
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2023, No. 3, pp. 473–503. DOI:10.46586/tches.v2023.i3.473-503

Multiple-Valued Plaintext-Checking
Side-Channel Attacks on Post-Quantum KEMs

Yutaro Tanaka1,2, Rei Ueno1,2, Keita Xagawa3, Akira Ito3, Junko Takahashi3
and Naofumi Homma1,2

1 Tohoku University, 2–1–1 Katahira, Aoba-ku, Sendai-shi, 980-8577, Japan
yutaro.tanaka.t6@dc.tohoku.ac.jp, rei.ueno.a8@tohoku.ac.jp,

naofumi.homma.c8@tohoku.ac.jp
2 CREST, JST, 4–1–8 Honcho, Kawaguchi, Saitama, 332-0012, Japan

3 Social Informatics Laboratories, NTT Corporation,
3–9–11 Midori-cho, Musashino-shi, Tokyo, 180-8535, Japan

keita.xagawa.zv@hco.ntt.co.jp, akira.ito.as@hco.ntt.co.jp,
junko.takahashi.fc@hco.ntt.co.jp

Abstract. In this paper, we present a side-channel analysis (SCA) on key encapsulation
mechanisms (KEMs) based on the Fujisaki–Okamoto (FO) transformation and its
variants. Many post-quantum KEMs usually perform re-encryption during key
decapsulation to achieve chosen-ciphertext attack (CCA) security. The side-channel
leakage of re-encryption can be exploited to mount a key-recovery plaintext-checking
attack (KR-PCA), even if the chosen-plaintext attack (CCA) secure decryption
constructing the KEM is securely implemented. Herein, we propose an efficient
side-channel-assisted KR-PCA on post-quantum KEMs, and achieve a key recovery
with significantly fewer attack traces than existing ones in TCHES 2022 and 2023.
The basic concept of the proposed attack is to introduce a new KR-PCA based on a
multiple-valued (MV-)PC oracle and then implement a dedicated MV-PC oracle based
on a multi-classification neural network (NN). The proposed attack is applicable to the
NIST PQC selected algorithm Kyber and the similar lattice-based Saber, FrodoKEM
and NTRU Prime, as well as SIKE. We also present how to realize a sufficiently reliable
MV-PC oracle from NN model outputs that are not 100% accurate, and analyze the
tradeoff between the key recovery success rate and the number of attack traces. We
assess the feasibility of the proposed attack through attack experiments on three
typical symmetric primitives to instantiate a random oracle (SHAKE, SHA3, and
AES software). The proposed attack reduces the number of attack traces required
for a reliable key recovery by up to 87% compared to the existing attacks against
Kyber and other lattice-based KEMs, under the condition of 99.9999% success rate
for key recovery. The proposed attack can also reduce the number of attack traces by
85% for SIKE.
Keywords: Side-channel analysis · Fujisaki–Okamoto transformation · Key encap-
sulation mechanism · Public key encryption · Post-quantum cryptography · Deep
learning

1 Introduction
1.1 Background
Post-quantum cryptography (PQC) has been actively studied in recent years. To construct
PQC, a public key encryption scheme (PKE) with chosen-plaintext attack (CPA) security
is first developed, and then a key encapsulation mechanism (KEM) with chosen-ciphertext

Licensed under Creative Commons License CC-BY 4.0.
Received: 2023-01-15 Accepted: 2023-03-15 Published: 2023-06-09

https://doi.org/10.46586/tches.v2023.i3.473-503
mailto:yutaro.tanaka.t6@dc.tohoku.ac.jp
mailto:rei.ueno.a8@tohoku.ac.jp
mailto:naofumi.homma.c8@tohoku.ac.jp
mailto:keita.xagawa.zv@hco.ntt.co.jp
mailto:akira.ito.as@hco.ntt.co.jp
mailto:junko.takahashi.fc@hco.ntt.co.jp
http://creativecommons.org/licenses/by/4.0/

474 Multiple-Valued Plaintext-Checking Side-Channel Attacks on Post-Quantum KEMs

attack (CCA) security is obtained by combining the PKE with either the Fujisaki–Okamoto
(FO) transform [FO99] or its variants. Thus, the re-encryption of the FO(-like) transform
plays an essential role in the decapsulation of PQC.

In practical uses of PQC, security evaluation against implementation attacks, such
as side-channel attacks, in addition to mathematical cryptanalysis attacks is inevitable.
Side-channel attacks on PQC have been first studied on the PKE decryption part that
exploits the secret key directly, similar to those on the modular exponentiation/scalar
multiplication in RSA/elliptic curve cryptography (ECC). In recent years, another attack
aspect has been studied [GTN20,RRCB20,UXT+21], in which the attacker focuses on the
leakage of re-encryption to implement a decryption oracle, which enables one to mount
a chosen-ciphertext attack (CCA) on the underlying CPA-secure PKE. Note that the
decryption oracle is not necessarily a full decryption oracle but it can be, for example,
plaintext-checking (PC) and decryption-failure (DF) oracles. These attacks suggest that
we should protect not only the PKE decryption but also the whole KEM decapsulation,
including re-encryption and the equality/validity checks of the re-encrypted ciphertext,
against side-channel attacks. Ueno et al. [UXT+21] showed that such an attack was
generally applicable to many post-quantum KEMs equipped with an FO-like transforms,
and demonstrated that their attack could recover eight of the nine KEM candidates in the
third round of the NIST PQC standardization.

These studies suggest that the potential and limitation of such attacks (i.e., the least
number of side-channel traces for a successful key recovery) should be investigated to
develop secure KEM implementations, including the design of countermeasures and/or
cryptographic protocols. The number of side-channel traces required for a successful
attack is commonly determined by two factors: (1) the number of decryption oracle
accesses required for key recovery and (2) the number of traces required to realize the
reliable decryption oracle. Therefore, a tight evaluation of the factors, that is, an efficient
key-recovery algorithm with a decryption oracle that can be realized from side-channel
traces, would contribute to understanding the least number of traces (i.e., the optimal
attack cost) for a successful key recovery.

1.2 Our contribution
In this paper, we present an efficient side-channel-assisted key-recovery plaintext-checking
attack (KR-PCA) by focusing on the re-encryption of an FO(-like) transformation, which
is derived as an extension of the attack in [UXT+21]. The basic concept of the proposed
attack is twofold: first, key-recovery attacks are presented using a multiple-valued plaintext-
checking (MV-PC) oracle, which is a generalization of a binary PC oracle used in, for
example, [RRCB20,BDH+21,UXT+21]; second, the MV-PC oracle is implemented with
a multi-classification neural network (NN) from side-channel traces. Essentially, our 2N -
valued PC oracle (N ∈ N) provides at most N -bit information of a secret key per access
for lattice-based KEMs, while conventional binary PC oracles provide at most one bit per
access.

In general, the design of a µ-classification (µ > 2) is more difficult than that of a binary
classification. Accordingly, the accuracy of an MV-PC oracle can be worse than a binary
oracle, which leads to an increase in the number of traces required to realize a reliable
PC oracle. If this increase is larger than the decrease in the number of oracle accesses,
an attack using an MV-PC oracle has no advantage compared with conventional attacks
using a binary PC oracle. To avoid such a large increase, we introduce a µ-valued NN to
efficiently implement an accurate MV-PC oracle. Note that our proposal includes how
to learn an NN model that can be used to implement the proposed key-recovery attack
using the MV-PC oracle. We then evaluate the accuracy enhancement of an MV-PC oracle
realized using multiple traces and discuss its information-theoretic aspects. Our proposed
attack achieves a significant reduction in the number of side-channel traces required for

Y. Tanaka, R. Ueno, K. Xagawa, A. Ito, J. Takahashi, and N. Homma 475

Table 1: Number of attack traces required for successful key recovery for NIST PQC KEM
standard/candidates with NIST security level 1 using NLL based distinguisher

Ueno et al. Qin et al. Revi et al. This work Maximum
[UXT+21] [QCZ+21] [RRD+22] reduction rate

Lattice Kyber 3,072 2,622 190 / 950† 576 81% / 78% / 61%
Saber 6,144 2,952 N/A 1,920 69% / 35.0%
FrodoKEM 51,200 36,720 N/A 9,600 81% / 77%
NTRU 5,608 N/A N/A 5,608 0%
NTRU LPRime 3,406 N/A N/A 642 81%

Code HQC 36,222 N/A N/A 36,222 0%
BIKE 6M N/A N/A 6M 0%
Classic McEliece Unknown Inapplicable Inapplicable Inapplicable Inapplicable

Isogeny SIKE 548 N/A N/A 111 80%

†Left value is derived from their paper [RRD+22], while right value is due to our reproduced experiment
in Section 5 using SHA3 implementation with L2 norm based distinguisher of N = 8, as Kyber’s
re-encryption uses SHA3.

successful key recovery compared to conventional attacks using a binary PC oracle and
binary-classification NN.

For experimental validation, we applied the proposed attack to the NIST PQC standard
and third-round candidates for KEMs. Table 1 summarizes the least numbers of attack
traces required for successful key recovery in our experiments using both real devices and
open-source implementations.

For comparison, Table 1 also shows the numbers of attack traces required for conven-
tional attacks in [UXT+21] (worst case), [QCZ+21] (average case)1, and [RRD+22] as
state-of-the-art counterparts, where “N/A” indicates that their attack is not described. In
addition, Table 1 evaluates their corresponding reduction rates by our attack. For each
key-recovery attack, we derived the number of attack traces from the accuracy of the PC
oracle implemented with an NN in our experiment (See Section 5).

Table 1 confirms that the proposed attack reduces the number of attack traces by a
maximum of 81% for lattice-based PQ KEMs except for NTRU although it does not reduce
those for NTRU and code-based KEMs due to the difficulty in the key-recovery attack
using an MV-PC oracle. To the best of the authors’ knowledge, the proposed attack can
recover the secret keys of Kyber, Saber, FrodoKEM, NTRU LPRime of NTRU Prime, and
SIKE2 with the smallest numbers of traces among the general power/EM side-channel
attacks on re-encryption under the condition that real devices and measurements are used.

1.3 Paper organization
The remainder of this paper is organized as follows. In Section 2, we review KEMs that are
based on the FO transform and previous SCAs on KEMs that focus on FO transforms. We
also describe the previous most-generalized attack which was presented in [UXT+21]. In
Section 3, we describe the proposed attack and its application to the NIST PQC standard
and third-round candidates with theoretical evaluations. In Section 4, we present the
neural side-channel distinguisher (i.e., MV-PC oracle) design for the proposed attack
and discuss its information-theoretic aspects. In Section 5, we present our experimental
validation using real devices and open-source implementation of symmetric primitives

1The previous study in [QCZ+21, Table 6] presented the expected numbers of queries used in KR-PCAs
against lattice-based PQ KEMs. The expected numbers of traces in our table was computed by multiplying
the expected number of queries with the number of traces to implement a PC oracle.

2SIKE is considered insecure currently as practical attacks on SIKE have been reported [CD23,MM22,
Rob23,MMP+23]. However, we present and evaluate the application of the proposed attack to SIKE in
order to validate the generality and applicability of the proposed attack. In addition, researchers are
developing variants of SIKE to counter the Castryck–Decru attack (e.g., [FMP23]). The evaluation of the
proposed attack on SIKE would contribute to developing secure implementation of isogeny-based KEMs.

476 Multiple-Valued Plaintext-Checking Side-Channel Attacks on Post-Quantum KEMs

Algorithm 1 CCA-secure KEM based on FO transform (KeyGen,Encaps,Decaps)
KeyGen
Input: 1λ
Output: sk, pk, s
1: Function KeyGen(1λ)
2: (sk, pk)← PKE.Gen(1λ);
3: s←$ M;
4: return (sk, pk, s);

Encaps
Input: pk
Output: c, k
1: Function Encaps(pk)
2: m←$ M;
3: r ← G(m[, pk]);
4: c← PKE.Enc(pk,m; r);
5: k ← H(m, c);
6: return (c, k);

Decaps
Input: c, sk, pk, s
Output: k
1: Function Decaps(c, sk, pk, s)
2: m′ ← PKE.Dec(sk, c);
3: r′ ← G(m′[, pk]);
4: c′ ← PKE.Enc(pk,m′; r′);
5: if c = c′ then
6: return H(m′, c);
7: else
8: return Hprf(s, c);

compatible with PQCs. Finally, Section 6 concludes this paper.

2 Related Works
2.1 IND–CCA secure KEM based on the FO transform
A KEM is a public-key cryptographic primitive used to transmit a secret key securely. A
KEM consists of three probabilistic polynomial-time algorithms: key generation (KeyGen),
encapsulation (Encaps), and decapsulation (Decaps). Most post-quantum KEMs are proven
to be CCA secure since they adopt an FO-like transform. Here, we refer to FO transforms
and their variants [HHK17,SXY18,BHH+19] as FO-like transforms. Algorithm 1 illustrates
a typical post-quantum KEM equipped with an underlying PKE scheme and an FO-like
transform, assuming that the PKE is CPA secure and is given as three probabilistic
polynomial-time algorithms: key generation Gen, encryption Enc and decryption Dec. Such
KEMs employ random oracles (ROs) denoted by G, H, and Hprf in Algorithm 1, which are
frequently realized using a cryptographic hash function (or other symmetric primitive),
and are frequently instantiated with SHA-3 or SHAKE.

The attacks considered herein focus on the decapsulation KEM.Decaps, which computes
the shared secret as a result of H at Line 6 from an input ciphertext c, a private key sk
and a public key pk (if the input ciphertext is valid). KEM.Decaps first applies the PKE
decryption PKE.Dec to compute the corresponding plaintext m′ from the ciphertext and
then performs a re-encryption to validate the computed m′, that is, computes PKE.Enc in
the same manner as KEM.Encaps to check whether the re-encrypted ciphertext c′ equals
to the input ciphertext c. If c = c′, the input ciphertext is considered valid, and the shared
secret H(m′, c) is then calculated and output. Otherwise (i.e., c 6= c′), the ciphertext
is invalid, and a pseudorandom value computed using Hprf (or a rejection symbol) is
output at Line 8. The FO-like transform performs the ciphertext verification to detect
any invalid ciphertexts and prevent any CCA that queries invalid ciphertexts and exploits
their decryption results.

2.2 Existing side-channel attacks on FO-like transforms
Side-channel attacks on the FO-like transforms were initially presented in the pioneering
works by Guo et al. [GTN20] and Ravi et al. [RRCB20]. Guo et al. presented a timing
attack exploiting the equality check (as at Line 5 in Algorithm 1). Ciphertexts of post-
quantum KEMs are treated as a long vector in CPUs/microcontrollers. A comparison
using an usual operation (e.g., memcmp) takes a (relatively) long time if two ciphertexts are
very similar to each other; otherwise, the comparison terminates shortly. They exploited
this timing difference to implement a PC oracle for lattice- and code-based KEMs, and
presented key-recovery attacks for lattice-based and code-based KEMs where the equality

Y. Tanaka, R. Ueno, K. Xagawa, A. Ito, J. Takahashi, and N. Homma 477

check was not implemented in constant time. Ravi et al. reported the first power/EM
attack on an FO-like transform. The attack implemented a PC oracle or decryption failure
oracle by exploiting the side-channel leakage during computation of RO (i.e., hash function)
in re-encryption with a t-test-based template. Their attack achieved key recovery of six
lattice-based KEMs: Kyber, Saber, FrodoKEM, Round5, NewHope and LAC.

Bhasin et al. [BDH+21] presented an attack on masked polynomial comparison schemes
for Kyber, Saber, and FrodoKEM [OSPG18,BPO+20] by exploiting ciphertext equality
checks in lattice-based KEMs and demonstrated its application to Kyber. They imple-
mented a PC oracle using a distinguisher based on the t-test. More recently, Ueno et al.
demonstrated a generalization of power/EM attacks on FO-like transforms [UXT+21].
They illustrated that the side-channel leakage during re-encryption can be generally ex-
ploited if a KR-PCA on the underlying PKE is known. They demonstrated that their
attack could achieve key recovery of eight out of nine KEMs of NIST PQC third-round
candidates.

One major research direction of attacks of this kind is to improve the attack efficiency
(i.e., reduce the number of required traces) for a precise evaluation of the cost of an
optimal attack. Other side-channel-assisted CCAs have also been extensively studied
in this way [XPR+22,RBRC22,SKL+20,REB+21,NDGJ21], especially for lattice-based
KEMs. More recently, in [QCZ+21], Qin et al. showed an improvement of CCAs on lattice-
based KEMs using a binary key-mismatch oracle with adaptive queries, which reduced
the number of oracle accesses/queries compared to that of the CCA used in [UXT+21].
In [SCZ+23], Shen et al. presented a side-channel-assisted CCA using a binary PC oracle
with an error correction of the PC oracle outputs, implemented by side-channel information.
They showed that the error tolerance reduced the number of traces required to implement
a PC oracle, which reduced the total number of traces required for key recovery. They also
applied their attack to Kyber, and achieved up to 55.4% reduction of the total number of
traces required for key recovery compared to that in [UXT+21].

2.3 PC oracle implementation using neural side-channel distinguisher
First we formally describe a PC oracle. Let (sk, pk) denote a key pair of a KEM and
let c be a valid ciphertext corresponding to a plaintext m. Here, “plaintext m” denotes
the input to the PKE.Enc in KEM.Encaps (which corresponds the output of PKE.Dec in
KEM.Decaps). We call m and c the reference plaintext and ciphertext, respectively. Let
c̃ be an invalid ciphertext, which is a modification of c made by an attacker. When the
attacker queries c̃, a PC oracle states whether c̃ is decrypted to m or not. Note that the
attacker cannot obtain the decryption result of PKE.Dec (i.e., m′ in Algorithm 1); they
can only obtain the binary information. Formally, the PC oracle is defined as

O(c̃;m) =
{

1 if PKE.Decsk(c̃) = m,
0 otherwise.

We refer to a key-recovery attack using the PC oracle as KR-PCA.
We now outline the side-channel-assisted KR-PCA of Ueno et al. [UXT+21], which is

enhanced in this paper. Ueno et al. experimentally showed that an attacker can recover
the secret key of many post-quantum KEMs vulnerable to KR-PCA if the attacker can
implement the above PC oracle by utilizing the side-channel leakage. They also used
the likelihood ratio test to realize a distinguisher to check whether m′ = m from the
side-channel traces (i.e., a side-channel distinguisher). Their PC oracle is formally given in
the following.

Unless defined otherwise, an uppercase character (e.g., X) denotes a random vari-
able/vector of a set denoted by the calligraphic character (e.g., X), and a lowercase
character (e.g., x) denotes an element of that set (i.e., x ∈ X). Let Pr be the probability

478 Multiple-Valued Plaintext-Checking Side-Channel Attacks on Post-Quantum KEMs

measure and let p be the probability mass or density function. The conditional probability
of Y = y given X = x is defined as pY |X(y | x) = pY,X(y, x)/pX(x). Let E denote the
expectation. A side-channel trace is defined as x ∈ X ⊂ Rω, where ω denotes the number
of sample points.

Let B be a random variable that represents the oracle output (i.e., B = O(C̃;m) and
b ∈ B = {0, 1}). Let pB|X be the true conditional probability distribution of the PC oracle
output B given the side-channel trace X, that is, pB|X(1 | X) = Pr(M ′ = m | X) and
pB|X(0 |X) = Pr(M ′ 6= m |X). According to the Neyman–Pearson lemma [NP33], if the
attacker knows the true distribution pB|X , the attacker can perform the most powerful test
for B = 1 or 0 (i.e., M = m or M 6= m) given (multiple copies of) X. Let t be the number
of traces available for one PC oracle implementation. The attacker queries an invalid
ciphertext C̃ repeatedly t times to obtain t side-channel traces X0,X1, . . . ,Xi, . . . ,Xt−1.
Ueno et al. proposed determining the PC oracle output B̂ as follows:

B̂ = arg max
b∈{0,1}

log
t−1∏
i=0

pB|X(b |Xi) = arg max
b∈{0,1}

t−1∑
i=0

log pB|X(b |Xi). (1)

The Neyman–Pearson lemma guarantees that this is the most powerful test, as Equation (1)
is equivalent to the likelihood test ratio3 in accordance with Bayes’ theorem, supposing that
pB(0) = pB(1) = 1/2 and X0,X1, . . . ,Xt−1 are independent and identically distributed.

The above true distribution is usually unavailable to an attacker/evaluator. Accordingly,
Ueno et al. proposed the use of deep learning (DL) to imitate pB|X . Let qθ(b | x) =
qB|X(b | x; θ) be the conditional probability distribution represented by an NN with a
parameter θ. In typical DL, an NN qθ is trained such that the cross entropy (CE) is
minimized. The goal of DL is to find an optimal parameter θ̂ using a dataset containing
labeled side-channel traces. The CE is defined as

CE(qθ) = −E log qB|X(B |X; θ) = −
∫ ∑

b∈{0,1}

pB,X(b,x) log qB|X(b | x; θ) dx,

which is minimized if and only if p = qθ (although it is not guaranteed that there exists
such a θ according to pB|X and the hyperparameters). As the CE is usually incomputable
in practice due to the expectation (i.e., integral), it is approximated by the negative log
likelihood (NLL) with a finite number of traces, defined as follows:

L(qθ) = −1
s

z−1∑
j=0

log qB|X(Bj |Xj ; θ),

where z denotes the number of traces in the dataset, and Bj denotes the j-th PC oracle
output (i.e., label) corresponding to the j-th trace Xj in the dataset.

Ueno et al. [UXT+21] showed that such an NN achieved a sufficiently high accuracy
to implement a PC oracle, even for a masked software implementation [git21]. Moreover,
they experimentally demonstrated that the likelihood ratio test using a trained NN could
achieve a higher success rate and fewer traces compared to a majority voting. This led to
a key recovery of post-quantum KEMs with a practical total number of traces.

3Let Xt denote (X0,X1, . . . ,Xt−1). The likelihood ratio test in this case originally estimates whether
the parameter is 1 or 0 (i.e., b = 1 or b = 0) by comparing pXt|B(Xt | 1) and pXt|B(Xt | 0). By supposing
that X0,X1, . . . ,Xt−1 are independent and identically distributed, it holds that pXt|B(Xt | b) =∏t−1
i=0 pX|B(Xi | b) =

∏t−1
i=0 pB|X(b | Xi)pX(Xi)/pB(b) in accordance with Bayes’ theorem. By supposing

that pB(0) = pB(1) = 1/2, this equation is followed by arg maxb pXt|B(Xt | b) = arg maxb
∏t−1
i=0 pB|X(b |

Xi) = arg maxb log
∑t−1

i=0 pB|X(b | Xi).

Y. Tanaka, R. Ueno, K. Xagawa, A. Ito, J. Takahashi, and N. Homma 479

3 Proposed Attack
3.1 Multiple-valued plaintext-checking oracle
The major drawback of CCAs with the PC oracle outlined in Section 2.3 is that the
attacker obtains no more than one-bit information per oracle access4, which results in
a large number of traces being required for key recovery. In this study, we propose an
oracle named the multiple-valued plaintext-checking (MV-PC) oracle to extract more bits
of information per oracle access.

Let µ be a positive integer. Consider an attacker who knows that a ciphertext c̃ is
necessarily decrypted to either of the µ plaintexts m0,m1, . . . ,mµ−1. The attacker can
recover the secret key of the KEM with repeated and adaptive queries if the attacker knows
to which plaintext c̃ is decrypted. Such an oracle is a generalization of the (binary) PC
oracle with µ = 2. Note that, without side-channels, the FO-like transform theoretically
does not provide any information about which plaintext c̃ corresponds to (although the
attacker knows the reference plaintext for valid ciphertext). We name this oracle the
MV-PC oracle, and formally define it as

Oµ(c̃;m0,m1, . . . ,mµ−1) = v s.t. PKE.Decsk(c̃) = mv.

Intuitively, the MV-PC oracle for µ values (called µV-PC) provides up-to log2 µ information
to the attacker; therefore, a CCA using the MV-PC oracle would achieve key recovery
with fewer oracle accesses roughly by a factor of 1/ log2 µ than that of the conventional
KR-PCA with the binary PC oracle.

3.2 General attack description
The proposed attack exploits an MV-PC oracle through a side-channel leakage and recovers
the secret key by side-channel-assisted CCA on the underlying CPA-secure PKE. As
well as the previous attack in [UXT+21], the proposed attack focuses on the side-channel
leakage during the RO evaluation (i.e., computation of symmetric primitive like hash
function) of re-encryption in PKE.Decaps. Using the side-channel leakage, the attacker
accesses to an MV-PC oracle; that is, estimates which an invalid ciphertext c̃ is decrypted
to plaintext m0,m1, . . . ,mµ−1 by PKE.Dec. If the attacker can correctly estimate the
plaintext from the side-channel leakage, the attacker can perform a key recovery CCA.
The proposed attack achieves a key recovery with fewer side-channel traces, if the MV-PC
oracle is efficiently implemented.

As in [UXT+21], the proposed SCA consists of profiling and attack phases. In the
profiling phase, the attacker trains a µ-classification NN to estimate the plaintext (i.e.,
implement an µV-PC oracle) from side-channel traces during the RO evaluation. In the
attack phase, the attacker queries invalid ciphertexts and performs a CCA using the
µV-PC oracle implemented by the trained NN. Although the attack requires a profiling,
we do not require any profiling device which the attacker can know/control the secret
key, in contrast to major DL-based side-channel attacks on symmetric primitive. This
is because the profiling can be carried out without secret key, as in previous SCAs on
lattice-based KEMs [RRCB20,XPR+22,RBRC20,SKL+20,NDGJ21,UXT+21]. The usage
of NN makes the proposed attack general and efficient, because it has been shown that
DL-based side-channel attacks are applicable to various implementations (including ones
with countermeasures such as masking and random delay) without detailed knowledge
of implementation nor a specific condition/assumption about leakage. Moreover, the
proposed attack can be carried out by the neural distinguisher from side-channel leakage

4For lattice-based KEMs, the expected amount of information is far less than one bit, depending on its
encoding method.

480 Multiple-Valued Plaintext-Checking Side-Channel Attacks on Post-Quantum KEMs

during the RO evaluation, and the key recovery capability depends solely on the quality of
the neural distinguisher.

3.3 KR-MV-PCA algorithms for Kyber
We here consider Kyber as it is the only KEM selected from the finalists in Round 3. See
Appendix A for other candidate KEMs in Round 3. Fist, we briefly review Kyber, and then
extend the existing KR-PCA to KR-MV-PCA. Since we are interested in the decryption
mechanism herein, we describe on the form of ciphertext of Kyber and its decryption.

Review of Kyber: Kyber involves several parameters, namely, n = 256, k, q = 3329, η1,
dU , and dV . The parameter sets of Kyber in Round 3 are summarized in Table 2.

Table 2: Parameter sets of Kyber in Round 3
parameter sets n k q η1 dU dV

Kyber512 256 2 3329 3 10 4
Kyber768 256 3 3329 2 10 4
Kyber1024 256 4 3329 2 11 5

For an odd positive integer α, r′ = r mod α is represented as the unique element r′ in
the range −(α − 1)/2 ≤ r′ ≤ (α − 1)/2 satisfying r′ ≡ r (mod α). For an even positive
integer α, we define r′ = r mod+ α to be the unique element r′ in the range 0 ≤ r′ < α
satisfying r′ ≡ r (mod α). Let R = Z[x]/(x256 + 1). Let Rq = Z[x]/(x256 + 1, q), where
each coefficient is in [−(q − 1)/2, (q − 1)/2] for odd q and [−q/2 + 1, q/2] for even q. For
a ∈ Z+, let Sa = {f ∈ R : fi ∈ {−a,−a+ 1, . . . , a− 1, a} for i = 0, . . . , 255}, where fi is
the i-th coefficient of f ∈ R. Let ei = (0, . . . , 0, 1, 0, . . . , 0) ∈ Rk denote the i-th unit vector
of Rk (i.e., a vector where the i-th element is 1 and other elements are 0). For a real number
r, drc denotes its nearest integer where ties are rounded up, that is, drc = br + 1/2c. We
extend this notation to a polynomial and a vector of polynomials, in which each coefficient
of the polynomial(s) are rounded to its nearest integer. For two vectors a and b ∈ Rk, let
〈a,b〉 denote their inner product, that is, 〈a,b〉 =

∑k
i=1 aibi ∈ R.

A ciphertext of Kyber is given by (c1, c2) ∈ Rk × R, where coefficients of c1 are in
the range [0, 2dU) and those of c2 are in the range [0, 2dV). A secret key is denoted by
s = (s1, . . . , sk) ∈ Skη1

. The decapsulation algorithm first computes M =
⌈
(q/2dV)c2

⌋
−〈⌈

(q/2dU)c1
⌋
, s
〉

mod q ∈ Rq and obtains the plaintext m′ = d(2M/q)Mc mod 2 ∈ R2.

Review of KR-PCA: We briefly review the KR-PCA against Kyber in Round 3 [HV20,
XIU+21]. To identify the j-th coefficient of the i-th element si of s, the attacker fixes
c1 depending on i, modifies the j-th coefficient of c2 as its invalid version c̃2, and makes
log2(2η1 + 1) queries to the PC oracle to check whether the decrypted plaintext is all zero
vector (0, . . . , 0).

Suppose that we consider Kyber512 and want to determine si,j (i.e., j-th coefficient of
si for j ∈ {0, . . . , 255}). We then consider a ciphertext

(c1, c̃2) =
(
U · ei, T (t) · xi

)
,

where U =
⌈
(2dU /q) · 276

⌋
mod+ 2dU and T (t) =

⌈
(2dV /q) · 208 · t

⌋
mod+ 2dV with

t ∈ {−3,−2, . . . , 3}. We have the following lemma for this ciphertext. (We extend this
result later.)
Lemma 1 ([HV20,XIU+21]). For the ciphertext (c1, c̃2) defined in the above, let m′ =
Dec(s, (c1, c̃2)). We have m′k = 0 for k ∈ {0, . . . , 255} \ {j} and

m′j = 0⇐⇒ |276 · si,j + 208 · t| ≤ 832.

Y. Tanaka, R. Ueno, K. Xagawa, A. Ito, J. Takahashi, and N. Homma 481

Table 3: KR-PCA: The behavior of m′j of m′ = Dec(s, (c1, c̃2)) on a ciphertext (c1, c̃2)
with c1 = U · ei and c̃2 = T (t) · xj .

(a) Kyber512

si,j

t −3 −2 −1 0 1 2 3

−3 1 1 1 0 0 0 0
−2 1 1 0 0 0 0 0
−1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0

+1 0 0 0 0 0 0 1
+2 0 0 0 0 0 1 1
+3 0 0 0 0 1 1 1

(b) Kyber768 and Kyber1024

si,j

t −3 −2 −1 0 1 2 3

−2 1 1 0 0 0 0 0
−1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0

+1 0 0 0 0 0 0 1
+2 0 0 0 0 0 1 1

See the pattern of m′j in Table 3a for si,j ∈ {−3, . . . , 3} and t ∈ {−3, . . . , 3}. Thus,
by querying to the PC oracle three times with appropriately crafted ciphertexts, we can
determine si,j by a binary search.

A similar result holds for Kyber768 and Kyber1024 for the same parameter setting.
See the pattern in Table 3b for si,j ∈ {−2, . . . , 2} and t ∈ {−3, . . . , 3}. Again, querying
the PC oracle three times, we can determine si,j by a binary search.

KR-2NV-PCA: Intuitively, we run the binary search of N coefficients in parallel by using
the 2NV-PC oracle. For the sake of the ease of implementation of the 2NV-PC oracle, we
designed a query invalid ciphertext such that the decrypted plaintext varies in the first N
positions of the plaintexts and is fixed as 0 in the other remaining positions by modifying
the existing KR-PCA.

For a ∈ {0, N, . . . , 256 − N}, suppose that we want to determine si,a+j for all j =
0, . . . , N − 1, which means N sequential coefficients of si starting from its a-th coefficient.
We here consider a ciphertext

(c1, c̃2) =
(

(U · x256−a)ei,
N−1∑
`=0

T (t`) · x`
)
, (2)

where U and T are the same value and function as KR-PCA and t0, . . . , tN−1 ∈ {−3,−2,
. . . , 3}. The decryption algorithm first computesM =

⌈
(q/2dV)c̃2

⌋
−
〈⌈

(q/2dU)c1
⌋
, s
〉

mod
q ∈ Rq. Thus, we have

M =
⌈
(q/2dV)c̃2

⌋
−
〈⌈

(q/2dU)c1
⌋
, s
〉

mod q

=
⌈

(q/2dV)
N−1∑
`=0

T (t`) · x`
⌋
−
〈⌈

(q/2dU)(U · x256−a)ei
⌋
, s
〉

mod q

=
N−1∑
`=0

⌈
(q/2dV)T (t`)

⌋
· x` −

⌈
(q/2dU)U

⌋
· x256−asi mod q.

Recall that U =
⌈
(2dU /q) · 276

⌋
mod+ 2dU and T (t) =

⌈
(2dV /q) · 208 · t

⌋
mod+ 2dV with

t ∈ {−3,−2, . . . , 3}.
Let us consider the first term: For q = 3329 and dV ∈ {4, 5} in the parameter sets of

Kyber, we also have, for t ∈ {−3,−2, . . . , 3},⌈
(q/2dV)T (t)

⌋
=
⌈
(q/2dV) ·

(⌈
(2dV /q) · 208 · t

⌋
mod+ 2dV

)⌋
= 208 · t.

482 Multiple-Valued Plaintext-Checking Side-Channel Attacks on Post-Quantum KEMs

Table 4: KR-2NV-PCA: Behavior of m′j for j = 0, . . . , N − 1 of m′ = Dec(s, (c1, c̃2)) on a
ciphertext (c1, c̃2) = ((U · x256−a) · ei,

∑N−1
`=0 T (t`)x`).

(a) Kyber512

si,a+j

tj −3 −2 −1 0 1 2 3

−3 1 1 1 0 0 0 0
−2 1 1 0 0 0 0 0
−1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0

+1 0 0 0 0 0 0 1
+2 0 0 0 0 0 1 1
+3 0 0 0 0 1 1 1

(b) Kyber768 and Kyber1024

si,a+j

tj −3 −2 −1 0 1 2 3

−2 1 1 0 0 0 0 0
−1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0

+1 0 0 0 0 0 0 1
+2 0 0 0 0 0 1 1

Hence, we have

N−1∑
`=0

⌈
(q/2dV)T (t`)

⌋
· x` =

N−1∑
`=0

208t` · x`.

We next consider the second term: For q = 3329 and dU ∈ {10, 11} in the parameter
sets of Kyber, we have⌈

(q/2dU)U
⌋

=
⌈
(q/2dU) · (

⌈
(2dU /q) · 276

⌋
mod+ 2dU)

⌋
= 276.

We then have

⌈
(q/2dU)U

⌋
x256−asi = 276 · x256−asi = 276 · x256−a

255∑
`=0

si,`x
` = 276

255∑
`=0

si,`x
256+`−a

= −276
255−a∑
`=0

si,`+a mod+256 x
` + 276

255∑
`=255−a+1

si,`+a mod+256 x
`,

followed by x256+b = −xb for b ∈ {0, . . . , 255} since R = Z[x]/(x256 + 1) and Rq =
Z[x]/(x256 + 1, q).

Combining those two calculations, for a ∈ {0, N, . . . , 256−N}, we obtain

Mj =
{

276 · si,a+j mod+256 + 208 · tj (j = 0, . . . , N − 1)
±276 · si,a+j mod+256 (otherwise).

The decryption algorithm then computes m′ = d(2/q)Mc mod 2. For j = 0, . . . , N − 1,
Mj is decoded into 0 if and only if |Mj | ≤ 832 ≈ q/4, that is, |276si,a+j + 208tj | ≤ 832.
For j = N, . . . , 256, Mj is decoded into 0 since |(2/q) · 276 · b| < 1/2 for b ∈ {−η1, . . . , η1},
where η1 = 2 or 3. The pattern of m′j is summarized in Table 4.

Hence, we can run a binary search on si,j ∈ {−η1, . . . , η1} for N coefficients in parallel
and reduce the number of queries by a factor of approximately 1/N . We estimate the upper
bound of the number of oracle accesses to be dlog2(2η1 + 1)e · d256/Ne · k = 3 · d256/Ne · k
for all parameter sets of Kyber. The whole key-recovery algorithm for Kyber768 and
Kyber1024 is summarized in Algorithm 2. Intuitively, a query with tj tells that si,a+j ≥ tj
if m′j = 1; otherwise, si,a+j ≤ tj − 1. The key-recovery algorithm for Kyber512 is also
obtained by modifying Threshold and Update appropriately.

Example of KR-2N -PCA: We show an example of KR-2N -PCA on Kyber768 with N = 4.
We here try to recover a 4-bit secret key (si,0, si,1, si,2, si,3) = (−2, 0, 2, 1) using O2N . For

Y. Tanaka, R. Ueno, K. Xagawa, A. Ito, J. Takahashi, and N. Homma 483

Algorithm 2 KR-2NV-PCA against Kyber768 and Kyber1024
Output: s = (s1, . . . , sk) ∈ Skη1
1: Function KRA(1λ)
2: for i = 0, . . . , k − 1 do
3: for ` = 0, . . . , d256/Ne − 1 do . Find si,`N , . . . , si,`N+N−1
4: c1 ← U · x256−`N · ei;
5: R0, . . . , RN−1 ← {−η1, . . . , η1};
6: for i′ = 0, . . . , 2 do . Binary Search in Parallel
7: for j = 0, . . . , N − 1 do
8: tj ← Threshold(Rj);
9: c̃2 ←

∑N−1
j=0 T (tj)xj ;

10: v ← O2N ((c1, c̃2); 0N‖0256−N , . . . , 1N‖0256−N); . Let mv = v0‖ . . . ‖vN−1‖0256−N

11: Parse v = (v0, v1, . . . , vN−1) ∈ {0, 1}N ;
12: for j = 0, . . . , N − 1 do
13: Rj ← Update(Rj , vj);
14: for j = 0, . . . , N − 1 do
15: si,`N+j ← rj such that Rj = {rj};
16: return s;
1: Function Threshold(R)
2: if R = {−2,−1, 0,+1,+2} then
3: return −3;
4: else if R = {−2,−1} then
5: return −2;
6: else if R = {0,+1,+2} then
7: return 3;
8: else if R = {+1,+2} then
9: return 2;
10: else if |R| = 1 then
11: return 0;

1: Function Update(R, v)
2: if R = {−2,−1, 0,+1,+2} then
3: return {−2,−1} if v = 1 else {0,+1,+2};
4: else if R = {−2,−1} then
5: return {−2} if v = 1 else {−1};
6: else if R = {0,+1,+2} then
7: return {+1,+2} if v = 1 else {0};
8: else if R = {+1,+2} then
9: return {+2} if v = 1 else {+1};
10: else if |R| = 1 then
11: return R;

j = 0, 1, 2, 3, let Rj := {−2,−1, 0, 1, 2} be candidate sets of si,j . According to Equation (2)
and Threshold, we first generate a ciphertext (c1, c̃2) with (t0, t1, t2, t3) = (−3,−3,−3,−3).
Querying O2N with it, we know (m′0,m′1,m′2,m′3) = (1, 0, 0, 0) for this case. From this
result, we can reduce the possible range of secret key coefficients as si,0 ≤ −1 and
si,1, si,2, si,3 ≤ 0 and we have R0 = {−2,−1} and R1 = R2 = R3 = {0,+1,+2}. Then, to
further reduce the range of si,j , we queryO2N with another ciphertext where (t0, t1, t2, t3) =
(−2, 3, 3, 3), and it tells that (m′0,m′1,m′2,m′3) = (1, 0, 1, 1). This indicates that si,0 ≤ −2
and si,1 ≥ 0 as well as si,2, si,3 ≤ 1, and we have that R0 = {+2}, R1 = {0}, and
R2 = R3 = {+1,+2}. Thus, we know si,0 = −2 and si,1 = 0, yet we cannot identify other
coefficients. Finally, we query O2N with third ciphertext where (t0, t1, t2, t3) = (0, 0, 2, 2),
and it tells that (m′0,m′1,m′2,m′3) = (0, 0, 1, 0). This indicates that si,2 ≥ 2 and si,3 ≤ 1
and we have that R2 = {+2} and R3 = {+1}. In consequence, we identify the secret
key as (si,0, si,1, si,2, si,3) = (−2, 0, 2, 1) from the inequalities. Thus, we can identify N
coefficients in parallel with 3 queries, while the conventional binary KR-PCA only identifies
one coefficient with 3 queries. We achieve a full-key recovery by repeating this procedure
for all i and j.

3.4 Complexity analysis
Table 5 details the numbers of oracle accesses required for the KR-µV-PCA on lattice-based
KEMs and SIKE, and Table 6 lists the concrete values when N = 1, 2, . . . , 8. These tables
show the values for schemes with the security equivalent of AES128 and AES256 (i.e.,
NIST security levels 1 and 5, respectively). These tables show that an increase in N (i.e.,
the usage of the MV-PC oracle) significantly contributes to decreasing the number of
oracle accesses. Note that this value corresponds to the number of attack traces if we can
implement the oracle with 100% accuracy using one side-channel trace; in practice, we need

484 Multiple-Valued Plaintext-Checking Side-Channel Attacks on Post-Quantum KEMs

Table 5: Formulas for deriving the number of oracle accesses required for KR-µV-PCA
(µ = 2N for lattice-based KEMs and µ = 3N for SIKE)

KEM type Scheme Instance # Oracle accesses
Lattice Kyber Kyber-512 3× d256/Ne × 2

Kyber-1024 3× d256/Ne × 4
Saber LightSaber-KEM N = 1: at most 4× 256× 2 + 2× 256× 2

N ≥ 2: at most 8× d256/Ne × 2 + 2× d256/Ne × 2
FireSaber-KEM 3× d256/Ne × 4

FrodoKEM FrodoKEM-640 5× d640× 8/Ne
FrodoKEM-1344 4× d1344× 8/Ne

NTRU Prime ntrulpr653 2 + 3× d(653−N)/Ne
ntrulpr1277 2 + 3× d(1277−N)/Ne

Isogeny SIKE SIKEp434 d274× 2/(3N)e
SIKEp751 d478× 2/(3N)e

Table 6: Number of oracle accesses required for KR-MV-PCA when N = 1, 2, . . . , 8
(µ = 2N for lattice-based KEMs and µ = 3N for SIKE)

KEM type Scheme Instance # Oracle accesses
N = 1 2 3 4 5 6 7 8

Lattice Kyber Kyber-512 1,536 768 516 384 312 258 222 192
Kyber-1024 3,072 1,536 1,032 768 624 516 444 384

Saber LightSaber-KEM 3,072 2,560 1,720 1,280 1,040 860 740 640
FireSaber-KEM 3,072 1,536 1,032 768 624 516 444 384

FrodoKEM FrodoKEM-640 25,600 12,800 8,535 6,400 5,120 4,270 3,660 3,200
FrodoKEM-1344 43,008 21,504 14,336 10,752 8,604 7,168 6,144 5,376

NTRU ntruhrss701 2,804 N/A
ntruhps2048509 1,018 N/A
ntruhps4096821 1,642 N/A

NTRU Prime ntrulpr653 1,703 853 571 428 344 287 245 214
ntrulpr1277 3,575 1,789 1,195 896 719 599 512 448
sntrup653 2,712 N/A
sntrup1277 5,175 N/A

Isogeny SIKE SIKEp434 290 145 97 73 58 49 42 37
SIKEp751 319 160 107 80 64 54 46 40

multiple traces to implement a reliable oracle. In other words, if we can implement the
MV-PC oracle for greater N , we can perform key recovery on these KEMs very efficiently,
as demonstrated in Section 5.

4 Neural Side-Channel Distinguisher for MV-PC Oracle
4.1 Basic concept
In this study, we propose the use of DL to implement an MV-PC oracle. Namely, we train
a µ-classification NN to estimate which plaintext, m0,m1, . . . , or mµ−1, corresponds to c̃
from the power/EM trace(s) during an RO evaluation. Note that a profiling dataset can
be acquired using the target device without knowing the secret key, which is meaningful
for the practicality of the proposed attack in a real scenario.

Let Bµ be a random variable representing a µ-valued PC oracle output (i.e., Bµ =
Oµ(C̃;m0,m1, . . . ,mµ−1) and b ∈ Bµ = {0, 1, . . . , µ − 1}). Let pBµ|X be the true
conditional probability distribution of Bµ, given the side-channel trace X, that is,
pBµ|X(b | X) = Pr(M ′ = mb | X). The goal of DL in the proposed attack is to im-
itate the true conditional distribution of Bµ given a side-channel trace X using an NN
qθ = qBµ|X(Bµ | X; θ). Therefore, in the profiling phase, we train the NN to minimize
CE(qθ) using a dataset acquired from the target device. To acquire a dataset containing t
labeled side-channel traces (Bµ,X), the attacker computes a valid ciphertext corresponding
to each of m0,m1, . . . , and mµ−1 using KEM.Encaps and the public key, and queries them
to the target device to measure its side-channel trace. Thus, NN training can be conducted

Y. Tanaka, R. Ueno, K. Xagawa, A. Ito, J. Takahashi, and N. Homma 485

using this dataset in the same manner as DL-based side-channel attacks on symmetric
ciphers [BPS+20,KPH+19,PCP20,ZBHV20,WAGP20, ISUH21].

We now describe how to realize a reliable µ-class PC oracle using multiple traces, as
it is quite difficult for a classification (even using NN) to achieve an accuracy as high as
100%. Let αt be the resulting accuracy using multiple NN inferences for t side-channel
traces. The number of traces for one MV-PC oracle implementation should be determined
according to σ ≤ αt

u, where u denotes the number of oracle accesses required for key
recovery. As the most efficient method for a high αt, we can use the likelihood ratio test
as shown in [UXT+21]; we determine the oracle output B̂µ as

B̂µ = arg max
b∈Bµ

log
t−1∏
i=0

qBµ|X(b |Xi; θ) = arg max
b∈Bµ

t−1∑
i=0

log qBµ|X(b |Xi; θ). (3)

As proven in Section 4.2, if qθ = p, then this method is optimal, which means that this
method theoretically maximizes the success rate αt = Pr(B̂µ = Bµ). In Equation (3),
−
∑t−1
i=0 log qBµ|X(b | Xi; θ) is the negative-log likelihood (NLL), which converges in

probability to the cross entropy (CE) as t→∞.
One major drawback in using the NLL is its difficulty in evaluating the resulting

accuracy in an analytical manner. As an easily available alternative, our method can
employ a majority voting of multiple inference results to evaluate the lower bound of the
number of attack traces required for key recovery. Using an NN with an accuracy of a, we
can readily evaluate the resulting accuracy αt by

αt ≥ 1−
dt/2e∑
s=0

(
t

s

)
as(1− a)t−s, (4)

because the majority voting result is always correct if more than bt/2c NN inference results
are correct. Note that its converse does not necessarily hold for the majority voting of
µ-classification if µ > 2, and therefore αt is evaluated by an inequality. To evaluate the
value of αt as an equality, we need to consider multinomial coefficients for the probabilities
that all incorrect labels are inferred as correct; however, such an analysis is difficult in
multi-class classification. Therefore, in addition to the NLL, we also use the inequality
in Equation (4) for an analytical evaluation in this paper, as it can be readily evaluated
using an NN accuracy, which is a common metric for NN.

4.2 Information-theoretic aspects of side-channel distinguisher
In this section, we first show the optimality of the likelihood ratio test with the true
conditional probability distribution pBµ|X in Equation (3) as Theorem 1. The theorem
theoretically validates the usage of DL to implement an MV-PC oracle, as the goal of DL
is to imitate the true conditional probability distribution.

Theorem 1 (Optimal distinguish rule for MV-PC oracle implementation). Let pBµ|X be
the true conditional probability distribution of a µ-valued PC oracle Bµ, given side-channel
traces X. Let B̂µ denote the attacker’s guess of Bµ. Suppose that t side-channel traces
Xt = (X0,X1, . . . ,Xt−1) are independent and identically distributed (i.i.d). A distinguish
rule defined as

B̂µ = arg max
b∈Bµ

t−1∑
i=0

log pBµ|X(b |Xi),

is optimal, that is, maximizes the success rate of the guess Pr(B̂µ = Bµ).

486 Multiple-Valued Plaintext-Checking Side-Channel Attacks on Post-Quantum KEMs

Proof. Let `(b̂, b) = 1{b̂ 6=b} be a loss function, where 1 denotes the indicator function. The
optimal distinguish rule is defined as a rule that maximizes the success rate in guessing
the correct b. Note that Pr(B̂µ = Bµ) = E1{B̂µ=Bµ} = 1− E`(B̂µ, Bµ) holds. Therefore,
we can maximize the success rate by minimizing the loss function E`(B̂µ, Bµ). To obtain
the optimal distinguish rule, we rewrite the loss function as:

E`(B̂µ, Bµ) = E1{B̂µ 6=Bµ} = EE[1− 1{B̂µ=Bµ} |X
t] = E[1− Pr(B̂µ = Bµ |Xt)].

Therefore, according to the i.i.d assumption,

B̂µ = arg max
b

Pr(Bµ = b |Xt) = arg max
b

t−1∑
i=0

log pBµ|X(b |Xi)

is the optimal distinguish rule, because it minimizes the loss function.

Theorem 1 validates the use of DL to imitate pBµ|X in the attack, and implies that
the NLL-based distinguihser achieves a high performance (i.e., high success rate in dis-
tinguishing the input) if NN can sufficiently imitate the true conditional probability
distribution. We can evaluate an upper bound of the success rate or this optimal distin-
guish rule using Theorem 2, similar to the key-recovery side-channel attacks on symmetric
ciphers [dCGRP19, IUH22].

Theorem 2 (Upper bound of success rate of MV-PC oracle implementation). Let I(Bµ |
X) be the mutual information between a µ-valued PC oracle Bµ and side-channel traces
X. Assume that t side-channel traces Xt = (X0,X1, . . . ,Xt−1) are i.i.d. The optimal
success rate of the µ-valued PC oracle implementation using t traces, denoted by αt, is
bounded as

ξ(αt) ≤ tI(Bµ; X), (5)
where ξ is a function defined as

ξ(αt) = H(Bµ)− (1− αt) log2(µ− 1)−H2(αt),

and H2 is the binary entropy function.

Proof. This is proven in a similar manner to [dCGRP19] using Fano’s inequality [CT06,
Theorem 2.10.1]. Let H(X) be the entropy of a random variable X. Suppose that
the side-channel attack is represented as a Markov chain of Bµ ↔ X ↔ B̂µ, similar
to [HRG14,dCGRP19]. Due to the definition of mutual information, we have

I(Bµ; Xt) = H(Bµ)−H(Bµ |Xt).

As B̂µ is a function of Xt, we have H(Bµ |Xt) = H(Bµ |Xt, B̂µ), and it follows that

I(Bµ; Xt) = H(Bµ)−H(Bµ |Xt, B̂µ)
≥ H(Bµ)−H(Bµ | B̂µ). (6)

According to Fano’s inequality [CT06, Theorem 2.10.1] on the Markov chainBµ ↔X ↔ B̂µ,
we have

H(Bµ | B̂µ) ≤ H2(αt) + (1− αt) log2(|Bµ| − 1). (7)

Combining Equation (6) and (7), we have

ξ(αt) = H(Bµ)− (1− αt) log2(µ− 1)−H2(αt) ≤ I(Bµ; Xt).

Since it holds I(Bµ; Xt) ≤ tI(Bµ; X) due to the i.i.d assumption, we conclude that it
holds ξ(αt) ≤ tI(Bµ; X), as required.

Y. Tanaka, R. Ueno, K. Xagawa, A. Ito, J. Takahashi, and N. Homma 487

Corollary 1. Suppose that H(Bµ) = log2 µ. In the distinguish attack, to achieve a success
rate of 1 (i.e., αt = Pr(B̂µ = Bµ) = 1), the following should hold:

t ≥ log2 µ

I(Bµ; X) . (8)

Proof. If we substitute αt = 1 and H(Bµ) = log2 µ into the inequality in Equation (5),
the proof follows.

The upper bound of the success rate conversely represents a lower bound of the
number of attack traces required to achieve a given success rate. The inequality in
Equation (8) corresponds to a shortcut evaluation formula used in [ABH+22], although no
proof was previously provided for this case. The upper bounds of the success rate based
on Fano’s inequality are meaningfully precise for the cases of key-recovery side-channel
attacks [dCGRP19, IUH22]; accordingly, the inequality in Equation (5) is expected to
be helpful for a precise evaluation of the number of attack traces required to implement
a reliable MV-PC oracle. The evaluation using Equation (5) is available if I(Bµ; X) is
available, for example, if we assume that the noise is Gaussian distributed and additive
(implying that I(Bµ; X) is determined by its variance) and if the evaluator performs
profiling for the actual device to estimate I(Bµ; X).

As outlined in [IUH22], intuitively, the function ξ converts the success rate to the
number of bits required for a successful distinguish. If the attacker requires a µV-PC
oracle with a success rate of 1, then ξ(1) = H(Bµ) = log2 µ, which indicates that the
attacker requires log2 µ-bit information for the classification. In contrast, if the attacker
has no advantage in the distinguisher (i.e., αt = 1/µ), then ξ(1/µ) = 0, which indicates
that the attacker has no (i.e., zero-bit) information about the oracle output. Equation (5)
states that the attacker should receive more significant bits of information through the
side-channel traces (i.e., tI(Bµ; X)) than the bits of information for achieving a given
success rate.

We now discuss the relationship between the successful implementation of the MV-PC
oracle and µ in Equation (8). Given a value of µ, the range of I(Bµ; X) is determined by
[0, log2 µ]. When µ increases, on the one hand, the coefficient of the right-hand side of the
inequality in Equation (8) increases; as the attacker requires more bits to implement a
µV-PC oracle for greater µ. This means that the number of traces for successful distinguish
potentially increases. On the other hand, the value of I(Bµ; X) is also likely to increase as
µ increases. From the information-theoretic viewpoint, this indicates that the number of
traces for successful distinguish does not increase as log2 µ increases if I(Bµ; X) sufficiently
increases. This situation would frequently occur for some (sufficiently practical) devices
with low noise (such as the one used in the experiment in [BS21]). If we design an NN
that can sufficiently exploit information about Bµ from X, we can implement a µV-PC
oracle with only a few traces, even for large µ. This implies that the attacker can receive
more bits of information from a trace as I(Bµ; X), which yields a non-trivial decrease in
the total number of attack traces required for key recovery.

5 Experimental Validation
5.1 Experimental setup
In this section, we describe the experimental attacks we conducted to validate the feasibility
and efficiency of the proposed attack. In the experiment, we employed CUDA11.4,
cuDNN8.0.5, Tensorflow-gpu 2.4.1, and Keras 2.4.0 on an nIntel Xeon W-2145 3.70GHz
and NVIDIA GeForce RTX 2080 Ti to carry out NN training. The learning rate was 0.0001,
the batch size was 64, and the number of epochs was 100. Table 7 lists the hyperparameters

488 Multiple-Valued Plaintext-Checking Side-Channel Attacks on Post-Quantum KEMs

Table 7: NN hyperparameters for µ-classification
Input Operator Output Activation function Batch normalization Pooling Stride

Conv1 1000× 1 conv1d(3) 16 SELU Yes Avg (2) 2
Conv2 500× 4 conv1d(3) 16 SELU Yes Avg (2) 2
Conv3 250× 4 conv1d(3) 16 SELU Yes Avg (2) 2
Conv4 125× 4 conv1d(3) 32 SELU Yes Avg (2) 2
Conv5 62× 8 conv1d(3) 32 SELU Yes Avg (2) 2
Conv6 31× 8 conv1d(3) 32 SELU Yes Avg (2) 2
FLT 15× 8 flatten 120 - - - -
FC1 120 dense 20 SELU No No -
FC2 20 dense 20 SELU No No -
FC3 20 dense µ Softmax No No -

Table 8: Experimental conditions for the evaluation of a µ-classification NN
Reference pqm4 [KRSS19,pqm21]
Device ARM Cortex-M4 (STM32F407VGT6U)
Board STM32F407G-DISC1

Side-channel EM radiation
Measurement interface Langer EMV-Technik RF-U T-2 probe

Training traces 1, 000× µ
Validation traces 500× µ

Test traces 500× µ

of the CNN for traces with 1,000 sample points, where the top and bottom rows denote
the input and output layers, respectively, and the remaining hidden layers are connected
in ascending order from the input to output. In the “Input” column, S1 × S2 denotes the
input shape, where S1 is the trace size and S2 is the input dimension. In the “Operator”
column, the operation at each layer, conv1d(F), denotes a convolution with a filter size of
F .

Table 8 lists the experimental conditions used to evaluate the attack feasibility. We used
an ARM Cortex-M4, which is a major micro-controller to evaluate PQC implementation
including side-channel aspects. We employed software implementation of three symmetric
primitives which are frequently used for the RO instantiation in KEM: non-protected AES,
SHA3-512, and SHAKE128/256. The input value to the symmetric primitive was given in
µ patterns, and the key was fixed. For the test (i.e., the evaluation of the attack phase),
we acquired 2,048 traces for each plaintext (2,048 × µ traces in total). To evaluate the
accuracy of the test, we randomly selected 500× µ labeled traces for one trial, evaluated
the accuracy for each trial, repeated this trial 10 times, and averaged the accuracy. Note
that we evaluate the proposed neural distinguisher in this paper, which is sufficient to
evaluate the attack feasibility as the whole success rate and number of traces for key
recovery are dependant solely on the quality of distinguisher.

5.2 Evaluation result of neural distinguisher
Table 9 shows the accuracy of the trained NNs on the test sets for µ = 2N (N = 1, 2, . . . , 8).
This table shows that the trained NNs achieved a very high accuracy compared to DL-based
key-recovery side-channel attacks on symmetric ciphers, even when the number of classes
increased. Even for large µ values, such as N = 8, the NN could estimate Bµ with far higher
accuracy compared with the case of key-recovery side-channel attacks (e.g., [PHJ+18]).
This could be because the NNs in the proposed attack scenario could exploit a whole
operation rather than a partial operation (e.g., S-box). The high accuracy for large µ
values validates the efficiency of the proposed attack when using the MV-PC oracle in
practice. We note here that a number of oracle accesses are still required even with such a
high accuracy for key recovery; therefore, we should consider further enhancements of the
MV-PC oracle accuracy using multiple inference results.

Y. Tanaka, R. Ueno, K. Xagawa, A. Ito, J. Takahashi, and N. Homma 489

Table 9: NN accuracy to distinguish PRF input
Accuracy for 2N classification

21 22 23 24 25 26 27 28

AES 0.9995 0.9997 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
SHA3-512 0.9993 0.9998 0.9994 0.9993 0.9993 0.9993 0.9992 0.9992
SHAKE128 0.9995 0.9997 0.9994 0.9995 0.9982 0.9982 0.9897 0.9746

We then evaluated the numbers of traces required for a reliable MV-PC oracle access
by the NLL-based and majority-voting-based distinguishers, respectively. Table 10 reports
the numbers of traces required for reliable PC oracle implementation. For a comparison,
Table 10 also lists the results for an existing (non-neural) distinguisher based on the L2
norm using a t-test-based template in [RRD+22], called L2-norm-based distinguisher in
this paper. Here, we empirically evaluated the distinguish success rate using t traces
by means of resampling from samples 10,000 times (for each t), as in many existing
studies on DL-based side-channel attack, including [UXT+21]. The NLL was computed
by Equation (3). For the NLL-based and L2-norm-based distinguishers, the numbers of
required traces t to realise a single µ-class PC oracle were finally determined when the PC
oracle output matched the correct label (i.e., actual plaintext) for all 10,000 trials. For the
majority-voting-based distinguisher, the number of traces was determined as the minimum
value satisfying αt ≥ τ = 0.999999.

From Table 10, we confirm the effectiveness of the NLL-based distinguisher, which
achieves the fewest number of traces (i.e., highest efficiency) for all situations in this
experiment As proven in Theorem 1, we can achieve an optimal distinguisher if we have
the true conditional probability distribution. This result implies that the NN training
would be appropriately performed, and the resulting NN would sufficiently imitate the
true conditional probability distribution. The majority-voting-based distinguisher requires
more traces than the NLL-based one. This would be because the number of traces for
the majority-voting-based distinguisher was evaluated using an inequality, which would
not be very tight/precise for the evaluation of actual success rate, though it can be easily
evaluated from the accuracy of NN, and therefore used for an analytical evaluation, as
shown in Section 5.3. The L2-norm-based distinguisher in [RRD+22] also had an efficiency
comparable to the NLL-based distinguisher in some parts of Table 10, though it sometimes
required a lot of traces for an empirical accuracy of 100%, and it could not achieve a
reliable MV-PC oracle for SHAKE128 in our experiment. As a result, the generality and
applicability of L2-norm-based distinguisher was unclear in this experiment. At least, the
L2-norm-based distinguisher was not robust to the translation of traces (due to jitter or
random delay countermeasures) and cannot be applied to masked implementations against
side-channel attacks. In contrast, our neural distinguishers were more robust to such a
translation and would be effectively applied to masked implementations as evaluated in
previous studies on DL-based side-channel attacks (using ASCAD [BPS+20]).

5.3 Evaluation of number of traces for successful key recovery
As a preliminary proof-of-concept, we first evaluate the number of attack traces using a
majority-vote-based distinguisher as an analytical lower bound for the success rate given
an NN. Figure 1 shows the number of attack traces required for the key recovery using
the majority-vote-based distinguisher and an NN evaluated in Section 5.2. Table 11 shows
the minimum number of attack traces in Figure 1, the number of classes at that time,
and the reduction rate from the conventional 2-classification. Note that for the attack on
SIKE, we employed a 3N -valued PC oracle and evaluated 2N ′-classification NNs, which
includes a 3N -classification such that 2N ′ > 3N . Note also that N = 1 is equivalent to
the conventional attack using a binary PC oracle, as in [UXT+21], except for the case of
SIKE. Each number of attack traces for one µ-valued PC oracle (i.e., t) in Table 11 was

490 Multiple-Valued Plaintext-Checking Side-Channel Attacks on Post-Quantum KEMs

Table 10: Number of traces required for available one µ-class PC oracle
Implementation Evaluation method Accuracy for 2N classification

N = 1 2 3 4 5 6 7 8

AES
Majority vote† 7 5 5 5 5 5 5 5

NLL 2 2 2 2 2 2 2 2
L2 norm‡ 2 2 2 2 2 3 4 5

SHA3-512
Majority vote† 5 5 5 7 7 7 9 9

NLL 2 3 3 3 3 3 3 3
L2 norm‡ 2 4 5 4 4 4 4 5

SHAKE128
Majority vote† 5 5 7 7 7 11 13 9

NLL 2 2 2 2 4 3 3 4
L2 norm‡ 100< 100< 150< 180< 180< 200< 200< 200<

† For majority vote, the number of traces was determined as the minimum value satisfying
αt ≥ τ = 0.999999.
‡ L2 norm indicates the approach in [RRD+22]: point-of-interest selected using t-test, template created as
their average vector for each value of Bµ, and bµ determined according to an L2 norm between the
template vector and a vector of point-of-interest of the attack trace.

Table 11: Minimum number of attack traces required to achieve specific success rates
(SRs) using majority-voting-based distinguisher

Scheme Instance # Minimum traces for attack phase (µ, reduction ratio from [UXT+21])
SR ≥ 1− 0.16 1− 0.17 1− 0.18 1− 0.19 1− 0.110

Kyber Kyber-512 1,728 (256, 87.5%) 1,728 (256, 87.5%) 1,728 (256, 90.0%) 2,112 (256, 87.5%) 2,112 (256, 89.4%)
Kyber-1024 3,456 (256, 87.5%) 3,456 (256, 87.5%) 4,224 (256, 87.5%) 4,224 (256, 87.5%) 4,224 (256, 87.5%)

Saber LightSaber-KEM 5,760 (256, 79.2%) 5,760 (256, 79.2%) 7,040 (256, 79.2%) 7,040 (256, 79.2%) 7,040 (256, 82.4%)
FireSaber-KEM 3,456 (256, 87.5%) 3,456 (256, 87.5%) 4,224 (256, 87.5%) 4,224 (256, 87.5%) 4,224 (256, 89.4%)

FrodoKEM FrodoKEM-640 46,080 (64, 80.0%) 46,080 (64, 83.6%) 55,510 (32, 80.3%) 55,510 (32, 80.3%) 56,320 (32, 83.1%)
FrodoKEM-1344 77,436 (64, 80.0%) 77,436 (64, 83.6%) 93,184 (32, 80.3%) 93,184 (32, 80.3%) 107,520 (64, 80.8%)

NTRU Prime ntrulpr653 2,205 (256, 87.5%) 2,205 (256, 87.5%) 2,695 (256, 87.5%) 2,695 (256, 87.5%) 2,695 (256, 89.4%)
ntrulpr1277 4,311 (256, 87.5%) 4,311 (256, 89.8%) 5,269 (256, 87.5%) 5,269 (256, 87.5%) 5,269 (256, 89.4%)

SIKE SIKEp434 406 (256, 84.4%) 522 (256, 80.0%) 522 (256, 80.0%) 639 (256, 80.0%) 639 (256, 80.0%)
SIKEp751 448 (256, 84.4%) 576 (256, 80.0%) 576 (256, 80.0%) 704 (256, 80.0%) 704 (256, 80.0%)

determined when αtu was greater than a threshold τ , where u denotes the number of oracle
accesses for key recovery in Table 6 and αtu represents the success rate of key recovery
(not of one µ-valued PC oracle access). In this experiment, we varied τ from 1− 0.16 to
1 − 0.110. Full detailed data on the number of attack traces required for each class are
presented in Appendix B.

The number of attack traces was finally derived as t × u as the above calculation.
These results show that the proposed attack significantly reduces the number of attack
traces required for key recovery compared to the existing attack in [UXT+21] (i.e., µ = 2
and N = 1). When N = 5–8, the proposed attack achieved 80–87% reductions of the
cost of profiling (i.e., NN training). In addition, the number of attack traces for the
highest key-recovery success rate (i.e., τ = 1− 0.110) was not much larger than that for
τ = 1− 0.16; thus, the majority-voting-based distinguisher could achieve a high success
rate with significantly fewer traces. It should be noted that the success rates of the
majority-voting-based distinguisher are easy-to-evaluate and analytically guaranteed as
these values are derived from an analytical inequality for a given NN accuracy, although the
success rate of the NLL-based distinguisher (evaluated below) is evaluated only empirically.
Thus, Table 11 shows the effectiveness of the proposed attack in terms of the number of
traces for a successful attack from the theoretical perspectives.

Table 12 reports the number of traces required for a successful key recovery using the
NLL-based distinguisher. Here, we used the evaluation result of NN in Section 5.2 and
the numbers of traces were derived by t× u as Table 11. We consider the accuracy of the
NLL-based distinguisher as 100% for a given t if the empirical evaluation in Section 5.2
achieved 100% accuracy. Although the majority vote is useful for analytical evaluation,
the NLL-based distinguisher achieved the fewest number of traces, which yields efficient
key recovery as confirmed from Table 11 and Table 12. Owing to the high accuracy of the

Y. Tanaka, R. Ueno, K. Xagawa, A. Ito, J. Takahashi, and N. Homma 491

Table 12: Number of attack traces required for successful key recovery using NLL-based
distinguisher

KEM type Scheme Instance # Traces for attack phase
N = 1 2 3 4 5 6 7 8

Lattice Kyber Kyber-512 3,072 2,304 1,548 1,152 936 774 666 576
Kyber-1024 6,144 4,608 3,096 2,304 1,872 1548 1,332 1,152

Saber LightSaber-KEM 6,144 7,680 5,160 3,840 3,120 2,580 2,220 1,920
FireSaber-KEM 6,144 4,608 3,096 2,304 1,872 1548 1,332 1,152

FrodoKEM FrodoKEM-640 51,200 25,600 17,070 12,800 20,480 12,810 10,980 12,800
FrodoKEM-1344 86,016 43,008 28,672 21,504 34,416 21,504 18,432 21,504

NTRU Prime ntrulpr653 3,916 2,940 1,959 1,473 1,176 978 843 735
ntrulpr1277 7,660 5,748 3,831 2,877 2,301 1,914 1,644 1,437

Isogeny SIKE SIKEp434 870 435 291 219 174 N/A
SIKEp751 957 480 321 240 192 N/A

NN, the NLL-based distinguisher achieved a sufficiently reliable µ-valued PC oracle access
with only a few traces. Thus, the NLL-based distinguisher achieved the fewest number of
traces for a successful key recovery.

Although some improvements of the CCA on KEMs with a binary key-mismatch
or PC oracle have also been developed (e.g., in [QCZ+21]), the attack proposed here,
with the MV-PC oracle, achieved a smaller number of oracle accesses and attack traces,
as shown in Table 1. In addition, Shen et al. [SCZ+23] recently presented an efficient
side-channel-assisted CCA using the binary PC oracle with a method to correct the errors
in the NN inference, which achieved a 45.9–55.4% reduction of the number of attack
traces required for key recovery for Kyber; however, the proposed attack achieved an 87%
reduction. Thus, the proposed attack achieved the highest efficiency and required the least
number of attack traces for key recovery compared with existing state-of-the-art CCAs
and side-channel attacks.

5.4 Comparison to a state-of-the-art attack on Kyber in [RRD+22]

Recently, Ravi et al. presented a side-channel attack on Kyber in [RRD+22], which is
very similar to our attack as it utilizes and realizes parallel PC oracle. In addition to the
proposal of parallel PC oracle, they presented an optimal strategy to recover the secret
coefficients, which yields further efficiency in terms of the number of queries. In fact, their
attack requires only 190 queries5 if N = 8, while our attack makes 192 queries.

Moreover, they presented another side-channel distinguisher based on t-test-based
template and its L2 norm from attack traces. However, note that their distinguisher is not
shown to be theoretically optimal in terms of success rate (i.e., the number of traces to
achieve an SR) unlike ours. The optimality of our distinguisher is proven in Section 4.2.
In fact, our experimental results showed that our neural distinguisher requires fewer traces
for a reliable MV-PC oracle than [RRD+22].

It should be noted that our distinguisher would require a huge offline computational
cost to achieve an optimal attack because we need to train an NN for the approximation
of pBµ|X (compared to [RRD+22]). However, such an offline computational cost is not
critical and would be trivial in many attack scenarios. In addition, a major goal for the
security evaluation of KEM schemes is to analyze a theoretical potential of side-channel
attack6.

5We derived the value of 190 by visually reading the graph in the paper.
6For example, if we want to determine a rekeying frequency with regard to side-channel attack, we

should consider the online computational cost (i.e., the number of required attack traces) and the offline
cost would not be important.

492 Multiple-Valued Plaintext-Checking Side-Channel Attacks on Post-Quantum KEMs

2 4 8 16 32 64 128 256
Classes

0

500

1000

1500

2000

2500

3000

Tr

ac
es

(a) Kyber-512

2 4 8 16 32 64 128 256
Classes

0

1000

2000

3000

4000

5000

6000

Tr

ac
es

(b) Kyber-1024

2 4 8 16 32 64 128 256
Classes

0
1000
2000
3000
4000
5000
6000
7000
8000

Tr

ac
es

(c) LightSaber-KEM

2 4 8 16 32 64 128 256
Classes

0

1000

2000

3000

4000

5000

6000

Tr

ac
es

(d) FireSaber-KEM

2 4 8 16 32 64 128 256
Classes

0

10000

20000

30000

40000

50000

Tr

ac
es

(e) FrodoKEM-640

2 4 8 16 32 64 128 256
Classes

0

20000

40000

60000

80000

Tr
ac

es

(f) FrodoKEM-1344

2 4 8 16 32 64 128 256
Classes

0
500

1000
1500
2000
2500
3000
3500
4000

Tr

ac
es

(g) ntrulpr653

2 4 8 16 32 64 128 256
Classes

0
1000
2000
3000
4000
5000
6000
7000
8000

Tr

ac
es

(h) ntrulpr1277

3 9 27 81 243
Classes

0

200

400

600

800

Tr

ac
es

(i) SIKEp434

3 9 27 81 243
Classes

0

200

400

600

800

1000

Tr

ac
es

(j) SIKEp751

Figure 1: Number of attack traces required for successful key recovery

6 Conclusion
In this paper, we presented an efficient power/EM side-channel attack on KEMs with
FO-like transforms by utilizing the MV-PC oracle. The proposed SCA is an exten-
sion/generalization of the side-channel-assisted CCA, in which the re-encryption leakage
is used to implement a decryption oracle. We also designed a DL-based side-channel
distinguisher using a multi-class classification NN and discussed its information-theoretic
aspects. We demonstrated a set of experimental attacks using typical implementations of

Y. Tanaka, R. Ueno, K. Xagawa, A. Ito, J. Takahashi, and N. Homma 493

Table 13: Parameter sets of Saber in Round 3
parameter sets k q p T η h2

LightSaber 2 8192 1024 8 5 196
Saber 3 8192 1024 16 4 228
FireSaber 4 8192 1024 64 3 252

symmetric primitive for an RO. The results demonstrated that the proposed SCA can
perform key recovery against major lattice-based and isogeny-based KEM implementations
with significantly fewer attack traces than existing state-of-the-art (side-channel-assisted)
CCAs. To the best of the authors’ knowledge, the proposed attack achieved the smallest
number of attack traces for the key recovery among the existing attacks.

The proposed attack is more efficient for larger numbers of classifications (i.e., µ). This
yields attack efficiency, but also incurs a higher cost in NN training (i.e., profiling). In
practice, the cost of (offline) profiling would be trivial compared to that of an online attack
phase. Developing a more efficient learning method for the proposed attack would be an
important area for future research. In addition, further evaluation and validation of the
proposed attack for other implementations, especially masked ones, would be an interesting
future research area.

Moreover, the explainability of NN in our attack is also an important topic to be
addressed. On the one hand, we have provided a theorem that states a true conditional
probability distribution provides an optimal attack, which motivates us to use an NN
training. On the other hand, it is still unclear, for example, why and how the NN exploits
leakage, what the NN actually learns, and when the NN training is successful. Although we
did not discussed the NN explainability in this paper, studying it would contribute to the
theoretical evaluation of attack feasibility and development of effective countermeasures
against the proposed side-channel attack.

Acknowledgments
We would like to thank Dr. Sebastian Berndt for the shepherding care. This work has
been supported by JSPS Kakanhi Grant No. 17H00729 No. 19H21526, and JST CREST
No. JPMJCR19K5

Appendices

A Description of MV-PCA on other KEMs
A.1 Saber
Let R = Z[x]/(x256 + 1) and Rq = Z[x]/(x256 + 1, q), where each coefficient is in the range
[0, q). For a ∈ Z+, we let Sa = {f ∈ R : fi ∈ {−a,−a+ 1, . . . , a− 1, a} for i = 0, . . . , 255}.

Saber has three parameter sets, LightSaber, Saber, and FireSaber, summarized in
Table 13. A ciphertext of Saber is denoted by (c1, c2) ∈ Rkp×RT and a secret key is denoted
by s ∈ Skη . The decryption algorithm first computes M = 〈c1, s〉 − (p/T)c2 +

∑255
i=0 h2x

i ∈
Rp where h2 = p/4−p/2T+q/2p and obtains the plaintextm′ = (M � (log2(p)−1)) ∈ R2,
that is, takes MSBs of M ∈ {0, . . . , 1023}256.

KR-PCA and KR-2NV-PCA for Saber/FireSaber: We can mount an attack against
Saber and FireSaber similar to the aforementioned KR-MV-PCA against Kyber by ex-
tending the existing KR-PCA against them in [OUKT21]. Adapting and summarizing the

494 Multiple-Valued Plaintext-Checking Side-Channel Attacks on Post-Quantum KEMs

Table 14: Saber and FireSaber: the behavior ofm′0 ofm′ = Dec(sk, (c1, c2)) on a ciphertext
(c1, c2) with c1 = U · x256−a · ei and c2 = t

(a) Saber with U = −54 and −57

U = −54 U = −57

ski
t 0 1 0 1 2 3 4 5 6 7

−4 0 1 0 1 1 1 1 1 1 1
−3 0 0 0 1 1 1 1 1 1 1
−2 0 0 0 0 1 1 1 1 1 1
−1 0 0 0 0 0 1 1 1 1 1
0 0 0 0 0 0 0 1 1 1 1

+1 0 0 0 0 0 0 0 1 1 1
+2 0 0 0 0 0 0 0 0 1 1
+3 0 0 0 0 0 0 0 0 0 1
+4 0 0 0 0 0 0 0 0 0 0

(b) FireSaber with U = −15

ski
t 0 13 14 15 16 17 18

−3 0 1 1 1 1 1 1
−2 0 0 1 1 1 1 1
−1 0 0 0 1 1 1 1
0 0 0 0 0 1 1 1

+1 0 0 0 0 0 1 1
+2 0 0 0 0 0 0 1
+3 0 0 0 0 0 0 0

result of Osumi et al. [OUKT21], we obtain Table 14: a table of the behavior of decrypted
messages in special ciphertexts c1 = U · x256−a · ei and c2 = t to determine si,a (we can
verify this behavior by direct computation).

For Saber, we first check whether a coefficient is −4 or not with U = −54 and then
determine the other 8 cases with three adaptive queries with U = −57. As in the case for
Kyber, we can run this test in parallel, and we estimate the upper bound of the number of
oracle accesses to be 4 · d256/Ne · 3.

For FireSaber, we can run a binary search on si,j ∈ {−3, . . . ,+3} in parallel and we
estimate the upper bound of the number of oracle accesses to be 3 · d256/Ne · 4.

KR-PCA for LightSaber: We now review the KR-PCA against LightSaber in Round
3 [HV20], which consists of two phases. Following the computation of [HV20], for the
input (c1, c2), the decryption algorithm computes

Mj = (〈c1, s〉)j − 128 · c2,j + 196 mod+ 1024 ∈ {0, 1, . . . , 1023}

and decodes Mj into m′j = 0 if Mj ≤ 512 and into 1 otherwise. Let I := {−5,−4,−3,−2,
+2,+3,+4,+5}.

The attacker first determines whether si,j is in I or {−1, 0,+1}. Suppose that c1 = U ·ei
for some constant U ∈ [−196/5, 196/5].

• We first consider the case for c2,j = 0. For any si,j ∈ {−5, . . . ,+5}, we have mj = 0
since 0 ≤ Usi,j + 196 < 512.

• Next, we consider the case for c2,j = 2. Note that we have (−128 · 2 + 196) mod+

1024 = 964. For c ∈ {2, 3, 4, 5}, we let U = 60/c. We have m′j = 0 if and only if
((60/c)si,j + 964) mod+ 1024 < 512, that is, si,j ≥ c. For c ∈ {−5,−4,−3,−2},
we again let U = 60/c. By a similar computation, we have m′j = 0 if and only if
((60/c)si,j + 964) mod+ 1024 < 512, that is, si,j ≤ c.

Thus, the attacker will query (U · ei, 2xj) for U = 60/c with c ∈ I to the PC oracle. It
can determines whether si,j is in I or {−1, 0,+1} using 4 = dlog2(9)e queries.

The attacker then determines whether si,j = −1, 0,+1. We define V + =
∑
j:si,j=4 or 5 5xj

and V − =
∑
j:si,j=−4 or −5 5xj . The attacker then makes two ciphertexts queries, (60 ·

ei, 2xj + V +) and (−60 · ei, 2xj + V −), to determine si,j = −1, 0,+1.

Y. Tanaka, R. Ueno, K. Xagawa, A. Ito, J. Takahashi, and N. Homma 495

KR-2NV-PCA for LightSaber: We now make the above KR-PCA into a KR-2NV-PCA,
where the decrypted plaintext only varies in the first N coefficients.

Suppose that we want to determineN sequential coefficients of si from its a-th coefficient
for a ∈ {0, . . . , 256−N}: si,a+j for j = 0, . . . , N − 1. In this case, we query a ciphertext

(c1, c2) =
(

(−U · x256−a)ei,
N−1∑
`=0

2x`
)
,

where U ∈ [−196/5,+196/5]. For j = N, . . . , 256, we have Mj = ±Usi,a+jmod+256 + 196,
where the sign ± depends on a and j. For all cases, we have Mj < 512 and mj = 0.

For j = 0, . . . , N − 1, we have Mj = Usi,a+j − 128 · 2 + 196 mod+ 1024. Thus, for
c ∈ {2, 3, 4, 5}, we have m′j = 0 if and only if ((60/c)si,a+j + 964) mod+ 1024 < 512, that
is, si,a+j ≥ c. By a similar computation, for c ∈ {−5,−4,−3,−2}, we have m′j = 0 if
and only if ((60/c)si,a+j + 964) mod+ 1024 < 512, that is, si,a+j ≤ c. Unfortunately, we
cannot make adaptive queries here. Thus, we use eight queries to determine whether si,a+j
is in I or {−1, 0, 1} in parallel.

Then, to determine si,j ∈ {−1, 0,+1}, we prepare the following queries: we define
V :=

∑255
j=0 vjx

j . Notice that the parameter setting induces −196 < 60si,j − 128vj < 196
for si,j ∈ I. We then make a query with two ciphertexts:

(−60 · x256−a · ei,−V · x256−a +
∑

`=0,...,N−1:si,a+`∈{−1,0,+1}

2x`),

(60 · x256−a · ei, V · x256−a +
∑

`=0,...,N−1:si,a+`∈{−1,0,+1}

2x`),

to determine si,a+j ∈ {−1, 0,+1} for j = 0, . . . , N − 1 in parallel. For the first query, we
have

Mj =

60si,a+j − 256 + 196 mod+ 1024 if j = 0, . . . , N − 1 and si,a+j ∈ {−1, 0,+1}
60si,a+j − 128vj + 196 mod+ 1024 if j = 0, . . . , N − 1 and si,a+j ∈ I
60si,a+j − 128vj + 196 mod+ 1024 if j = N, . . . , 255− a
−(60si,a+jmod+256 − 128vj)

+196 mod+ 1024 if j = 255− a, . . . , 255.

Thus, for j = 0, . . . , N − 1 and si,a+j ∈ {−1, 0,+1}, if si,a+j = 1, then we have Mj = 0
and m′j = 0; otherwise, we have Mj = 964 or 904 and m′j = 1. For all other cases, we have
0 < Mj < 392 and m′j = 0.

For the second query, by similar computation, we have m′j = 1 if and only if j =
0, . . . , N − 1 and si,a+j = 0, 1. In summary, we can determine si,a+j ∈ {−1, 0,+1} for
j = 0, . . . , N − 1 using these two queries.

Thus, the number of oracle accesses is bounded above by 8 · d256/Ne ·2 + 2 · d256/Ne ·2,
that is, 20 d256/Ne.

A.2 FrodoKEM
In FrodoKEM, a lattice-based KEMs, the ciphertext is denoted by (C1, C2) ∈ Zm̄×nq ×Zm̄×n̄q

and the secret key is denoted by S ∈ {−s,−s+ 1, . . . , s}n×n̄. During decapsulation, the
ciphertext and secret key are used to compute M = C2 − C1S ∈ Zm̄×n̄ to obtain the
plaintext bM · 2B/qe mod 2B ∈ Zm̄×n̄2B .

When determining Si,j , the attacker fixes C1, determined from i, j, makes Si,j appear
in the calculation of M and queries log2(2s+ 1) streets of ciphertexts appropriately while

496 Multiple-Valued Plaintext-Checking Side-Channel Attacks on Post-Quantum KEMs

changing C2. In this way, Si,j ∈ [−s,+s] can be determined. At the same time, up to
m̄× n̄ Si,j can be determined in parallel. When the 2N class PC oracle is accessible, the
number of queries can be reduced to 1/N .

A.3 NTRU
Ding et al. [DDS+19] presented a KR-PCA against NTRU-HPS of NTRU and Zhang et
al. [ZCD21] presented the same attack against NTRU-HRSS of NTRU. In their attacks,
they sought a part of a secret key g ∈ {−1, 0,+1}n. They first searched the longest chain
of +1 or −1 in g by querying malformed ciphertexts to the PC oracle with a guess of 0n.
They then determined the remaining coefficients of g by querying crafted ciphertexts to
the PC oracle with a guess of 0n. In these procedures, decisions were made by checking
whether the decrypted plaintext was (rguess, 0) (for details, see [UXT+21, Section 4.1.4]).

Ravi et al. [REB+21] presented an SCA-assisted KR-PCA against NTRU (and Stream-
lined NTRU Prime of NTRU Prime) by extending the chosen-ciphertext attack against the
old-school NTRU [JJ00]. In their attack, they tested whether a decrypted plaintext was
(rguess,mguess) and determined a part of the secret key.

We currently do not know how to reduce the number of queries for these attacks using
the MV-PC oracle. We leave exploiting the MV-PC oracle as an interesting open problem
for future work.

A.4 Streamlined NTRU Prime in NTRU Prime
Ravi et al. [REB+21] also presented an SCA-assisted KR-PCA against Streamlined NTRU
Prime of NTRU Prime, as already referred. In their attack, they implemented the PC oracle
using an SCA, and checked whether a decrypted plaintext was their guess (rguess,mguess),
and determined a part of the secret key.

Again, we currently do not know how to reduce the number of queries for this attack
using the MV-PC oracle. We leave exploiting the MV-PC oracle as an interesting open
problem for future work.

A.5 NTRU LPRime in NTRU Prime
NTRU LPRime is similar to Kyber and Saber, and we can easily mount a KR-2NV-PCA
against it.

Let R = Z[x]/(xp − x − 1) and Rq = Z[x]/(xp − x − 1, q). Let Sd = {f ∈ R : fi ∈
{−d,−d+ 1, . . . , d− 1, d} for i = 0, . . . , p− 1}. A secret key is denoted by s ∈ S1.

We now briefly review the KR-PCA in [XIU+21] with a small adaption. First, Xa-
gawa et al. determined the first N coefficients of s with two non-adaptive queries by
checking whether the decrypted plaintext was of the form (m, 1, . . . , 1), where m ∈ {0, 1}N .
For the remaining p − N coefficients, they sequentially determined N coefficients of s
with three adaptive queries by checking whether the decrypted plaintext was of the form
(m, 1, . . . , 1), where m ∈ {0, 1}N . They determined that sj + sj+1 ∈ {−2,−1, 0,+1,+2}
and computed sj ∈ {−1, 0,+1}. Thus, the maximum number of queries input to the
MV-PC oracle was 2 + 3 · d(p−N)/Ne.

A.6 Code-based KEMs (Classic McEliece, BIKE, HQC)
The MV-PC oracle does not improve the number of oracle accesses for key recovery. We
consider three code-based KEMs: Classic McEliece, BIKE, and HQC.

• Classic McEliece: There is no known KR-PCA against Classic McEliece.

Y. Tanaka, R. Ueno, K. Xagawa, A. Ito, J. Takahashi, and N. Homma 497

• BIKE: The existing KR-PCA (Guo et al. [GHJ+22]) is on the basis of the GJS
attack [GJS16], in which the attacker sends many ciphertexts of invalid plaintexts
with special patterns and estimates the decryption failure rates for each pattern.
Thus, the MV-PC oracle is not useful for mounting such an attack against BIKE.

• HQC: There are two existing KR-PCAs for HQC in Round 3: Guo et al. [GHJ+22]
and Schamberger et al. [SHR+22]7. For a secret key s ∈ Fn2 and a ciphertext
(c1, c2) ∈ Fn2 × Fn1n2

2 , the decryption of HQC computes a plaintext as follows.

1. Compute M = c2 ⊕ [c1 ⊗ s]i=0,...,n1n2−1 ∈ Fn1n2
2 ;

2. Decode each Mi ∈ Fn2
2 into m̃i ∈ F8

2 ' F28 using the decoder decodedRM of the
duplicated Reed-Muller code with the parameter [n2, 8]2;

3. Decode m̃ ∈ Fn1
28 into m ∈ Fk28 ' F8k

2 using the decoder decodeRS of the
Reed-Solomon code with the parameters [n1, k1]28 .

Intuitively speaking, KR-PCAs use a close-to-0 oracle, which checks whether the
input is decoded into 0 by decodedRM. Since we only have access to the plaintext
decoded by both decoders, we need to take account of decodeRS. To determine si, we
can design a query ciphertext (c1, c2) such that Mi is decoded into 08 by decodedRM
if and only if m = 08k, using the properties of the Reed-Solomon code.
To use the MV-PC oracle, we need to consider the behavior of the decrypted plaintext
after it is decoded by the inner decoder decodeRS; we are currently unable to design
such ciphertexts. We leave designing a KR-MV-PCA against HQC as an interesting
open problem for future work.

A.7 Isogeny-based KEM (SIKE)
In 2022, SIKE is shown as insecure, that is, we can compute the secret key from its
public key in polynomial time [CD23,MM22,Rob23]. While it is broken, we report our
KR-MV-PCA against SIKE to show our extension is applicable to post-quantum KEMs
other than lattice-based one.

We extend the KR-PCA in SIKE [GPST16,UXT+21] to KR-MV-PCA. We use a µ = 3N -
valued PC oracle for the key recovery of SIKE. In SIKE, given P̃A and Q̃A (i.e., the points in
the SIKE ciphertext), the decapsulation first calculates Bob’s point RAB = P̃A+[sk3]Q̃A on
Alice’s elliptic curve EA with the order of 3eB , where sk3 ∈ {1, 2, . . . , 3eB−1} is the secret key,
and the j-variant of RAB is used for recovering the plaintext. In KR-3NV-PCA, the attacker
exploits the fact that the order of RAB is 3eB and the KR-PCA in [GPST16,UXT+21],
and recovers the secret key iteratively from the least significant ternary digit to the upper
digits in an N -digit-wise manner. Let sk3 = 30β0 + 31β1 + · · ·+ 3wβw + · · ·+ 3eB−1βeB−1
(βw ∈ {0, 1, 2}) be the ternary expanded secret key. We consider a case in which the
attacker has already recovered up to the (lN − 1)-th ternary digit (i.e., β0, β1, . . . , βNl−1),
and attempts to recover the Nl-th ternary digits (i.e., βNl, βNl+1, . . . , βN(l+1)−1), where l
is a natural number. Note that l = 0 indicates that the attacker has not yet recovered
any digits and starts recovering β0, . . . , βN−1. Let Kl = 30β0 + 31β1 + · · ·+ 3Nl−1βNl−1
(K0 = 0) be the recovered part of the secret key, up to the (Nl − 1)-th digit. Given P̃A
and Q̃A, the attacker computes two points on Alice’s curve as

P̃
(i)
A = P̃A − [3eB−N(l+1)Kl]Q̃A,

Q̃
(i)
A = Q̃A + [3eB−N(l+1)]Q̃A,

7Schamberger et al. [SHR+22] highlighted that the KR-PCA in [XIU+21] (and [UXT+21]) is incorrect
because of the mistreatment of the decoder in the decryption.

498 Multiple-Valued Plaintext-Checking Side-Channel Attacks on Post-Quantum KEMs

Algorithm 3 Key-recovery for 3N -valued plaintext-checking attack on SIKE
Input: Reference ciphertext (c0, c1) and candidate plaintexts m(0,0,...,0),m(1,0,...,0), . . . ,m(2,2,...,2)

Output: Secret key sk3
1: Function AttackOnSIKE((c0, c1),m(0,0,...,0),m(1,0,...,0), . . . ,m(2,2,...,2))
2: K0 ← 0;
3: for l = 0 to d(eB − 1)/Ne do
4: P̃

(l)
A ← P̃A − [3eB−N(l+1)Ki]Q̃A;

5: Q̃
(l)
A ← Q̃A + [3eB−N(l+1)]Q̃A;

6: (c(l)
0 , c1)← ((EA, P̃

(l)
A , Q̃

(l)
A), c1);

7: Kl+1 ← Kl + 3Nl ×O3N (c(l)
0 , c1;m(0,0,...,0),m(1,0,...,0), . . . ,m(2,2,...,2));

8: return Kd(eB−1)/Ne+1;

generates an invalid ciphertext (c(l)0 , c1) with P̃ (l)
A and Q̃(l)

A , and queries it. In this query,
the SIKE decapsulation calculates the generator of the cyclic group as

R
(l)
AB = (P̃A − [3eB−N(l+1)Kl]Q̃A) + [sk3](Q̃A + [3eB−N(l+1)]Q̃A)

= RAB + [3eB−N(l+1)(sk3 −Kl)]Q̃A,

instead of RAB for the reference ciphertext (c0, c1), and subsequently computes the j-variant
of EA/〈R(i)

AB〉. Here, we have

[3eB−N(l+1)(sk3 −Kl)]Q̃A = [3eB−N(l+1)
eB−1∑
l=i

3Nl
N−1∑
v=0

3vβNl+v]Q̃A,

= [3eB−N
N−1∑
v=0

3vβNl+v]Q̃A,

because the order of Q̃A is 3eB . Therefore, R(l)
AB takes any of the 3N values depending

on βNl, βNl+1, . . . , βN(l+1)−1, which determines the value of plaintext m′. Thus, the
attacker can recover the secret key digits βNl, βNl+1, . . . , βN(l+1)−1 if the attacker knows
the plaintext corresponding to c′. Let m(b0,b1,...,bN−1) be a plaintext corresponding to

R
(b0,b1,...,bN−1)
AB = RAB + [3eB−N (30b0 + 31b1 + · · ·+ 3N−1bN−1)]Q̃A,

where RAB and Q̃A are for the reference ciphertext. As the attacker can compute all values
of [3eB−N

∑
v 3vbv]Q̃A for all bv ∈ {0, 1, 2} in advance without the secret key, a 3N -valued

PC oracle defined as

O3N (c′0, c1;m(0,0,...,0),m(1,0,...,0), . . . ,m(2,2,...,2)) = 30b0 + 31b1 + · · ·+ 3N−1bN−1

s.t. SIKE.Decsk3(c′0, c1) = m(b0,b1,...,bN−1),

is sufficient for key recovery. Algorithm 3 illustrates the KR-3NV-PCA on SIKE, which
exploits the 3N -valued PC oracle at Line 7. The number of iterations is deB − 1/Ne, which
is less than that in the KR-PCA in [UXT+21] by a factor of 1/2N . Note that we only
require one PC oracle access to recover a digit if N = 1, whereas the conventional binary
PC oracle for a reference plaintext in [UXT+21] requires at least two accesses; hence, the
proposed attack yields a higher efficiency. To implement the MV-PC oracle, we can employ
the hash function and PRF in SIKE.Decaps as a leakage source, as described in [UXT+21].

Y. Tanaka, R. Ueno, K. Xagawa, A. Ito, J. Takahashi, and N. Homma 499

Table 15: Number of attack traces required for successful key recovery using majority-
voting-based distinguisher

(a) τ = 0.999999 (= 1 − 0.16)
KEM type Scheme Instance # Traces for attack phase

N = 1 2 3 4 5 6 7 8
Lattice Kyber Kyber-512 13,824 5,376 4,644 3,456 2,808 2,322 1,998 1,728

Kyber-1024 27,648 10,752 9,288 6,912 5,616 4,644 3,996 3,456
Saber LightSaber-KEM 27,648 23,040 15,480 11,520 9,360 7,740 6,660 5,760

FireSaber-KEM 27,648 10,752 9,288 6,912 5,616 4,644 3,996 3,456
FrodoKEM FrodoKEM-640 230,400 115,200 76,815 57,600 46,080 46,970 54,900 67200

FrodoKEM-1344 387,072 193536 129,024 96,768 77,436 78,848 92,160 11,2896
NTRU Prime ntrulpr653 17,622 6,860 5,877 4,419 3,528 2,934 2,529 2,205

ntrulpr1277 34,470 17,244 11,493 8,631 6,903 5,742 4,932 4,311
Isogeny SIKE SIKEp434 2,610 1,305 679 511 406 N/A

SIKEp751 2,871 1,440 963 560 448 N/A

(b) τ = 0.9999999 (= 1 − 0.17)
KEM type Scheme Instance # Traces for attack phase

N = 1 2 3 4 5 6 7 8
Lattice Kyber Kyber-512 13,824 6,912 4,644 3,456 2,808 2,322 1,998 1,728

Kyber-1024 27,648 13,824 9,288 6,912 5,616 4,644 3,996 3,456
Saber LightSaber-KEM 27,648 23,040 15,480 11,520 9,360 7,740 6,660 5,760

FireSaber-KEM 27,648 13,824 9,288 6,912 5,616 4,644 3,996 3,456
FrodoKEM FrodoKEM-640 230,400 115,200 76,815 57,600 46,080 46,970 62,220 67,200

FrodoKEM-1344 473,088 193,536 157,696 118,272 77,436 78,848 104,448 123,648
NTRU Prime ntrulpr653 17,622 8,820 5,877 4,419 3,528 2,934 2,529 2,205

ntrulpr1277 42,130 17,244 11,493 8,631 6,903 5,742 4,932 4311
Isogeny SIKE SIKEp434 2,610 1,305 873 657 522 N/A

SIKEp751 2,871 1,440 963 720 576 N/A

(c) τ = 0.99999999 (= 1 − 0.18)
KEM type Scheme Instance # Traces for attack phase

N = 1 2 3 4 5 6 7 8
Lattice Kyber Kyber-512 16,896 6,912 4,644 4,224 3,432 2,838 2,442 1,728

Kyber-1024 33,792 13,824 11,352 8,448 6,864 5,676 4,884 4,224
Saber LightSaber-KEM 33,792 23,040 18,920 14,080 11,440 9,460 8,140 7,040

FireSaber-KEM 33,792 13,824 11,352 8,448 6,864 5,676 4,884 4,224
FrodoKEM FrodoKEM-640 281,600 140,800 93,885 70,400 56,320 55,510 69,540 73,600

FrodoKEM-1344 473,088 236,544 157,696 118,272 94,644 93,184 116,736 134,400
NTRU Prime ntrulpr653 21,538 8,820 7,183 5,401 4,312 3,586 3,091 2,695

ntrulpr1277 42,130 17,244 14,047 10,549 8,437 7,018 6,028 5,269
Isogeny SIKE SIKEp434 2,610 1,305 873 657 522 N/A

SIKEp751 2,871 1,440 963 720 576 N/A

(d) τ = 0.999999999 (= 1 − 0.19)
KEM type Scheme Instance # Traces for attack phase

N = 1 2 3 4 5 6 7 8
Lattice Kyber Kyber-512 16,896 6,912 5,676 4,224 3,432 2,838 2,442 2,112

Kyber-1024 33,792 13,824 11,352 8,448 6,864 5,676 4,884 4,224
Saber LightSaber-KEM 33,792 28,160 18,920 14,080 11,440 9,460 8,140 7,040

FireSaber-KEM 33,792 13,824 11,352 8,448 6,864 5,676 4,884 4,224
FrodoKEM FrodoKEM-640 281,600 140,800 93,885 70,400 56,320 55,510 69,540 80,000

FrodoKEM-1344 473,088 236,544 157,696 118,272 94,644 93,184 116,736 145,152
NTRU Prime ntrulpr653 21,538 8,820 7,183 5,401 4,312 3,586 3,091 2,695

ntrulpr1277 42,130 17,244 14,047 10,549 8,437 7,018 6,028 5,269
Isogeny SIKE SIKEp434 3,190 1,595 1,067 803 639 N/A

SIKEp751 3,509 1,760 1,177 880 704 N/A

(e) τ = 0.9999999999 (= 1 − 0.110)
KEM type Scheme Instance # Traces for attack phase

N = 1 2 3 4 5 6 7 8
Lattice Kyber Kyber-512 19,968 8,448 5,676 4,224 3,432 2,838 2,442 2,112

Kyber-1024 39,936 16,896 11,352 8,448 6,864 5,676 4,884 4,224
Saber LightSaber-KEM 39,936 28,160 18,920 16,640 13,520 9,460 8,140 7,040

FireSaber-KEM 39,936 16,896 11,352 8,448 6,864 5,676 4,884 4,224
FrodoKEM FrodoKEM-640 332,800 140,800 110,955 83,200 56,320 64,050 76,860 86,400

FrodoKEM-1344 559,104 236,544 186,368 139,776 111,852 107,520 129,024 155,904
NTRU Prime ntrulpr653 25,454 10,780 7,183 5,401 4,312 3,586 3,091 2,695

ntrulpr1277 49,790 21,076 14,047 10,549 8,437 7,018 6,028 5,269
Isogeny SIKE SIKEp434 3,190 1,595 1,067 803 639 N/A

SIKEp751 3,509 1,760 1,177 880 704 N/A

500 Multiple-Valued Plaintext-Checking Side-Channel Attacks on Post-Quantum KEMs

B Detailed evaluation results of majority-voting-based dis-
tinguisher

Table 15 shows the number of attack traces required for key recovery using majority-voting-
based distinguisher; the smallest number in each column is highlighted in bold.

References
[ABH+22] Melissa Azouaoui, Olivier Bronchain, Clément Hoffmann, Yulia Kuzovkova,

Tobias Schneider, and François-Xavier Standeart. Systematic study of decryp-
tion and re-encryption leakage: The case of Kyber. In COSADE 2022, pages
236–256, 2022.

[BDH+21] Shivam Bhasin, Jan-Pieter D’Anvers, Daniel Heinz, Thomas Pöppelmann,
and Michiel Van Beirendonck. Attacking and defending masked polynomial
comparison for lattice-based cryptography. IACR Trans. Cryptogr. Hardw.
Embedded Syst., 2021(3):334–359, 2021.

[BHH+19] Nina Bindel, Mike Hamburg, Kathrin Hövelmanns, Andreas Hülsing, and
Edoardo Persichetti. Tighter proofs of CCA security in the quantum random
oracle model. In TCC 2019, Part II, pages 61–90, 2019.

[BPO+20] Florian Bache, Clara Paglialong, Tobias Oder, Tobias Schneider, and Tim
Güneysu. High-speed masking for polynomial comparison in lattice-based
KEMs. IACR Trans. Cryptogr. Hardw. Embedded Syst., 2020(3):483–507,
2020.

[BPS+20] Ryad Benadjila, Emmanuel Prouff, Rémi Strullu, Eleonora Cagli, and Cécile
Dumas. Deep learning for side-channel analysis and introduction to ASCAD
database. Journal of Cryptographic Engineering, 10(2):163–188, 2020. See
also https://eprint.iacr.org/2018/053.

[BS21] Olivier Bronchain and François-Xavier Standeart. Breaking masked imple-
mentations with many shares on 32-bit software platforms: or when the
security order does not matter. IACR Trans. Cryptogr. Hardw. Embedded
Syst., 2021(3):202–234, 2021.

[CD23] Wouter Castryck and Thomas Decru. An efficient key recovery attack on
SIDH. In EUROCRYPT, 2023. https://eprint.iacr.org/2022/975.

[CT06] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory (Wiley
Series in Telecommunications and Signal Processing). Wiley-Interscience, USA,
2006.

[dCGRP19] Eloi de Chérisey, Sylvain Guilly, Olivier Rioul, and Pablo Piantanida. Best
information is most successful: Mutual information and success rate in side-
channel analysis. IACR Trans. Cryptogr. Hardw. Embedded Syst., 2019(2):49–
79, 2019.

[DDS+19] Jintai Ding, Joshua Deaton, Kurt Schmidt, Vishakha, and Zheng Zhang. A
simple and efficient key reuse attack on NTRU cryptosystem. IACR ePrint
archive: Report 2019/1022, 2019. https://eprint.iacr.org/2019/1022.

[FMP23] Tako Boris Fouotsa, Tomoki Moriya, and Christophe Petit. M-SIDH and MD-
SIDH: countering SIDH attacks by masking information. In EUROCRYPT,
2023. https://eprint.iacr.org/2023/013.

https://eprint.iacr.org/2018/053
https://eprint.iacr.org/2022/975
https://eprint.iacr.org/2019/1022
https://eprint.iacr.org/2023/013

Y. Tanaka, R. Ueno, K. Xagawa, A. Ito, J. Takahashi, and N. Homma 501

[FO99] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric
and symmetric encryption schemes. In CRYPTO 1999, pages 537–554, 1999.

[GHJ+22] Qian Guo, Clemens Hlauschek, Thomas Johansson, Norman Lahr, Alexander
Nilsson, and Robin Leander Schröder. Don’t reject this: Key-recovery timing
attacks due to rejection-sampling in HQC and BIKE. IACR Trans. Cryptogr.
Hardw. Embedded Syst., 2022(3):223–263, 2022.

[git21] Fast, constant-time and masked AES assembly implementations for ARM
Cortex-M3 and M4. https://github.com/Ko-/aes-armcortexm, May 2021.

[GJS16] Qian Guo, Thomas Johansson, and Paul Stankovski. A key recovery attack
on MDPC with CCA security using decoding errors. In ASIACRYPT 2016,
Part I, pages 789–815, 2016.

[GPST16] Steven D. Galbraith, Christophe Petit, Barak Shani, and Bo Yan Ti. On the
security of supersingular isogeny cryptosystems. In ASIACRYPT 2016, Part
I, pages 63–91, 2016.

[GTN20] Qian Guo, Johansson Thomas, and Alexander Nilsson. A key-recovery timing
attack on post-quantum primitives using the Fujisaki–Okamoto transformation
and its application on FrodoKEM. In CRYPTO 2020, Part II, pages 359–386,
2020.

[HHK17] Denis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. A modular analysis of
the Fujisaki–Okamoto transformation. In TCC 2017, Part I, pages 341–371,
2017.

[HRG14] Annelie Heuser, Olivier Rioul, and Sylvain Guilley. Good is not good enough:
Deriving optimal distinguishers from communication theory. In CHES 2014,
pages 55–74, 2014.

[HV20] Loïs Huguenin-Dumittan and Serge Vaudenay. Classical misuse attacks on
NIST round 2 PQC – the power of rank-based schemes. In ACNS 2020, Part
I, pages 208–227, 2020.

[ISUH21] Akira Ito, Kotaro Saito, Rei Ueno, and Naofumi Homma. Imbalanced data
problems in deep learning-based side-channel attacks: Analysis and solution.
IEEE Trans. Inf. Forensics Security, 16:3790–3802, 2021.

[IUH22] Akira Ito, Rei Ueno, and Naofumi Homma. On the success rate of side-channel
attacks on masked implementations: Information-theoretical bounds and their
practical usage. In ACM CCS 2022, pages 1521–1535, 2022.

[JJ00] Éliane Jaulmes and Antoine Joux. A chosen-ciphertext attack against NTRU.
In CRYPTO 2000, pages 20–35, 2000.

[KPH+19] Jaehun Kim, Stjepan Picek, Annelie Heuser, Shivam Bhasin, and Alan Han-
jalic. Make some noise. unleashing the power of convolutional neural networks
for profiled side-channel analysis. IACR Trans. Cryptogr. Hardw. Embedded
Syst., 2019(3):148–179, 2019.

[KRSS19] Matthias J. Kannwischer, Joost Rijneveld, Peter Schwabe, and Ko Stoffelen.
pqm4: Testing and benchmarking NIST PQC on ARM Cortex-M4. IACR
ePrint archive: Report 2019/844, 2019. https://eprint.iacr.org/2019/
844.

https://github.com/Ko-/aes-armcortexm
https://eprint.iacr.org/2019/844
https://eprint.iacr.org/2019/844

502 Multiple-Valued Plaintext-Checking Side-Channel Attacks on Post-Quantum KEMs

[MM22] Luciano Maino and Chloe Martindale. An attack on SIDH with arbitrary
starting curve. Cryptology ePrint Archive, Paper 2022/1026, 2022. https:
//eprint.iacr.org/2022/1026.

[MMP+23] Luciano Maino, Chloe Martindale, Lorenz Panny, Giacomo Pope, and Ben-
jamin Wesolowski. A direct key recovery attack on SIDH. In EUROCRYPT,
2023. https://hal.science/hal-04023441.

[NDGJ21] Kalle Ngo, Elena Dubrova, Qian Guo, and Thomas Johanson. A side-channel
attack on a masked IND-CCA secure Saber KEM. IACR Trans. Cryptogr.
Hardw. Embedded Syst., 2021(4):676–707, 2021.

[NP33] Jerzy Neyman and Egon Sharpe Peason. IX. On the problem of the most
efficient tests of statistical hypotheses. Philosophical Transactions of the Royal
Society A, 231:694–706, 1933.

[OSPG18] Tobias Oder, Tobias Schneider, Thomas Pöppelmann, and Tim Güneysu.
Practical CCA2–secure and masked ring-LWE implementation. IACR Trans.
Cryptogr. Hardw. Embedded Syst., 2018(1):142–174, 2018.

[OUKT21] Yuki Osumi, Shusaku Uemura, Momonari Kudo, and Tsuyoshi Takagi. Key
mismatch attack on SABER. In SCIS 2021, January 2021. In Japanese.

[PCP20] Guilherme Perin, Łukasz Chmielewski, and Stjepan Picek. Strength in num-
bers: Improving generalization with ensembles in machine learning-based
profiled side-channel analysis. IACR Trans. Cryptogr. Hardw. Embedded Syst.,
2020(4):337–364, 2020.

[PHJ+18] Stjepan Picek, Annelie Heuser, Alan Jovic, Shivam Bhasin, and Francesco
Regazzoni. The curse of class imbalance and conflicting metrics with machine
learning for side-channel evaluations. IACR Trans. Cryptogr. Hardw. Embedded
Syst., 2019(1):209–237, 2018.

[pqm21] Post-quantum crypto library for the ARM Cortex-M4. https://github.com/
mupq/pqm4, April 2021.

[QCZ+21] Yue Qin, Chi Cheng, Xiaohan Zhang, Yanbin Pan, and Jintai Ding. A
systematic approach and analysis of key mismatch attacks on lattice-based
NIST candidate KEMs. In ASIACRYPT 2021, Part IV, pages 92–121, 2021.

[RBRC20] Prasanna Ravi, Shivam Bhasin, Sujoy Sinha Roy, and Anupam Chattopadyay.
On exploiting message leakage in (few) NIST PQC candidates for practical
message recovery and key recovery attacks. IACR ePrint archive: Report
2020/1559, 2020. https://eprint.iacr.org/2020/1559.

[RBRC22] Prasanna Ravi, Shivam Bhasin, Sujoy Sinha Roy, and Anupam Chattopadhyay.
On exploiting message leakage in (few) NIST PQC candidates for practical
message recovery attacks. IEEE Transactions on Information Forensics and
Security, 17:684–699, 2022.

[REB+21] Prasanna Ravi, Martianus Frederic Ezerman, Shivam Bhasin, Anupam Chat-
topadhyay, and Sujoy Sinha Roy. Will you cross the threshold for me? generic
side-channel assisted chosen-ciphertext attacks on NTRU-based KEMs. IACR
Trans. Cryptogr. Hardw. Embedded Syst., 2022(1):722–761, 2021.

[Rob23] Damien Robert. Breaking SIDH in polynomial time. In EUROCRYPT, 2023.
https://eprint.iacr.org/2022/1038.

https://eprint.iacr.org/2022/1026
https://eprint.iacr.org/2022/1026
https://hal.science/hal-04023441
https://github.com/mupq/pqm4
https://github.com/mupq/pqm4
https://eprint.iacr.org/2020/1559
https://eprint.iacr.org/2022/1038

Y. Tanaka, R. Ueno, K. Xagawa, A. Ito, J. Takahashi, and N. Homma 503

[RRCB20] Prasanna Ravi, Sujoy Sinha Roy, Anupam Chattopadhyay, and Shivam Bhasin.
Generic side-channel attacks on CCA-secure lattice-based PKE and KEMs.
IACR Trans. Cryptogr. Hardw. Embedded Syst., 2020(3):307–335, 2020.

[RRD+22] Gokulnath Rajendran, Prasanna Ravi, Jan-Pieter D’Anvers, Shivam Bhasin,
and Anupam Chattopadhyay. Pushing the limits of generic side-channel
attacks on LWE-based KEMs - parallel PC oracle attacks on Kyber KEM
and beyond. Cryptology ePrint Archive, Paper 2022/931, 2022. https:
//eprint.iacr.org/2022/931.

[SCZ+23] Muyan Shen, Chi Cheng, Xiaohan Zhang, Qian Guo, and Tao Jiang. Find the
bad apples: An efficient method for perfect key recovery under imperfect SCA
oracles — A case study of Kyber. IACR Trans. Cryptogr. Hardw. Embedded
Syst., 2023(1):89–112, 2023.

[SHR+22] Thomas Schamberger, Lukas Holzbaur, Julian Renner, Antonia Wachter-Zeh,
and Georg Sigl. A power side-channel attack on the Reed-Muller Reed-Solomon
version of the HQC cryptosystem. In PQCrypto 2022, pages 327–352, 2022.

[SKL+20] Bo-Yeon Sim, Jihoon Kwon, Joohoo Lee, Il-Ju Kim, Tae-Ho Lee, Hyojin Yoon,
Jihoon Cho, and Dong-Gak Han. Single-trace attacks on message encoding in
lattice-based KEMs. IEEE Access, 8:183175–183191, 2020.

[SXY18] Tsunekazu Saito, Keita Xagawa, and Takashi Yamakawa. Tightly-secure
key-encapsulation mechanism in the quantum random oracle model. In
EUROCRYPT 2018, Part III, pages 520–551, 2018.

[UXT+21] Rei Ueno, Keita Xagawa, Yutaro Tanaka, Akira Ito, Junko Takahashi, and
Naofumi Homma. Curse of re-encryption: A generic power/EM analysis
on post-quantum KEMs. IACR Trans. Cryptogr. Hardw. Embedded Syst.,
2022(1):296–332, 2021.

[WAGP20] Lennert Wouters, Victors Arribas, Benedikt Gierlichs, and Bart Praneel.
Revisiting a methodology for efficient CNN architectures in profiling attacks.
IACR Trans. Cryptogr. Hardw. Embedded Syst., 2020(3):147–168, 2020.

[XIU+21] Keita Xagawa, Akira Ito, Rei Ueno, Junko Takahashi, and Naofumi Homma.
Fault-injection attacks against NIST’s post-quantum cryptography round 3
KEM candidates. In ASIACRYPT 2021, Part II, pages 33–61, 2021.

[XPR+22] Zhuang Xu, Owen Pemberton, Sujoy Sinha Roy, David Oswald, Wang Yao,
and Zhiming Zheng. Magnifying side-channel leakage of lattice-based cryp-
tosystems with chosen ciphertexts: The case study of Kyber. IEEE Trans.
on Computers, 71(9):2163–2176, 2022.

[ZBHV20] Gabriel Zaid, Lilian Bossuet, Amaury Habrard, and Alexandre Venelli.
Methodology for efficient CNN architectures in profiling attacks. IACR
Trans. Cryptogr. Hardw. Embedded Syst., 2020(1):1–36, 2020.

[ZCD21] Xiaohan Zhang, Chi Cheng, and Ruoyu Ding. Small leaks sink a great ship:
An evaluation of key reuse resilience of PQC third round finalist NTRU-HRSS.
In ICICS 2021, pages 283–300, 2021.

https://eprint.iacr.org/2022/931
https://eprint.iacr.org/2022/931

	Introduction
	Background
	Our contribution
	Paper organization

	Related Works
	IND–CCA secure KEM based on the FO transform
	Existing side-channel attacks on FO-like transforms
	PC oracle implementation using neural side-channel distinguisher

	Proposed Attack
	Multiple-valued plaintext-checking oracle
	General attack description
	KR-MV-PCA algorithms for Kyber
	Complexity analysis

	Neural Side-Channel Distinguisher for MV-PC Oracle
	Basic concept
	Information-theoretic aspects of side-channel distinguisher

	Experimental Validation
	Experimental setup
	Evaluation result of neural distinguisher
	Evaluation of number of traces for successful key recovery
	Comparison to a state-of-the-art attack on Kyber in epri:GPJ22

	Conclusion
	Description of MV-PCA on other KEMs
	Saber
	FrodoKEM
	NTRU
	Streamlined NTRU Prime in NTRU Prime
	NTRU LPRime in NTRU Prime
	Code-based KEMs (Classic McEliece, BIKE, HQC)
	Isogeny-based KEM (SIKE)

	Detailed evaluation results of majority-voting-based distinguisher

