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Abstract. With the breakthrough of Deep Neural Networks, many fields benefited
from its enormously increasing performance. Although there is an increasing trend
to utilize Deep Learning (DL) for Side-Channel Analysis (SCA) attacks, previous
works made specific assumptions for the attack to work. Especially the concept
of template attacks is widely adapted while not much attention was paid to other
attack strategies. In this work, we present a new methodology, that is able to exploit
side-channel collisions in a black-box setting. In particular, our attack is performed
in a non-profiled setting and requires neither a hypothetical power model (or let’s
say a many-to-one function) nor details about the underlying implementation. While
the existing non-profiled DL attacks utilize training metrics to distinguish the correct
key, our attack is more efficient by training a model that can be applied to recover
multiple key portions, e.g., bytes. In order to perform our attack on raw traces
instead of pre-selected samples, we further introduce a DL-based technique that
can localize input-dependent leakages in masked implementations, e.g., the leakages
associated to one byte of the cipher state in case of AES. We validated our approach
by targeting several publicly available power consumption datasets measured from
implementations protected by different masking schemes. As a concrete example, we
demonstrate how to successfully recover the key bytes of the ASCAD dataset with
only a single trained model in a non-profiled setting.
Keywords: Deep-Learning · Side-Channel Analysis · Side-Channel Collision Attack
· Non-Profiled Attack · Masking

1 Introduction
Since 1999, it has been known that the security of a device can be compromised by analyzing
its power consumption during sensitive calculations [Koc96]. Compared to cryptanalytical
attacks, the so-called Side-Channel Analysis (SCA) attacks are also able to reveal the secret
of devices that implement mathematically secure cryptographic primitives, e.g., block
ciphers. However, the success of an SCA attack mainly depends on the implementation
details, especially with respect to the employed countermeasures. These countermeasures
are continuously being improved, leading to new kinds of attacks as well.

There are two main SCA attack categories, covering different attacker models. Profiled
attacks assume an adversary, who not only has access to the actual target device, but also
to a similar device under his control. This allows him to model the physical behavior of the
device for all possible secret intermediates during a so-called profiling phase. Subsequently,
he can compare these models with the measurements collected from the target device (i.e.,
the attack phase). Typical examples for such an attack are Template Attacks [CRR02] and
Machine Learning (ML)-based attacks [HGM+11]. Non-profiled attacks, on the other hand,
deal only with the target device itself and usually require additional information or assump-
tions, e.g., a hypothetical power model or details of the actual implementation. Common
attacks are Correlation Power Analysis (CPA) [BCO04] and collision SCA attacks [SWP03].
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During the past years, Deep Learning (DL) has found its way to the SCA community,
where it proves to be very powerful. DL allows to automatically detect complex depen-
dencies of SCA measurements to sensitive values and takes over the task of extracting
important features, e.g., points of interest [MOP07]. Due to the full connection of multiple
layers in the network architecture, the combination of arbitrary points is considered, hence,
the network is able to find dependencies that are spread over different points in time.
During the learning process, the model outputs are compared with the given labels and the
network’s internal parameters are updated. This makes these attacks especially promising
against implementation of higher-order masking schemes with multivariate leakages. Typi-
cally, the concept of Template Attacks is adapted by modelling the physical observations
for each intermediate value during the training phase. Afterwards, the secret intermediate
is determined by a prediction over the measurements collected from the target device.

1.1 Motivation and Related Works
A well established and popular SCA attack on power traces was published in 2004 [BCO04].
The authors modelled the power consumption of a device for all possible key candidates and
determined the correct key through a correlation between the modeled and actual power
values. This method has shown to be very powerful, but requires details on the leakage
behaviour of the underlying implementation. However, it has been observed in practice
that the power consumption of unprotected (i.e., not masked) implementations can be
relatively easily predicted by Hamming weight (HW) and Hamming distance (HD) models.

A combination of SCA attacks and collision attacks has been introduced in [SWP03]
by making use of SCA information for detecting collisions in the internal state of an AES
implementation. This benefits from the the advantage of not relying on any power model.
While this type of attacks originally covered only single collisions between two portions of
SCA traces, they have been improved later in [MME10] and [MS16] to cover all possible
collisions in the whole measurement set.

The application of ML for SCA was first shown in [HGM+11] and the follow-up works
adapted the concept of Template Attacks for ML approaches. For example, the authors
of [MPP16] modelled the traces with DL in a profiled setting and the authors of [CDP17]
utilized the translation-invariance property of Convolutional Neural Networks (CNNs)
against misaligned traces.

These successful DL attacks initially required to have access to a profiling device, i.e.,
to substitute Template Attacks. Alternatively, Timon [Tim19] demonstrated how to utilize
DL in a non-profiled setting by adapting the concept of Differential Power Analysis (DPA).
Instead of training only a single model, this attack trains a model for every possible key
candidate and determines the correct key as the one with the best training metrics. The
authors of [KHK22] later reduced the complexity of Timon’s attack by combining multiple
networks and share common layers. Although this approach successfully recovers the
key of some implementations, it relies on information about the position of exploitable
leakages, and needs to be done considering a part of the targeted intermediate value (e.g.,
a single bit like DPA) or a hypothetical power model (e.g., HW model like CPA), in short
a many-to-one function.

In the ML community, it is common to evaluate the performance of neural networks
by means of publicly available datasets. The authors of [PSB+18] aimed to provide a new
SCA dataset, i.e., ASCAD, as a reference for testing ML approaches. To improve the
efficiency of the attacks, Prouff et al. provided a limited ASCAD dataset that only contains
the relevant sample points for attacking a certain key byte of an AES implementation.
Most attacks focused on this dataset. To the best of our knowledge, the only work covering
the full dataset is the one published at CHES 2021 [LZC+21]. While the first ASCAD
dataset contains only measurements with a fixed key (ASCAD fix), another dataset with a
variable key (ASCAD variable) was published in 2019. The authors of [EST+22] presented
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a detailed analysis on both datasets, where they determined the leakages for all cipher
state bytes. Afterwards, they performed a cross-byte analysis by recovering several key
bytes with a single trained model still in a profiled setting.

We would like to highlight that most of the relevant research focused on minimizing
the number of required traces for recovering the secret key. To compare the performance
of different approaches, publicly available datasets are used, which are often tailored to
cover only the sensitive operations, e.g., ASCAD dataset as stated above. A black-box
adversary has neither access to a profiling device nor information on the operations that
are performed at a specific point in time. Hence, existing DL SCA attacks may not be
practical when considering such a black-box adversary model.

1.2 Our Contributions
In this work we present a new and efficient attack on masked implementations by exploiting
side-channel collisions with DL. Our method does not require a profiling phase and can
be performed without any prior implementation details. More precisely, we consider a
black-box scenario where the attacker has only access to raw power traces and their
corresponding inputs, e.g., plaintexts. By combining the advantages of collision attacks
with the power of neural networks, our approach does not rely on any power model and
is able to exploit multivariate higher-order leakages without pre-processing the traces.
More importantly, compared to the other non-profiled DL SCA attacks [Tim19, KHK22],
our approach relaxes the requirements by avoiding any needs for a many-to-one function.
To identify potentially colliding sections in the raw traces, we show a method that is
able to localize the leakage associated to input-dependent intermediate values, e.g., SBox
inputs. Again, no knowledge of secret parameters is required and having access to traces
and corresponding plaintexts suffice to mount the attack. We demonstrate the power of
our technique by successfully attacking the ASCAD dataset with only a single model in
non-profiled settings. Due to its underlying relaxed attacker model, our attack is easily
applicable to other implementations with little adjustment and adaptation.

1.3 Outline
The paper is organized as follows. In Section 2, we provide the reader with general
information regarding SCA attacks and countermeasures, that are necessary to follow the
rest of the paper. We also give a brief introduction to the concepts of DL before explaining
how to apply them to our attack in Section 3. We put our methodology into practice and
present the results in Section 4, and finally conclude our research in Section 5.

2 Preliminaries
2.1 Masking
To protect cryptographic implementations against SCA attacks, a common technique is
to cut the relation between sensitive intermediate values and the measurable physical
properties. Masking has become the most adopted countermeasure due to its sound
mathematical basis. Since its introduction in 1999 [CJRR99], various improvements on the
efficiency and effectiveness of masking have been made [ISW03, GPQ11, BDGN13]. The
concept of masking is based on secret sharing, where a sensitive intermediate is split into
several individually independent and random shares. Boolean masking is the most common
masking scheme and can be easily applied to linear functions L as L(a)⊕ L(b) = L(a⊕ b)
with ⊕ being addition in GF(2)n for some integer n. Non-linear operations do not provide
this property which makes their masking more challenging. The simplest Boolean sharing
of a binary random variable x leading to (x1, x2) requires a random r such that x1⊕x2 = x
with x1 = r and x2 = x⊕ x1. Note that r, which is as large as x, should be taken from a
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uniform distribution at random. Further, this is trivially extended to higher orders, i.e., a
higher number of shares, requiring d− 1 random and independent variables r1, . . . , rd−1 to
represent x with d shares x1, . . . , dn.

All linear cryptographic operations are then performed on each share independently,
resulting in randomized intermediate values. This ensures that SCA leakages cannot be
correlated with the sensitive values and hence preventing first-order SCA. Following the
concept of secret sharing, having access to all shares is necessary to reconstruct x. In
a dth-order secure implementation, any combination of d intermediate values should be
independent of any sensitive variable. This naturally leads to a minimum of d+ 1 shares.
In other words, a combination of d + 1 leakage points (in line with either univariate or
multivariate higher-order attacks [Mes00, WW04]) is expected to exploit the leakage and
recover the secrets of a dth order secure implementation. Note that finding suitable leakage
points to combine is not a trivial task, especially with no or limited knowledge on the
implementation under attack. It is noteworthy that the number of required traces in
higher order attacks increases exponentially with d [PRB09] but only if the Signal-to-Noise
Ratio (SNR) is low enough. Otherwise, a successful attack might be not possible using a
feasible number of traces.

While application of Boolean masking to linear functions is trivial, the majority of
relevant research activities focused on providing an efficient protection scheme for non-
linear functions like the SBox of block ciphers. A comparably easy technique is called table
re-computation where a masked version of an SBox is pre-calculated before the actual round
functions are called. When being limited to Boolean operations, such a pre-computation is
done as follow.

∀x, S∗(x) = S(x⊕ r)⊕ r′, (1)

with S(x) being the SBox result of x, where r and r′ stand for the input and output masks,
respectively. Afterwards, if the SBox input x is masked with r, S∗(x) can be used to derive
the SBox output masked with r′.

2.2 Side-Channel Collision Attack
Classical SCA attacks exploit the relation between actual SCA measurements and some
hypothetical models, e.g., HW power model. In contrast, SCA collision attacks do not
require prior knowledge on the leakage behavior of the underlying implementation. The
concept is based on the assumption that similar operations on the same data lead to similar
physical behaviour, e.g., similar power consumption patterns. To illustrate the underlying
concept, consider the SubBytes operation of the AES, where the same SBox is applied on
all cipher state bytes. Observing the same power consumption pattern for two different
SBox operations indicates that the same data have been processed. If this assumption is
true and the underlying SBox is a bijection, one can write:

S(p1 ⊕ k1) = S(p2 ⊕ k2)
⇐⇒ p1 ⊕ k1 = p2 ⊕ k2 (2)
⇐⇒ p1 ⊕ p2 = k1 ⊕ k2

Known as linear collision attack [Bog07], this can lead to the linear difference between two
key portions k1 and k2. This attack is usually performed in a chosen-plaintext setting and
is strongly affected by noise, since collision between two distinct power patterns associated
to two serially-processed SBoxes should be detected.

However, other forms of SCA collision attacks are presented in [MME10] and [MS16],
where the whole measurement set is used to find all possible collisions. More precisely,
such attacks predict the key difference ∆k1,k2 = k1 ⊕ k2 and classify the traces into 2n
classes (with n being the SBox input size) once based on the first plaintext portion p1,
and once more based on p2 ⊕∆k1,k2 . The next, some statistical features of each class, e.g.,



426 Deep Learning Side-Channel Collision Attack

various statistical moments like mean, variance, skewness, etc., are predicted. The most
probable key difference ∆k1,k2 should lead to the most similarity between the extracted
features. These attacks – unlike classical SCA collision attacks – can be applied at higher
orders and can exploit the leakage of parallelized hardware implementations, i.e., when
SBoxes are performed simultaneously.

2.3 Machine Learning / Deep Learning
2.3.1 Overview
ML has gained a substantial amount of popularity over the past few decade, and is applied
in a wide range of fields, e.g., speech recognition, self-driving cars, or targeted advertising.
In general, ML can be divided into unsupervised and supervised learning. Unsupervised
learning processes rely on the raw input data x (also called features) while no further
inputs are required. In contrast, supervised methods rely on additional labels y during
the training process which already contain the correct answer to the problem that is to
be solved. These labels can be difficult to obtain, since they require a human supervisor.
The training process ends with a model that can be then used to either predict or classify
new data. In this work, we focus on multi-class classifications, where the output of a
classifier provides a probability for each discrete class, for example, for all possible key
values associated to an SCA trace.

Before the model can be trained, the dataset needs to be split into training, validation
and test sets to make the learning process more effective. The training set usually is the
largest subset and used to actually learn the hidden patterns of the data. To evaluate
the model’s performance, the validation set is used to calculate the correctness of the
current parameters and how they should be adjusted to improve the prediction accuracy.
Both steps take place repeatedly and during each repetition, also called epoch, the whole
datasets are iterated. The training data is divided into smaller batches, such that the
network parameters can be updated multiple times during a single epoch. This ensures a
faster training process and lower memory requirements, as only a part of the whole dataset
is evaluated at the same time.

Finding the optimal values for a model that generalizes well on new data is a challenging
task, and two scenarios may occur. The learning algorithm may start to memorize random
fluctuations and noise when being trained for too many epochs or when the model is overly
complex. This results in a model which has a high accuracy on the training set but is not
able to handle unseen data that do not have exactly the same characteristics as the learned
data. This is referred to as overfitting, whereas underfitting results from a model that is
not able to learn the relevant features of a dataset and hence shows a poor performance on
the training data as well. After the learning process is finished, the final performance of the
model can be evaluated by feeding it with the data coming from the test set. These data have
not been seen by the model yet, hence giving a realistic indication on the future accuracy.

Although the parameters get optimized while the model is trained with data, the
so-called hyper-parameters fully depend on the users choice and need to be set in advance.
Examples include the general structure of a neural network, the function used to determine
the model’s performance, or to what extent the model should be adjusted after each step.

The goal of a classification function F is to optimize the parameters θ ∈ Θ, such that
ŷ = y for ŷ = F(x; θ). To quantify the correctness of the predictions, a loss function L
is used during the training process, giving an indication about the quality of the chosen
parameters. Finding the optimal set of parameters can be done by finding θ̂ that leads to
a minimal loss:

θ̂ = arg min
θ
L(F(·; θ), x, y) ∀θ ∈ Θ, x ∈ X, y ∈ Y, (3)

with X being all inputs of the dataset and Y the corresponding correct labels. A commonly
used loss function is the categorical crossentropy between the correct label and the output
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Figure 1: 3-class MLP with a single hidden layer.

x1

x2
...
xn

b

b+
n∑
i=1

xiwi A(s) y

w1
w2

w3
s

Figure 2: Schematic view of a perceptron.

of F . Calculating this metric requires the label to be one-hot encoded, meaning that it
needs to be converted to a bit-vector t of length |C| where C is the set of possible labels.
For label y in multi-class problems, this vector contains only a single 1 at bit position
ty. For example, when the correct class of a rolled dice is 4, the corresponding one-hot
encoded label would be 001000. The categorical crossentropy is defined as

L(t, ŷ) = −
|C|∑
i=1

ti log ŷi, (4)

and averaged over all elements of the validation set to make a statement on the network’s
performance when instantiated with θ.
2.3.2 Multi-Layer Perceptron
Multi-Layer Perceptrons (MLPs) as a subset of DL are based on neural networks which
are inspired by the structure of the human brain. When scientists and industry started
to utilize neural networks almost 30 years ago, due to the low computational power of
former computers only simple mathematical structures were possible to employ. Classifiers
became much more accurate, when more complex networks in the form of MLP were used.
These networks not only increase the prediction performance but also allow automatic
feature extraction such that less human interventions are required.

MLPs are built by perceptrons connected to each other. They are arranged in multiple
layers whereas each layer is fully connected to its successor, as shown in Figure 1. Each
perceptron i has an associated trainable bias bi, and each connection between two per-
ceptrons i and j has a trainable weight wi,j . With these parameters, the output function
is calculated as a weighted sum followed by an activation function A, which is shown
in Figure 2. A is a non-linear mapping that decides, to what extent the neurons input
influences the prediction process. Typical examples for activation functions proven to be
suitable for many tasks are ReLU for hidden layers and softmax for the output layer.
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Figure 3: Concept of CNN. Here, the pooling layer is realised by taking the maximum
value within each window.

2.3.3 Convolutional Neural Networks

CNNs were initially used to increase the performance of image classifiers, but have become
widely applicable to all data with spatial and temporal dependencies. They are a subset
of DL and consist of a convolutional layer and a pooling layer. First, one or several
n-dimensional kernels K are shifted over the input data I, and a convolution operation is
applied. There are many hyper-parameters the user has to define, e.g., the number and
size of the kernel, step size that is used to iterate over the input data (also called stride),
and the kernel itself. After filtering the data, a non-linear pooling operation is performed
on the new feature map to reduce its dimension and to summarize the features within a
region. An example showing how both layers work is given in Figure 3. Although initially
used for higher-dimension inputs such as images, CNNs have shown to be efficient in the
context of SCA as well and enable feature detection even for misaligned data.

2.3.4 More Basic Blocks

In the growing field of ML, there exist countless additional layers that can improve the
accuracy of a learned model. In this work, we try to keep the underlying model as simple
as possible to understand the ongoing processes. Some commonly used basic blocks which
are also utilized for our models are summarized as follows.

Dropout can be used during the training phase which disables a random share
of connections between two layers [SHK+14]. It increases the network’s generalization
performance, and reduces overfitting by simulating many different networks without
performing the actual training procedure over and over again.

While Dropout is only used during training, and all connections stay untouched after
the final model is learned, Monte-Carlo Dropout (MC-Dropout) [GG16] applies the
same concept to the prediction phase. Instead of getting a single prediction per input,
MC-Dropout provides one prediction for each simulated model, such that their average
output reduces possible uncertainties a prediction might have.

To make the training of a Neural Network faster and more stable, a technique called
Batch-Normalization can be applied. Before the input is fed into the next layer, a
batch-wise normalization is performed to adjust the values. Hence, each output neuron
follows the same distribution such that an issue called internal covariate shift is reduced.

Before training a model, the whole dataset is randomly divided into different training,
evaluation and test subsets, as explained earlier. To evaluate the model’s performance on
new data, the test set is evaluated, but due to the non-determinism when training a model,
this result contains a bias. This is due to the random initialization of all weights that
might lead to better or worse prediction accuracies. Cross-Validation repeatedly splits
up the dataset into the corresponding subsets while performing a new training every time.
Then, all resulting scores are averaged to give a more general hint on the generalization
capabilities of the model.
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2.4 ASCAD Dataset
The ASCAD databases were released by ANSSI to allow easy comparisons between SCA
attacks. Our targeted dataset is referred to as ASCADv1 [PSB+18] which is publicly available
through GitHub1. It contains 60,000 power measurements of the first round of an SCA-
protected AES implementation. In particular, Boolean masking is used for the linear parts
and table-recomputation for the SubBytes layer, while the implementation was running on
an 8-bit AVR ATMega2815 micro-controller. To perform preliminary tests on the dataset,
the first two cipher state bytes are only protected with table-recomputation, such that the
corresponding cipher state bytes are only weakly protected. Although the implementation
is supposed to achieve first-order security, the work presented in [EST+22] has shown the
existence of first-order leakage for almost all cipher state bytes. To reduce the attack
complexity for other researchers, ANSSI already analyzed the leakage behaviour of the
third cipher state byte and provided a reduced dataset containing only 700 sample points
per trace. Hence, most works on the ASCAD dataset focused on such a reduced set and
omitted to find a suitable window of sample points for learning their models.

For our experiments, we use the full dataset with 100,000 samples per trace and a
fixed encryption key for all measurements. Note that there also exist two other ASCAD
datasets with variable encryption keys following a slightly different measurement scenario.
Those sets are not suitable for our attacks, as we assume a non-profiling adversary model,
who can only collect SCA measurements with a fixed, but unknown, key.

3 Methodology

3.1 General Idea
In our proposed attack, a DL model Mi is trained with associated information containing
the processing of the i-th plaintext portion, e.g., a byte. These information are extracted
from the set of power traces T = {T 1, . . . , T (N)} (with N being the number of collected
traces, containing S sample points each) while only a certain range of sample points ξi
(|ξi| � S) is involved in the learning process. A suitable target is the calculation of
functions, which are repetitively used for processing the cipher state portions. For many
block ciphers like AES, the SubBytes layer of the first round fulfils this condition. The
identification of those functions is performed in multiple steps, and requires to find the
ranges ξ′′i and ξ′i first, while |ξi| < |ξ′i| < |ξ′′i |. More precisely, every ξi describes the range,
in which the important leakages can be found, with ξ′i and ξ′′i denoting coarse-grained
ranges before the precise range ξi can be determined. In Section 3.2 we explain, how to find
these ranges. Since we are in a non-profiled setting, the key-byte ki is not known. Hence, for
training the neural network we use the plaintexts pi as the label. The trained model is then
utilized to predict labels ŷ for a different range of sample points ξj that come from the same
set of traces T (when j-th plaintext portion/byte is processed), such that ŷ = Mi(T [ξj ]).
As the ranges ξ were chosen, such that the underlying operations are similar, we assume
that ŷ ⊕ ki = pj ⊕ kj being an internal (linear) collision. When taking the knowledge of
the known labels pj into account, we are able to recover ∆ki,j = ki ⊕ kj = pi ⊕ pj . The
concept is visualized in Figure 4.

In total, our approach requires three different neural networks. The first two differ
only slightly (see Section 4.3) and are used to identify the leaking ranges ξ′′i , ξ′i, and ξi.
The third network, denoted as Mi, is then used to train an actual model based on the
determined range ξi.

1https://github.com/ANSSI-FR/ASCAD

https://github.com/ANSSI-FR/ASCAD
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Figure 4: After learning the processing of the first SBox, the model is used to predict
labels for another SBox.

3.2 Leakage Identification
A common approach to identify the point in time, where a specific plaintext portion is
processed, is to calculate the SNR [MOP07]. With only the plaintexts available, this
method works well for implementations with first-order univariate leakage. For properly
protected implementations, it requires knowledge of the utilized random masks (in masked
implementations), hence, making this metric more suitable for a designer than for an
attacker. To find leakage locations without any prior knowledge, we adapted the Sensitivity
Analysis (SA) expressed in [Tim19] such that only the plaintexts are needed to be known.
The plaintext in masked implementations is usually only processed when being initially
loaded and when the random masks m are applied, but not during the actual calculation of
the cipher functions. DL can automatically combine the relevant sample points of different
shares, e.g., the processing of the masked state p⊕m and the mask m itself. Hence, the
neural network can reveal multivariate leakages that depend on the masked plaintext. Note
that a similar dependency between the traces and plaintext can be seen when the SBox is
calculated. More precisely, since the key addition (XOR with a secret but constant key) is
a one-to-one function, for every plaintext, there is a unique value for the SBox input and
its output (assuming the Sbox is a bijection, e.g., AES). Therefore, all leakages relevant to
the SBox input (and SBox output) are associated to the plaintext as well.

By performing SA, we want to know, which input features x contribute most to the
classification. Therefore, the partial derivatives f ′(T ) of the loss with regards to the
network input is calculated. Formally, this is denoted as

f ′(T (n)
l ) = ∂LT (n)

∂xl
∀l ∈ ξ′′,∀n ∈ {1, . . . , N}. (5)

Subsequently, the derivatives for every sample l are accumulated over the number of
traces to obtain the sensitivity. As we do not know, how many epochs the neural network
requires until the relevant leakage area is found, the sensitivity values over multiple epochs
are accumulated as well. Training the network for too long leads to features being learned
that are less relevant for our analysis and potentially result from overfitting. We denote
Sξi as the resulting sensitivity when T [ξi] is used as the network’s input.

To find the optimal hyperparameters, we analyze the influence of the number and size
of the hidden layers. Therefore, we perform a grid search with up to four hidden layers
with sizes between 10 and 1600. Each hyperparameter-combination is tested three times
to reduce the bias caused by the network’s random initialization. To assess which set of
hyperparameters is the best, manual inspection of the sensitivity results is required. This
is due to the non-deterministic behaviour of neural networks which prevents automatic
analysis based on maximum sensitivity. Additionally, our investigations showed that there
is no correlation between training accuracy and sensitivity result. Evaluating all possible
hyperparameter-combinations leads to the conclusion that the neural network’s exact
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structure is not as important as its general complexity. Networks with either many neurons
in the first hidden layers, or a few neurons in the last hidden layer performed equally well.

When training the network, we do not use the full acquisition window, but focus on
a smaller range ξ′′i to reduce the computational complexity. This range must cover the
calculation of the target plaintext portion i. Otherwise, the leakage analysis will not show
any significant peak, and another range has to be checked. For an implementation without
shuffling countermeasures, finding the correct range of each plaintext portion should lead
to strictly distinct ranges, as they are processed in a fixed order, e.g., ascending. However,
some implementations process the portions in an unknown order, making it more difficult
to find the correct ranges.

After obtaining the leakage area ξ′′i , the experiment is conducted again, but with a
smaller range ξ′i. This gives a more precise result and the final range ξi can be extracted by
visual inspection. Note that using this approach we do not get any quantitative value about
the leakages, but only information on how much specific features contribute to the decision
that is made by a model. More specifically, only the most important features related to the
given label are used, such that less important features might be ignored by the network.

3.3 Training
After the sensitive leakage area is found, the corresponding sample range ξi is trained by
another neural network. Again, the known plaintexts are used to label the traces such
that p(n)

i is the label for T (n)[ξi] with i being the target plaintext portion and n the trace
index. We refrain a deeper hyperparameter analysis for this network, and instead use
the architectures presented in [RWPP21]. The authors used reinforcement learning for
hyperparameter tuning and targeted the ASCAD dataset as well, but in a profiled setting.
Their technique was able to find powerful neural networks with a relatively low number of
neurons and layers. We tested several of their presented hyperparameters and identified
the best results for the network denoted as ID CNN (RS) on the ASCAD fixed key dataset
without desynchronization. Note that the authors performed their experiments on the
reduced ASCAD dataset (see Section 2.4) and focused on recovering the third key-byte only.
For other implementations (or even for other targeted bytes of the same implementation)
the leakage characteristic might be different, leading to other hyperparameters having an
even better performance. Even though the network is biased due to the optimization for a
single byte of one specific implementation, we used it throughout all our experiments. We
observed that small changes on the network architecture do not significantly change the
attack results, and the influence of randomly initializing the internal weights has a much
higher impact. Larger differences in the leakage characteristics can, to some extend, also
be compensated by increasing or decreasing the number of training iterations, which is
confirmed by our experiments. Using a single architecture for all targeted values, we waive
the computational effort for hyperparameter tuning on individual plaintext portions and
show the general applicability of the chosen network.

In profiled scenarios, the label is usually an intermediate value of the implementation
derived by utilizing the associated secret information, e.g., key and mask values. This
simplifies the learning process as the relation between intermediate value and power
consumption is more obvious. For non-profiled attacks, the attacker does not have access
to those information and needs to get along with only the plaintext. Consequently, the
network has to learn a more difficult relation, leading to a higher number of iterations to
be performed. The training process is stopped as soon as the validation accuracy surpasses
the threshold of random guessing, which is 1/28 when data are processed bytewise. By
applying this early-stopping approach, we ensure that the network will not be trained
longer than required, hence preventing overfitting.
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3.4 Attack
For the attack phase, we use the same set of traces T as for the training phase, but with
a different range of sample points. We consider two scenarios. The first one assumes a
fixed or known offset between the sample ranges associated to different plaintext portions
ξj . This might be revealed by visual inspection of the traces or by having access to the
implementation’s source code. During the attack phase, we can then simply shift the
leakage range ξi to obtain the leaking areas of the other portions. The second scenario
follows a black-box setting, where the attacker does not have this knowledge, and the cipher
state portions could also be processed at an arbitrary order. Consequently, the leakage
analysis must be performed for each plaintext portion separately to find the corresponding
ranges for a collision attack. All ranges should cover the same operations, which is difficult
to achieve by visual inspection only. Even slightly incorrect (non-compatible) ranges would
potentially lead to an unsuccessful attack, although the use of CNNs diminishes this hard
requirement. To obtain appropriate ranges more analytically, we estimate the correlation
ρ between the sensitivity values Sξ

′

i and b = Sξ
′

j for all possible displacements τ as

C(τ) = ρ
(
Sξ

′

i , S
ξ′+τ
j

)
. (6)

Subsequently, ξj is determined by τ that maximizes C.
As already pointed out, the attack phase utilizes the trained model Mi to make

predictions on sample points corresponding to the processing of plaintext portion j.
Consequently, the model will output a vector of probabilities P (n)

v for an input trace
T (n)[ξj ], indicating the similarities to all possible plaintext values v (0, . . . , 255 in case of
AES) that were trained before. We can then obtain

ŷ = arg max
v

(
P (n)
v

)
(7)

and predict ∆ki,j = ŷ ⊕ p(n)
j . As stated in Equation (2), this is only correct when ŷ equals

p
(n)
i . In most cases, this condition is not met when only a single trace is considered, but

when the entire set of traces is used. This is why we accumulate the resulting probabilities
for all given traces and directly adjust the indexing to obtain the following result vector Y

Yv =
N∑
n=1

P
(n)
v⊕p(n)

j

. (8)

Then, the key difference can be predicted as

ki ⊕ kj = arg max
v

(Yv). (9)

Algorithm 1 summarizes all steps of our attack. A common metric to quantify the
success rate of a DL-based SCA is the key-rank, which denotes the index of the correct
key in a sorted vector Y . The key-rank gives a good estimation about the remaining
complexity of a complete key recovery when using key enumeration, especially when the
correct key is not ranked first. Another approach is the application of MC-Dropout to
quantify the certainty of our result. We run every prediction multiple times and when the
same key-difference is obtained for most of the predictions, we assume the correct difference
is successfully recovered. This approach does not require knowledge of the correct key and
only gives us information about the keys, that have the highest probability in the sorted
vector Y . We approved this method with our knowledge of the actual key.

3.5 Advantages Compared to Other Non-Profiled DL Attacks
Most DL SCA attacks adapt the concept of template attacks, which has the disadvantage
of requiring a profiling device. The existing non-profiled DL attacks, on the other hand,
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Algorithm 1 DL Collision Attack on AES
Input: Traces T , Plaintext-bytes p, Training index i, Deep-Learning architecture DL
Output: Key-differences ∆k

1: Obtain sensitivity Sξ
′

i ← LeakageAnalysis(T , pi)
2: Determine range ξi from Sξ

′

i by visual inspection
3: Train model Mi ← DL(T [ξi], pi)
4: for j ← 0 to 15 do
5: if j 6= i then
6: Obtain sensitivity Sξ

′

j ← LeakageAnalysis(T , pj)
7: Estimate cross-correlation C(τ)← ρ

(
Sξ

′
, Sξ

′+τ
)

8: Determine optimal offset θ ← arg maxτ
(
C(τ)

)
9: Y ← ∅
10: for n← 1 to N do
11: Predict P ←Mi

(
T (n)[ξj + θ]

)
12: for v ← 0 to 255 do
13: Yv ← Yv + Pv⊕pj

14: end for
15: end for
16: ∆ki,j ← arg maxv(Y )
17: end if
18: end for
19: return 〈∆ki,0,∆ki,1, . . . ,∆ki,15〉

are based on a power model [Tim19, KHK22]. More precisely, they need to utilize a many-
to-one function, e.g., the HW model. Considering no model, i.e., the identity function (e.g.,
the 8-bit output of the AES SBox), would result in no success, as all key candidates would
become equally likely. Our approach, on the other hand, makes use of no hypothetical
model, and deals only with the known (non-secret) information, e.g., plaintexts.

They further only focused on pre-selected sample ranges that were determined by a
preceding leakage analysis utilizing secret values [Tim19, KHK22]. This approach might be
useful for comparing the performance of different model architectures, but in a black-box
scenario the adversary has no access to these information. Our methodology includes a
technique how to find leaking areas in masked implementations using only the raw traces
and their associated public inputs.

DL typically consists of a training phase and a subsequent prediction phase, where the
trained model is applied. While other works deviated from this concept and instead used
the training metrics as a distinguisher to find the correct key, we bring back the classical
train-then-predict approach. We show that the trained model can be applied not only
to recover a single portion of the key, but almost for full key-recovery. More precisely,
the method by Timon [Tim19] requires 256 networks to be trained for recovering a single
AES key-byte. Although the authors of [KHK22] improved the attack by merging multiple
networks into a single neural network, its applicability is still limited to a single key-byte
at the time. Furthermore, their architecture can only handle power models that are based
on a single bit. Our approach has neither of these requirements as we are, for the first
time, exploiting SCA collisions with DL.

4 Results
In our experiments, we made use of the well-studied ASCAD dataset (see Section 2.4),
but only used 20,000 traces for all steps. More specifically, we targeted the SubBytes
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Figure 5: Leakage analysis with identified range ξ′′3 (left) and more detailed analysis with
range ξ′3 (right). The determined range ξ3 is marked by a red arrow.

layer during the first round of AES, since it is used repeatedly for all 16 status bytes.
Furthermore, the processing depends directly on the (known) plaintexts used, which are
only interposed by the key addition layer.

4.1 Leakage Identification
Training a neural network is highly computationally intensive, especially when the di-
mensionality of the inputs is large. For the coarse-grained leakage analysis, we trained
our network with only 10,000 sample points, such that several ranges had to be checked
until a suitable range ξ′′ was found. Because the cipher state bytes were not processed
in an ascending/descending order, we were not able to infer from one obtained range to
the other; hence, all ranges needed to be checked individually. Based on the sensitivity
analysis results, a smaller range ξ′ of 2,000 points around the peak was selected, and the
same procedure was re-performed. Finally, we derived the range ξ by visual inspection.
An example of the resulting sensitivity analyses can be seen in Figure 5. The observed
locations then indicate, in which order the bytes are processed. Interestingly, for two
plaintext bytes, the sensitivity result Sξ′ did not show a peak anymore and we had to
perform the analysis again by shifting the range ξ′. We assume, the leakage at the initial
position depends on other operations within the larger sampling range ξ′′ that are not
covered by the smaller range ξ′i. Our goal is to cover the associated leakages within a range
ξi (as small as possible) to reduce the computational complexity of our neural network,
and to ensure that the same type of leakage is covered among all bytes.

4.2 Success Rate
For both, the known offset scenario and the correlation approach (see Section 3.4), we
performed an extensive analysis. In Figure 6, we show the key-ranks when Byte 10 was
trained and all other bytes being attacked. Our analysis shows that the correct key is either
ranked first after a maximum of 600 attack traces, or the attack failed completely. Note
that the key-rank does not give any information about the number of required traces for a
successful attack, as we always utilize (the same) fixed number of traces during the training
phase. From an attacker’s perspective, this metric is not able to detect the cases, where
a wrong key was recovered, which is why we focused on the application of MC-Dropout.

We trained the leaking range ξ of every plaintext byte five times, resulting in 70
models. By means of each of them, we attacked all other bytes and averaged the number
of successful key recovery attempts. With this approach, we want to overcome the random
initialization of each model, leading to different attack results. All networks were trained
for up to 500 epochs, but for most bytes the training already stopped earlier due to a
sufficiently high validation accuracy. Our experiments clearly show that the accuracy is not
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(a) Successfully recovered keys (b) Unsuccessful key-recoveries

Figure 6: Key-ranks when byte 10 was used for training and all other bytes were targeted
with our correlation method.

Figure 7: Validation accuracy and number of recovered key differences over the number of
trained epochs for byte 10. The blue line shows the moving average of the actual accuracies
(grey).

significantly increasing after a certain number of epochs. When the network is still being
trained any longer, the number of recoverable key differences start to decrease again, which
can be seen exemplary for one trained model in Figure 7. For this analysis, we stored the
intermediate model every 100 epochs and subsequently performed the attack. The results
show the consequences of overfitting and confirm the advantage of our early-stopping
approach. We want to highlight that we recovered the maximum number of key differences
in this example, as we did not target the two not-correctly masked state bytes (see our
relevant explanation in Section 2.4).

We applied MC-Dropout and obtained three predictions for each attack by randomly
dropping 20% of the connections between the fully-connected layers. A model was identified
as successful, when two out of three predictions revealed the same key. In Figure 8, we
visualize the proportion of trained models that were able recover the correct key differences
for all attacked bytes (based on the five trained models per byte). However, in a real-world
attack the adversary does not need to recover all key differences, but only the relevant
ones2, such that a success rate of 7% can already be enough for recovering the whole key.
As expected, the results when using known offsets between different bytes were significantly
better compared to our correlation method (53% and 25% overall success rate, respectively).
In half of the cases of the first scenario, almost all key differences can be recovered with
only a single trained model. Five models, on the other hand, were not able to recover any
useful key differences. An explanation for this behaviour is given in Section 4.4.

2In such SCA collision attacks on AES-128, at most 15 independent equations (key differences) are
required to reduce the key space from 2128 to 28.
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(a) Known Offset (b) Correlation Method
Figure 8: Success rate after the attack phase for all (masked) byte combinations.

With the correlation method, we were also able to recover all key differences, although
only the model for byte 4 showed a good overall performance. A minimum of three models
is required to get all relevant key differences, although it is unlikely that an attacker chooses
the optimal three bytes for training a model. Both scenarios only differ during the attack
phase, but use the same trained models. Hence, the models showing a bad performance in
the known-offset case also perform bad when using our correlation method. We assume,
the relevant leakage features were not represented correctly by the model, which might be
caused by choosing wrong ranges ξ. Alternatively, this may happen if the implementation
does not execute exact the same operations for every cipher state byte. When calculating
the ranges based on a known offset, we can be sure to cover the same operations, and – in
an ideal case – cover the same leakage characteristics for all bytes. This makes the attack of
one byte independent of its corresponding leakage analysis result. In contrast, the trained
and attacked leakages might be different when using the correlation method. Although it
can – up to some extent – be compensated by the underlying CNNs, the attack looses its
efficiency if the executed operations are fully different, hence no exploitable collisions.

We also performed our attack directly on the ranges ξ without correlating the sensitivity
analysis results. This approach relies on visual inspection for all bytes, such that an
additional uncertainty is added to the attack phase. Our results confirm this hypothesis,
as the success rates were notably worse.

4.3 Complexity
We performed all our experiments on a server equipped with four NVIDIA GeForce RTX
2080Ti GPUs and an Intel Xeon W-3223 CPU. The training process did not perform
significantly faster when utilizing multiple GPUs. Hence, we parallelized the attack on
multiple bytes. In the following, we show the execution times for all steps while using only
a single GPU and 20,000 traces.

• Identify range ξ′′ and ξ′: Both steps consist of the training itself and calculating
the partial derivatives afterwards. To identify ξ′′, the network is trained with a
limited number of 10,000 sample points for 20 epochs and a batchsize of 1000, which
takes approximately 60 seconds. This step might need to be performed up to 10
times with different ranges until a significant peak in the sensitivity analysis result
is found. Range ξ′ is identified after 45 seconds when training the corresponding
network for 10 epochs and a batchsize of 100.

• Training phase: Training the network with traces from range ξ takes up to 14
minutes for 500 epochs. Note that due to our early-stopping approach, only 200-400
epochs are required for most bytes.

• Attack phase: We repeated the prediction for each key difference 3 times and
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Table 1: Performance comparison between our DL collision attack and the non-profiled
DDLA by Timon [Tim19].

Setting Traces Samples
Recovered

Keys
Total

Run Time
DL collison Black-Box 20,000 Full Set 13 1h 57min 17s
DL collison Known Offset 20,000 Full Set 13 14min 46s
DDLA [Tim19] Known Range 20,000 700 13 1h 20min 10s3

determined the correct key by majority voting. This took about 25 seconds for each
attacked byte.

In a best-case scenario, recovering all 13 key differences takes 15 minutes when byte
10 is selected for training. The corresponding model is able to recover all key differences,
i.e., training using only this byte is enough. Additionally, the training is stopped after
only 200 epochs due to sufficiently high training accuracy. We assume that the order
of the cipher state bytes as well as their offsets to each other are known. Hence, the
identification step only needs to be performed once, and all key bytes can be recovered with
only five training runs (three models for determining ξ′′ since the leakage of byte 10 occurs
after approximately 28,000 sample points, one model for finding ξ′ and the last model for
training ξ). Again, we want to highlight that no additional training is required during the
attack phase, as only the predictions for the given ranges of sample points are queried. In
a worst-case scenario, the leakage analysis needs to be performed for all cipher state bytes,
and the ranges necessary for the attack phase are obtained using our correlation approach.
We assume that our attack needs to be performed on five trained models until enough
key differences are recovered. Approximately 100 training runs are necessary to recover
all relevant key differences, which is done within 1 hour and 57 minutes. In Table 1, we
summarize the complexities and compare them with the attack presented in [Tim19]. Note
that Timon used the extracted ASCAD dataset, which only contains the processing of
the third cipher state byte. His approach is also applicable to other keybytes of the full
dataset as long as the corresponding ranges are known.

Compared to the non-profiled DL approach by Timon [Tim19], our models are more
complex and require more time to be trained. In return, the number of models is reduced
significantly, such that a single model can be sufficient to recover all key differences. More
precisely, his method requires 256 trainings to recover a single keybyte without handling
the problem of finding suitable leakage areas.

4.4 Accuracy of Leakage Detection
In order to estimate the accuracy of our leakage detection analysis, we compare the
retrieved ranges with SNR results. Additionally, we show the ranges found by the authors
of [EST+22], who used a method based on correlation to find suitable ranges. Using their
ranges in our attack leads to the best success rate for all trained bytes, hence, we consider
them to be optimal. Our SNR results cover the following two leakage models

l1 = S(p⊕ k)⊕ rout,
l2 = S(p⊕ k)⊕ r, (10)

where rout denotes the SBox output mask for table re-computation and r is the mask
applied to linear operations of the cipher. All results are visualized in Figure 9, whereas
the numbers denote the processed byte indices, and the colors are used to differentiate

3Note that the author reported a runtime of 1min 54s per targeted key byte. For a better comparison,
we performed their attack with identical parameters on our setup leading to 6min 10s for every 8-bit key
recovery attack.
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Figure 9: SNR results compared to ranges reported in [EST+22] (shaded area) and our
leakage analysis approach (arrows). Positive SNR curves are associated to l2 and the
negative ones to l1 (see Equation (10)).

the targeted bytes. For a better visibility, we showed the negative of SNR for l1 to make
the difference between the two leakage models more clear. While the ranges reported
in [EST+22] perfectly covers the leakages associated to l1 for all bytes, our approach
covers this area only in eight cases. Three bytes match the leakages associated to l2, while
the analysis of the remaining three bytes match the area identified by neither l1 nor l2.
For those models, the success rate for recovering the key differences was 0% for both
the correlation approach and the known offset scenario. In some cases, our attack was
even unsuccessful although the discovered range matches the actual leakage. We assume
that the corresponding models were not able to learn the important leakage features for
those bytes and instead learned other features within the same range. Recovering the key
differences for the bytes, whose leakage could not be modelled correctly, was only possible
using them as the attacked byte with another byte being trained. If the used mask values
are known, the SNR is able to precisely capture the leakage of different intermediate values
(here, l1 and l2). Our method, on the other hand, is performed in a black-box setting where
only the plaintexts are known. As we do not know which sample points are combined
within the neural network, we cannot make a statement about the type of leakage that is
detected. However, the success rate during the attack phase seems to be independent of
whether our range matched l1 or l2 as we achieved similar results in both cases.

4.5 Comparison with Classical Side-Channel Collision Attacks
For classical SCA attacks, we can usually differentiate between univariate and multivariate
attacks. Univariate attacks analyze every point in time individually, such that only
leakages evoked from one specific point in time can be detected. In contrast, multivariate
attacks combine the information of different sample points in time such that more complex
dependencies can be detected, e.g., when time sample t1 leaks about the mask r and t2
leaks the masked SBox S(p⊕ k)⊕ r. However, performing such an attack requires much
effort since (1) correct sample points t1 and t2 should be found, and (2) the combination of
the leakage points need to be performed by (mean-free) multiplication prior to the actual
attack. When there is no information about the leakage distribution available, the attacker
would need to test all possible combinations of sample points. Our approach utilizes DL,
benefiting from automatically detecting complex dependencies by combining different time
samples within the fully-connected layers. We refer to Figure 1, where a simple MLP was
shown. The input neurons – referring to sample points – are connected to all neurons of
the subsequent layer. When several of such layers are combined, the network can identify
which samples points should be combined. Note that to exploit higher-order multivariate
leakages the leakages at the corresponding sample points should be multiplied (ideally
mean-free product). This indeed happens by the (non-linear) activation function applied
at every layer of the network.
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To show the power of our collision attack, we also performed a regular (univari-
ate) SCA collision attack. More specifically, we conducted an Moments-Correlating
DPA (MC-DPA) [MS16]. To make the attack more efficient, it is beneficial to know the
offsets between the processing of different bytes. While we showed a method how to obtain
these information without any prior knowledge of sensitive values, we used the ranges
reported in [EST+22] for MC-DPA as well. We performed first- and second-order MC-DPA
attack between all key bytes on the full dataset. Only the latter was able to successfully
recover the keys while the first-order attack failed for all masked byte combinations. An
example can be seen in Figure 10. These results demonstrate the effectiveness of our
DL-based collision attack, which can handle higher-order leakages automatically.

(a) First-order attack (b) Second-order attack

Figure 10: Results of MC-DPA between Byte 2 and Byte 4.

4.6 Applicability to Other Datasets
Our methodology can be easily adapted to other datasets, requiring only slight changes.
First, we want to highlight that the neural network Mi for training the leakage area ξi
does not require any modifications except for the number of training iterations. As we
suggest to use our proposed early-stopping approach, the optimal number of epochs can
be determined automatically. Compared to many classical attacks, we do not have to
cope with different power models as our attack does not require a many-to-one function to
successfully exploit leakages. For only weakly protected implementations, it is easier for
the SA to find the leaking areas. Consequently, the sample range to analyze can be larger
and the SA is still able to detect those areas. This results in smaller ranges that should be
tested when the exploitable leakage is expected to be low (e.g., when the implementation
is appropriately masked), such that the overall complexity for testing all possible ranges is
increased. Additionally, we observed that longer traces benefit from a larger batchsize and
vice versa.
ASCAD Variable Key. One year after publishing the ASCAD fixed-key dataset, ANSSI
published another dataset with a variable key. It targets the same implementation on the
same microcontroller, but with a different measurement setup. While the main goal of the
fixed-key dataset was to get a clean signal, a more noisy setup was used for the variable-
key dataset, making attacks more challenging4. The traces were recorded with a higher
sampling rate of 500MS/s and cover the first two AES encryption rounds. Consequently,
the number of sample points per trace is significantly larger than for the first dataset,
namely 250,000. In total, the measurement campaign consists of 300,000 traces, whereof
200,000 are intended to be used for profiling and the remaining 100,000 for attacking.
These 100,000 traces belong to encryption runs with a fixed key, and hence can be used in

4https://github.com/ANSSI-FR/ASCAD/issues/13

https://github.com/ANSSI-FR/ASCAD/issues/13
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our approach.
To the best of our knowledge, we are the first attacking this dataset in a non-profiled

setting. For reference, we also performed classical MC-DPA and CPA with HW power
model. All first-order MC-DPA attacks failed while only key byte 5 was recoverable
through CPA. The second-order univariate leakage was successfully exploitable by both
attacks, requiring between 10,000 and 30,000 traces depending on the targeted key byte.

We used the same ranges reported in [EST+22] to examine the performance of our
DL-based collision attack. Again, we did not change any hyperparameters and successfully
attacked the implementation. When using all 100,000 traces, the overall success rate was
85% with 11 learned bytes being suitable to recover all key differences. With only 20,000
traces, the success rate shrunk down to 40% with 4 models allowing full key recovery.

DPA Contest v4. The traces from DPA Contest v4 were measured from an Atmel
ATMega-163 smart-card executing a masked AES-256 implementation5. More precisely,
a masking technique called Rotating Sbox Masking (RSM) is applied [NSGD12], which
is supposed to be more efficient than classical masking while offering the same level of
security. In total, the dataset contains 100,000 traces, each with 435,000 sample points,
whereas only the first AES round and the beginning of the second round is covered.

In [MGH14], the authors successfully recovered the secret key with a correlation-collision
attack after approximately 2,500 traces of this dataset. For the CPA, classical power
models (e.g., HW of SBox input/output) failed while the bit-wise HD between SBox input
and output revealed the key after 500 traces. The authors decreased the number of traces
even further after some statistical analysis and using a more complex and customized
power model. Performing the attack on the full trace would take a considerable amount
of time, which is why the authors performed a leakage analysis on all available traces
before. The authors of [BBD+14] summarized all submitted attacks to the contest and
state that the best non-profiled attack requires only 14 traces without giving information
about implementation details.

Due to the higher number of sample points compared to the ASCAD dataset, we
increased the range ξ′′ from 10,000 to 100,000 sample points. Consequently, in a worst-case
scenario only 5 ranges had to be tested instead of 44 for the first step of our leakage
analysis. To make the learning process more efficient, we down-sampled the given traces for
the leakage analysis by discarding every second point. Each clock cycle was then covered
by approximately 31 sample points. Compared to our previous experiments, the sensitivity
analysis showed a much clearer peak and the range ξ′ was chosen to cover 2,000 points.
We then determined the final range of 1,000 points ξ by visual inspection. For the leakage
analysis, we used batchsizes of 100 and 25 to determine ξ′′ and ξ′ respectively, and a total
of 5,000 traces for training the networks.

The network architecture for training the leaking ranges ξi was the same as those used
in our analysis of the ASCAD dataset. On average, the network was trained for 60 epochs
per byte until the validation accuracy surpassed the threshold for early stopping. With
5,000 utilized traces, we achieved an overall success rate of 84% while 10 models were able
to recover all key differences. While our leakage analysis successfully revealed the correct
position of each byte with only 2,000 traces, the learning and attack phase required a
minimum of 3,000 traces to achieve comparable success rates. As we did not perform any
hyperparameter optimizations for this dataset, we assume that the number of required
traces can be reduced even further.

DPA Contest v4.2 We also performed our attack on the improved version, i.e., DPA
contest v4.2, in which several security flaws of the previous version where fixed [BBD+14].
In particular, the implementation utilizes shuffling and masks each state byte individually.
The underlying implementation is a 128-bit AES that is executed on the same target as

5https://www.dpacontest.org/v4/

https://www.dpacontest.org/v4/
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Figure 11: Leakage analysis on dataset from DPA Contest v4 with range of 100,000 sample
points (left) and 2,000 sample points (right).

DPA contest v4. In the provided datasets, the secret key changes every 5,000 traces. As
our attack relies on a fixed key for the whole dataset, we considered the plaintext XOR
key as the input to the implementation, interpreting that the key is set to 0 (only for
the first AES round). This allows us to combine more datasets and use more than 5,000
traces in our attack. Furthermore, we assume the shuffling of the byte order is known.
Performing our attack on this combined dataset, we achieved an overall success rate of
44% when utilizing 10,000 traces, whereas the training of five bytes allowed to recover
all key differences. The corresponding ranges where found by our leakage (sensitivity)
analysis requiring approximately 20,000 traces to obtain clear results.

5 Conclusions
In this work, we introduced a novel attack strategy by exploiting SCA collisions using DL
in a non-profiled setting. We showed how the adversary can successfully recover the linear
difference between the key portions in masked implementations, even in a black-box sce-
nario. More precisely, the attacker neither requires a profiling device (or a profiling dataset)
nor implementation details, making the attack suitable for a wide range of real-world
scenarios. Most of the former works dealing with DL in the SCA context focus on a small
subset of sampling points that exactly cover the exploitable leakage without considering
how to obtain these ranges from an attacker’s point of view. Our methodology includes
a technique on how to determine the location of leakages in protected implementations
without having access to any secret values or any profiling devices. This also solves one
of the main disadvantages of SCA collision attacks, namely, the temporal offset between
colliding intermediate values. Compared to previous works in the field of non-profiled DL
SCA attacks, we significantly reduced the amount of required models for key recovery by
successfully performing cross-byte analysis. For the sake of reproducibility, we provided
our program code with all relevant parameters in the supplementary material of this
submission. The code and the examples are made public through GitHub6.

Limitations and Future Works. By training the leakage position for a specific plaintext
portion, we rely on the fact that the model is able to learn any plaintext dependent
differences in the SCA traces. Adding dummy random operations would add an additional
dependency that we do not have any control over and can make the training not as accurate
as required. Although this countermeasure might not prevent the attack completely, it will
definitely make it more difficult to perform and would lead to more required traces. When
an implementation is protected by shuffling, our attack is also not directly applicable,
and the adversary may need to reverse engineer the shuffling permutation first. More

6https://github.com/ChairImpSec/DL_Collision_Attack

https://github.com/ChairImpSec/DL_Collision_Attack
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precisely, prior to the collision attack, an independent training and prediction should be
first conducted to recover the shuffling of each trace individually.

During our experiments, we only covered software implementations that consecutively
process the portions of the cipher state. It is still an open work how such attacks perform
on hardware implementations that usually have significantly shorter execution times and
many operations (like several SBoxes) are performed in parallel. In hardware, a single
round is often performed within one clock cycle, such that we cannot differentiate between
the processing of individual portions of the cipher state. Adapting such attacks to exploit
cross-round collisions would be an alternative approach to cope with this issue. Even
for consecutively processed cipher state portions the attack might fail as the existence of
collision leakage is the most important prerequisite. Generally, application of DL SCA
attacks on parallelized (round-based) hardware implementations is among our planned
works for the future.
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