the b-bit MSM to several c-bit MSMs

1. Choose a window ¢ < b

2. Write each scalar aq,--- ,a, in binary form and partition each into c-bit parts
ai = (@i, 1,2, Qip/e)2
——
c-bit
b-bit

3. Deduce b/c instances of ¢-bit MSMs from the partitioned scalars

Ty =[a11]G1 + - + [an,1]Gr
Tj = [a17j]G1 + -+ [an,j]Gn

Tb/c = [al,b/c]Gl +eeet [an,b/c}Gn

‘ Cost of Step 1 is negligible. ‘
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4.2 Step 2: solve each c-bit MSM T; efficiently

1. For each T}, accumulate the bases G; inside buckets
Each element a; ; is in the set {0,1,2,---2° — 1}. We initialize 2° — 1 empty buckets
(with points at infinity) and accumulate the bases G; from each T inside the bucket
corresponding to the scalar a; ;.

Gy
+
+
Goe_, Gas
It +
Gr  Gis G Goe_jyr
+ o+ 4+ +
G4 G3 G1g Gl
buckets: s 29 —1
sum: St Sy Sz oo Sy

’ Cost: n — (2° —1) =n — 2° + 1 group operations. ‘

2. Combine the buckets to compute T}
This step is also a ¢-bit MSM of size 2¢ — 1 but this time the scalars are ordered and

known in advance Sy + [2]S2 + - - - + [2¢ — 1].S2._1, thus we can compute this instance
efficiently as follows

Soe_1
+ Soe_1 + Soc_g
+ Soc_q + Soc_o + -+ S3 + Sy
+ Soe_1 + Soec_g + -+ S + S + 5
20— 1S9 1 + [2—2Ses 4 - + [3S + [2% + S

‘ Cost: 2(2¢ —2) + 1 = 2¢t! — 3 group operations. ‘

‘ Cost of Step 2: n —2°+ 1+ 2°T! — 3 =n + 2° — 2 group operations. ‘

4.3 Step 3: combine the c-bit MSMs into the final b-bit MSM

Algorithm 3 gives an iterative way to combine the small MSMs into the original MSM.

Cost of Step 3: (b/c —1)(c+ 1) =b—c+b/c— 1 group operations.

Combining Steps 1, 2 and 3, the expected overall cost of the bucket method is

Total cost: 2(n+2°) + (b—c—b/c—1) = 2(n+ 2¢) group operations.
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Algorithm 3: Step 3
Input: {T1,...,T}/c}
Output: T = [a1]G1 + -+ - + [an|Gn

1 T+ 17,

2 for i from 2 to b/c do

3 T < [29T; // DOUBLE c TIMES
4 T+ T+T; // ADD
5 return 7T

Remark 1 (On choosing c¢). The theoretical minimum occurs at ¢ &~ log n and the asymptotic
scaling looks like %o(bﬁ). However, in practice, empirical choices of ¢ yield a better
performance because the memory usage scales with 2¢ and there are fewer edge cases if ¢
divides b. For example, with n = 107 and b = 256, we observed a peak performance at

¢ = 16 instead of ¢ = logn ~ 23.

5 Optimizations

5.1 Parallelism

Since each ¢-bit MSM is independent of the rest, we can compute each (Step 2) on a
separate core. This makes full use of up to b/c cores but increases memory usage as each
core needs 2¢ — 1 buckets (points). If more than b/c cores are available, further parallelism
does not help much because m MSM instances of size n/m cost more than 1 MSM instance
of size n.

5.2 Precomputation

When the bases G1,- -+ , G, are known in advance, we can use a smooth trade-off between
precomputed storage vs. run time. For each base G;, choose k as big as the storage allows
and precompute k points [2°—k]G, - -- ,[2° — 1]G and use the bucket method only for the
first 2¢ — 1—k buckets instead of 2¢ — 1. The total cost becomes ~ %(n + 2¢—k). However,
large MSM instances already use most available memory. For example, when n = 108
our implementation needs 58GB to store enough BLS12-377 curve points to produce a
Groth16 [Grol6] proof. Hence, the precomputation approach yield negligible improvement
in our case.

5.3 Algebraic structure

Since the bases Gy, -+ , G, are points in G; (or G3), we can use the algebraic structure of
elliptic curves to further optimize the bucket method.

Non-Adjacent-Form (NAF). Given a point G; = (z,y) € G; (or G3), on a Weierstrass
curve for instance, the negative —G; is (z, —y). This observation is well known to speed up
the scalar multiplication [s]G; by encoding the scalar s in a signed binary form {—1,0,1}
(later called 2-NAF — the first usage might go back to 1989 [MO90]). However, this does
not help in the bucket method because the cost increases with the number of possible
scalars regardless of their encodings. For a c-bit scalar, we always need 2¢ — 1 buckets.
That is said, we can use the 2-NAF decomposition differently. Instead of writing the c-bit
scalars in the set {0,---,2¢ — 1}, we write them in the signed set {—2¢71, ... 2¢71 —1}
(cf. Alg. 4). If a scalar a; ; is strictly positive we add G; to the bucket S(,, ), as usual,

2
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and if a; ; is strictly negative we add —G; to the bucket S|(4, ;),|- This way we reduce the
number of buckets by half.

Total cost: ~ %(n +2¢71) group operations.

Algorithm 4: Signed-digit decomposition

Input: (ag, - ,ap/c—1) € {0,---,2° =1}

Output: (ap, - ,a;,. ;) € {—2¢71 ... 2¢7l 1}
1 for i from 0 to b/c—1 do
2 if a; > 27! then
3 assert ¢ # b/c—1; // NO OVERFLOW FOR THE FINAL DIGIT
4 al < a; — 2% // FORCE THIS DIGIT INTO {—2¢7' ... 2¢71_1}
5 Gig1 < Qir1 + 1 // LEND 2° TO THE NEXT DIGIT
6 else
7
8

/
‘ a; < a4

/ / .
return (ag, - - - ,ab/c_l),

The signed-digit decomposition cost is negligible but it works only if the bitsize of #G4
(and #Go) is strictly bigger than b. We use the spare bits to avoid the overflow. This
observation should be taken into account at the curve design level.

Curve forms and coordinate systems. To minimize the overall cost of storage but also
run time, one can store the bases G; in affine coordinates. This way we only need the
tuples (z;,y;) for storage (although we can batch-compress these following [Kos21]) and
we can make use of mixed addition with a different coordinate systems.

The overall cost of the bucket method is 2(n+2°"1)+ (b—c—b/c—1) group operations.
This can be broken down explicitly to:

+ Mixed additions: to accumulate G; in the c-bit MSM buckets with cost 2(n—2¢"1+1)
« Additions: to combine the bucket sums with cost (2¢ — 3)

o Additions and doublings: to combine the c-bit MSMs into the b-bit MSM with cost
b—c+b/c—1

B b/c — 1 additions and
B b — ¢ doublings

For large MSM instances, the dominating cost is in the mixed additions as it scales
with n. For this, we use extended Jacobian coordinates {X,Y, 27, ZZZ} (x = X/ZZ,y =
Y/ZZZ, 27 = ZZ Z?) trading-off memory for run time compared to the usual Jacobian
coordinates {X,Y,Z} (z = X/Z?,y = Y/Z3) (cf. Table 2).

Table 2: Cost of arithmetic in Jacobian and extended Jacobian coordinate systems.
m=Multiplication and s=Squaring in the field.

Coordinate systems | Mixed addition | Addition | Doubling
Jacobian Tm + 4s 11m + 5s | 2m + 5s
Extended Jacobian | 8m + 2s 12m + 2s | 6m +4s

We work over fields of large prime characteristic (# 2,3), so the elliptic curves in
question have always a short Weierstrass (SW) form y? = 23 + ax +b. Over this form, the
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Table 3: Cost of mixed addition in different elliptic curve forms and coordinate systems
assuming 1m = 1s. Formulas and references from [BL22].

Form Coordinates system Equation Mixed addition cost
short Weierstrass | extended Jacobian v=x>+ar+b 10m
XXYZZ,
. . doubling-oriented X XY ZZ, 2 4 9
Jacobi quartics XXYZZR, Yy =x* + 2azx° + 1 9m
doubling-oriented X XY ZZR
projective, 2,2 _ 2 2,2
Edwards verted x? +y* =c*(14+dz*y®) | 9m
. extended (XY ZT) 9, 9 2 9 8m (dedicated)
twisted Edwards v =X/Zy=Y/Z,x-y=T/Z ar® +y° =1+dz*y om (unified)
. extended (XY ZT) —2? +y? =1+ dz?y? 7m (dedicated)
twisted Edwards x=X/Z,y=Y/Z,x-y=T/Z | (a=-1) 8m (unified)

fastest mixed addition is achieved using extended Jacobian coordinates. However, there
are other forms that enable even faster mixed additions (cf. Table 3).

It appears that a twisted Edwards (¢FEd) form is appealing for the bucket method since
it has the lowest cost for the mixed addition in extended coordinates. Furthermore, the
arithmetic on this form is complete, i.e. the addition formulas are defined for all inputs.
This improves the run time by eliminating the need of branching in case of adding the
neutral element or doubling compared to a SW form. We showed in Lemma 2 that all
inner BLS curves admit a tFd form.

For the arithmetic, we use the formulas in [HWCDO08] alongside some optimizations.
We take the example of BLS12-377 for which a = —1:

o To combine the ¢-bit MSMs into a b-bit MSM we use unified additions [HWCDO0S,
Sec. 3.1] (9m) and dedicated doublings [HWCDO8, Sec. 3.3] (4m + 4s).

o To combine the bucket sums we use unified additions (9m) to keep track of the
running sum and unified re-additions (8m) to keep track of the total sum. We save
1m by caching the multiplication by 2d’ from the running sum.

e« To accumulate the G; in the c-bit MSM we use unified re-additions with some
precomputations. Instead of storing G; in affine coordinates we store them in a
custom coordinates system (X,Y,T) wherey —z =X, y+ox =Y and 2d' -2 -y =T.
This saves 1m and 2a (additions) at each accumulation of G;.

We note that although the dedicated addition (resp. the dedicated mixed addition)
in [HWCDOS, Sec. 3.2] saves the multiplication by 2d’, it costs 4m (resp. 2m) to check the
operands equality: X;1Zs = X271 and Y125 = Y2 Z1 (resp. X; = X2Z1 and Y7 = Y2 Z1).
This cost offset makes both the dedicated (mixed) addition and the dedicated doubling
slower than the unified (mixed) addition in the MSM case. We also note that the conversion
of all the G; points given on a SW curve with affine coordinates to points on a tEd curve
(also with @ = —1) with the custom coordinates (X,Y,T) is a one-time computation
dominated by a single inverse using the Montgomery batch trick. In SNARKSs, since the
G, are points from the proving key, this computation can be part of the Setup algorithm
and do not impact the Prove algorithm. If the Setup ceremony is yet to be conducted, it
can be performed directly with points in the twisted Edwards form.

Our implementation shows that an MSM instance of size 2'¢ on the BLS12-377 curve
is 30% faster when the G; points are given on a tEd curve with the custom coordinates
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compared to the Jacobian-extended-based version which takes points in affine coordinates
on a SW curve.

6 Implementation

We implemented our algorithm in Go language. We’ve benchmarked the implementation

against the arkworks Rust library [aC22], a widely used library in SNARK projects. We’ve

chosen two different CPU architectures: a x86 z1d.large AWS machine (Intel Xeon Platinum

8151 CPU @ 3.40GHz) and a arm64 Samsung Galaxy A13 5G (Model SM-A136ULGDXAA

with SoC MediaTek Dimensity 700 (MT6833)) running on Android 12 (APT level 32).
We achieved a speed up of 40-47% for MSM instances of sizes ranging from 2% to 218,
The source code is available under MIT or Apache2 licenses at:

https://github.com/gbotrel/zprize-mobile-harness

Table 4: Comparison of the arkworks and our MSM instances of 2! G;-points on the
BLS12-377 curve.

Curve form and 2-NAF
. o o Lo
Implementation | Timing coordinates system Parallelism? | Precomputation? buckets?
SW
arkworks 2309 ms | 5. cobian (X,Y,Z) v X *
. tEd (a = —1)
Submission 509 ms Custom (X,Y,T) 4 X v

The speedup against arkworks comes from the algorithmic optimizations discussed in
this paper and the bigint arithmetic optimizations.

Finite field arithmetic implementation on arm64. We use a Montgomery CIOS variant
to handle the field multiplication (Details of the algorithms and proofs are in section 2).

The two inner loops (line 3 and line 9 in Alg. 2) have the same form. They perform
one word X word multiplication and two word + word additions. These additions can
overflow and the two distinct carry chains need to be propagated up to the last iteration.

For efficiency reasons, it is highly desirable to keep the carry in the CPU flag (i.e avoid
moving it to a register) between the additions.

On x86 architectures, we leverage the ADCX, ADOX and MULX instructions to efficiently
handle the interleaved carry chains in the algorithm. ADCX and ADOX perform unsigned
addition with carry using distinct CPU flags, while MULX performs unsigned multiply
without affecting flags.

On arm64 architecture, we split the inner loops in two to ensure the carry propagation
are uninterrupted. In the first part, we multiply and propagate the first carry from the lo
word. The large number of available registers (in practice 28 for arm64 against 14 for x86)
allows us to store this intermediary result in registers.

In the second part, we propagate the second carry chain from the hi word.

The same technique is used for the squaring function — except we have three carry to
propagate since we double the intermediate product (line 5 in Alg. 5).

The impact of these optimizations is ~ 17% for F,, multiplication and ~ 25% for the
squaring. For an ext-Jac MSM instance of size 216, the timing was 821ms before these
arm64 field arithmetic optimizations and 620ms after. For the tEd-custom version the
speedup is only related to the IFp-multiplication since there are no squaring in the mixed
addition. For this same version, we stored (y —z,y+x) in the coordinates system instead of
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(x,y) and added ~ 40 lines of arm64 assembly for a small function in F,, (Butterfly(a, b)
— a=a+b; b=a - D). The butterfly performance impact was ~ 5%, as it speeds
up the unified (mixed) addition in the ¢Ed form.

We report in Figure 3 a comparison of our code to the arkworks baseline on the
Samsung Galaxy A13 and in Figure 4 the comparison on the x86 AWS machine. We
report timings of several MSM instances of different sizes (powers of 2) and with different

curve parameterizations (SW in extended Jacobians vs. tEd (o = —1) in custom/extended
coordinates).
.10% //' //'
, .
/ /’/
2.0 / .7
/7 //
s / e
(2] // s
E / //
ks ~
%10 L, _~-e—- Our code (tEd-custom)
N + .
n // e Our code (SW-extJac)
// - . ~ -~ - arkworks (SW-Jac)
/‘, -~ :
“o

500 1,000 1,500 2,000 2,500
Timing (ms)

Figure 3: Comparison of our MSM code and the arkworks one for different instances on
the BLS12-377 G; group on the Samsung Galaxy A13.

5 (] °
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Figure 4: Comparison of our MSM code and the arkworks one for different instances on
the BLS12-377 G group on the x86 AWS machine.

For different sizes ranging from 28 to 2'® the speed up is 40-47% with the tEd version
and 20-35% with SW-extJac.

7 Conclusion

Multi-scalar-multiplication dominates the proving cost in most elliptic-curve-based SNARKSs.
Inner curves such as the BLS12-377 are optimized elliptic curves suitable for both proving
generic-purpose statements and in particular for proving composition and recursive state-
ments. Hence, it is critical to aggressively optimize the computation of MSM instances on
these curves. We showed that our work yield a very fast implementation both when the
points are given on a short Weierstrass curve and even more when the points are given
on a twisted Edwards curve. We showed that this is always the case for inner curves
such as BLS12-377 and that the conversion cost is a one-time computation that can be
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performed in the Setup phase. We note that, more generally, these tricks apply to any
elliptic curve that admits a twisted Edwards form — particularly SNARK-friendly 2-cycles
of elliptic curves. We suggest that this should be taken into account at the design level of
SNARK-friendly curves.

Open question: For the Groth16 SNARK [Grol6], the same scalars a; are used for
two MSMs on two different elliptic curves (G; and Go MSMs where these are the pairing
groups [Cos12, Chapter 2]). We ask if it is possible to mutualize a maximum of computations
between these two instances? It seems that moving to a type-2 pairing [GPS08] would
allow to deduce the G; instance from the G one using an efficient homomorphism over the
resulting single point (the Trace map, cf. [Cos12, Section 2.3.1]). However, Go computations
would be done on the much slower full extension F,x (instead of I/« where d is the twist
degree and k the embedding degree of the curve). The pairing, needed for proof verification,
would also be also slightly slower (using the anti-Trace map, cf. [Cos12, Section 2.3.1]).

A Our optimized Montgomery squaring
The condition on the modulus differs, here
pIN-1] <21,

However, the reasoning is similar to section 2 and we end up with Algorithm 5.

Algorithm 5: Our optimized CIOS Montgomery squaring
Input: @ = aR mod p
Output: a>R mod p

1 fori=0to N—1do
2 C, t[i] = a[é] - alé] + t[i];
3 h=0;
4 forj=i+1to N—-1do
5 h, C, t[j] = 2a[j] - afi] + t[j] + (h, C)
6 t[N] = C;
7 C=0;
s | m=t[o]-p/[0];
o | (C,_)=1t[0] + p[0] - m;
10 for j=1to N—1do
u || Citlj—1]=plj]-m+t[j]+C
12 | t{N —1] =t[N]+C;
13 t[N] = 0;
14 if ¢t < p then
15 ‘ return t; // a’R mod p
16 else
17 ‘ return t — p; // a*R mod p
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