
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2023, No. 3, pp. 366–390. DOI:10.46586/tches.v2023.i3.366-390

Kavach: Lightweight masking techniques for
polynomial arithmetic in lattice-based

cryptography
Aikata Aikata1, Andrea Basso2,3, Gaetan Cassiers1∗, Ahmet Can Mert1 and

Sujoy Sinha Roy1

1 University of Technology Graz, Graz, Austria
{aikata,gaetan.cassiers,ahmet.mert,sujoy.sinharoy}@iaik.tugraz.at

2 University of Birmingham, Birmingham, UK
3 University of Bristol, Bristol, UK

andrea.basso@bristol.ac.uk

Abstract. Lattice-based cryptography has laid the foundation of various modern-day
cryptosystems that cater to several applications, including post-quantum cryptography.
For structured lattice-based schemes, polynomial arithmetic is a fundamental part.
In several instances, the performance optimizations come from implementing compact
multipliers due to the small range of the secret polynomial coefficients. However,
this optimization does not easily translate to side-channel protected implementations
since masking requires secret polynomial coefficients to be distributed over a large
range. In this work, we address this problem and propose two novel generalized
techniques, one for the number theoretic transform (NTT) based and another for
the non-NTT-based polynomial arithmetic. Both these proposals enable masked
polynomial multiplication while utilizing and retaining the small secret property.
For demonstration, we used the proposed technique and instantiated masked mul-
tipliers for schoolbook as well as NTT-based polynomial multiplication. Both of
these can utilize the compact multipliers used in the unmasked implementations. The
schoolbook multiplication requires an extra polynomial accumulation along with the
two polynomial multiplications for a first-order protected implementation. However,
this cost is nothing compared to the area saved by utilizing the existing cheap multi-
plication units. We also extensively test the side-channel resistance of the proposed
design through TVLA to guarantee its first-order security.
Keywords: Masking · Side-Channel Attacks · Lattice-based Cryptography · Post-
Quantum Cryptography

1 Introduction
The development of new and fatal attacks against classical cryptographic schemes (e.g.,
RSA, ECC) seems unlikely, but the advent of quantum computers has threatened their
security. It came to light in 1997 when Peter Shor proposed an efficient quantum algorithm
to solve integer factorization and discrete logarithm problems [Sho97]. While quantum
computers are still far from reaching the computational power needed to break the
classical schemes, the recent technological developments [AAB+19, IBM] have been slowly
bridging the gap. Experts believe that within 15 years, quantum computers will pose
a substantial threat to public-key cryptography [MP21]. Hence, it is urgent to develop

∗The work was partially done while being with Lamarr Security Research.

Licensed under Creative Commons License CC-BY 4.0.
Received: 2023-01-15 Accepted: 2023-03-15 Published: 2023-06-09

https://doi.org/10.46586/tches.v2023.i3.366-390
mailto:aikata@iaik.tugraz.at, gaetan.cassiers@iaik.tugraz.at, ahmet.mert@iaik.tugraz.at, sujoy.sinharoy@iaik.tugraz.at
mailto:andrea.basso@bristol.ac.uk
http://creativecommons.org/licenses/by/4.0/

A. Aikata, A. Basso, G. Cassiers, A. Can Mert, S. Sinha Roy 367

and migrate to quantum-resistant alternatives to prevent security breaches. As a first
step, the American National Institute of Standards and Technology (NIST) initiated a
standardization process in 2016 to find new quantum-resistant protocols, also known as
Post Quantum Cryptography (PQC), for key encapsulation and digital signatures. In
this standardization, the lattice-based schemes debuted as the most promising candidates.
These schemes offered good performance, efficiency, low latency, and agility.

While the NIST standardization aimed at selecting a portfolio of post-quantum algo-
rithms for general applications, there is a need for developing tailored post-quantum schemes
that meet application-specific needs, for example, the constraints of the IoT and automotive
applications. In recent years, several new post-quantum algorithms [DPPvW22, MKKV21]
have emerged with better performance or security features (or both) than the candidate
algorithms in the NIST standardization. Security against side-channel attacks [MOP07] has
become an essential requirement in applications where an attacker can obtain side-channel
information such as variations in the power consumption or electromagnetic emanation, or
temperature of the cryptographic device.

Masking is a widely used countermeasure against differential power analysis-based
side-channel attacks [MOP07]. Several masking schemes have been proposed in the lit-
erature [RRVV15, OSPG18, BDK+21b, AMD+21, KDB+22, FBR+22] for lattice-based
public-key algorithms. Section 2.5 discusses masking works in more detail. Typically,
masking schemes for lattice-based algorithms increase the computation overhead by approx-
imately 2.5× to 6× (for first-order protection) with respect to unprotected implementations.
Therefore, significant research is needed to investigate masking schemes that reduce the
performance overhead. One of the computationally-intensive operations in lattice-based
algorithms is the multiplication of polynomials [SR19]. The asymptotically fastest method
for this is to use Number Theoretic Transform (NTT), which reduces polynomial multi-
plication to coefficient-wise multiplication. The NTT-based polynomial multiplication is
however limited to polynomial rings where the modulus q is prime (we name such rings
“NTT-friendly”, while rings with no NTT are “NTT-unfriendly”). It is still possible to
use NTT-based polynomial multiplication to implement cryptographic algorithms with
NTT-unfriendly rings, but this comes at a performance overhead since it typically involves
computing NTTs with a significantly larger modulus (see Section 2.5).

On the other hand, recent works have shown that when a structured lattice-based
scheme uses a power-of-2 modulus, the masking countermeasure incurs the least perfor-
mance overhead [BDK+21b, FBR+22, KDB+22] since, when using binary (masked or not)
representations, a modular reduction is essentially free for such moduli. The downside of
using a power-of-2 modulus is that the ring is NTT-unfriendly. In learning with errors
(LWE) or learning with rounding (LWR)-based public-key schemes, this limitation is
mitigated since one operand polynomial (typically a secret or an error polynomial) is
always a small-coefficient polynomial, allowing significant optimizations in multiplication
algorithms, both “classical” (e.g, schoolbook, Toom-Cook or Karatsuba) and NTT-based
(allowing to use a smaller modulus [AMJ+22]). For example, [RB20] presents a very low
latency schoolbook polynomial multiplier (unprotected implementation) by using many
small-coefficient (hence low-cost) multipliers in parallel. Unfortunately, existing masking
schemes for lattice-based cryptography prevent such optimizations since they split a secret
or an error polynomial with small coefficients into uniformly random polynomials with
large coefficients.
Our Contributions: In this work, we propose two techniques to extend the benefits
of the small-coefficient property to masked implementations. These techniques are then
instantiated in concrete hardware design, implementation, and t-test evaluation to verify
real-life security guarantees.1

Our first method is an optimized technique for NTT-based polynomial multiplication in

1Our implementation is available at https://extgit.iaik.tugraz.at/sesys/kavach_artifacts.

https://extgit.iaik.tugraz.at/sesys/kavach_artifacts

368 Kavach: Lightweight masking for polynomial arithmetic

masked implementations of algorithms with NTT-unfriendly rings. Through a new choice
of group for the arithmetic masking, we are able to reduce the required size for the modulus
of the NTT. Among methods that improve over the worst-case “large coefficient” masked
NTT-based multiplication for NTT-unfriendly rings, our method is the first general one
(i.e., it works with any modulus), and it surpasses all the existing works (in hardware, it
uses two to three times less area for the same performance). This method works for any
masking order and has a cost (in computation time or area) proportional to the number
of shares. Another advantage of this method is that it can efficiently use hardware that
implements non-masked NTT-based polynomial multiplication in the same NTT-unfriendly
ring, allowing resource-sharing.

Our second method applies to “classical” multiplication algorithms. We propose a
new hybrid masking that combines arithmetic and Boolean masking, which allows us to
split small secret coefficients into small shares, thus preserving the small secret property.
We show how to use masking when implementing lattice-based cryptography, including
conversions between arithmetic and hybrid masking. Our new hybrid masking gadgets are
proven to be secure against first-order leakage in the hardware glitch-robust probing model.
Finally, we provide experimental validation by implementing the proposed algorithms in
hardware and performing leakage assessment tests [GJJR11]. Regarding the performance,
the use of hybrid masking in place of the state-of-the-art approach of arithmetic masking
with large coefficients allows using small multipliers instead of large ones (4.5× area gain),
at the cost of performing more additions (accumulators are anyway instantiated, hence
this does not increase the area).

With these contributions, we improve the state-of-the-art for masking lattice-based
schemes and provide improved insights on implementation costs for future PQC scheme
designs.
Organization: We present notations and preliminary information about polynomial
multiplications, lattice-based construction, generic countermeasures to side-channel attacks,
and the research gap in Section 2. In Section 3, we present the methods to optimize
side-channel countermeasures for an NTT-based polynomial arithmetic unit. In the next
section, Section 4, we introduce the technique of hybrid masking to efficiently mask non-
NTT-based polynomial arithmetic. We then implement the proposed techniques and
provide implementation details in Section 5. Following this, Section 6 describes the t-test
evaluation setup and results. Finally, in Section 7, we discuss the applications of the
proposed techniques and conclude the work.

2 Background
2.1 Notation
We use Zq to represent integers modulo q. We use Rq to represent polynomial ring Zq/φ(x)
where φ(x) is a reduction polynomial of degree n. We use Bl to represent a byte array of
size l. We use lowercase, bold lowercase, and bold uppercase letters to represent an integer
(e.g., a ∈ Zq), a polynomial (e.g., a =

∑n−1
i=0 a[i] · xi ∈ Rq) or vector (e.g., a ∈ Zn

q), and a
vector of polynomials (e.g., A ∈ Rk×l

q), respectively. We use {a}l to represent a vector of
length-l where each element is a. We use a[i], a[i] and A[i] to represent the i-th bit of
integer a, i-th of coefficient of polynomial a and i-th polynomial of polynomial vector A.
We use × and ? to represent polynomial multiplication and coefficient-wise multiplication
of two polynomials, respectively. We use · to represent integer multiplication (e.g., a · b)
or multiplication of an integer with coefficients of a polynomial (e.g., a · b or b · a). We
use &, |, ⊕, !, and � / � to represent logical AND, OR, XOR, NOT, and right/left
shift operations, respectively. We represent the sampling of an integer a from uniform
distribution as a $←− Zq. Similarly, we use a

$←− Rq and a ← χ(Rq, σ) to represent the

A. Aikata, A. Basso, G. Cassiers, A. Can Mert, S. Sinha Roy 369

sampling of polynomial a ∈ Rq from uniform distribution and χ with standard deviation
σ, respectively. A polynomial s ∈ Rq is small if all its coefficients belong to the range
[−µ,+µ] mod q where µ is a k-bit positive integer and K = 2k with µ� q.

2.2 Masking
Differential side-channel attacks are very powerful against cryptographic schemes. A
strong countermeasure against them is the use of masking, which randomizes the power
consumption or electromagnetic emanation of the cryptographic platform. Masking a
computation means replacing every intermediate value x with a randomized tuple (named
a sharing) that represents the value, and whose elements are the shares. Then, all
computations are modified to operate on these shares: every computation is replaced by a
gadget that performs the same computation on the shares. In this paper, we are mainly
interested in first-order arithmetic masking, where the sharing of a value x ∈ Zq is a tuple
(x0, x1) ∈ Z2

q such that x0 + x1 = x mod q. The sharing (x0, x1) of x is uniform if its
probability distribution is uniform over the set

{
(x0, x1) ∈ Z2

q|x0 + x1 = x mod Zq

}
, and

a sharing is fresh if its distribution over that set is independent of any other value in the
computation (excluding values that are computed from these shares). As a particular case,
Boolean masking is arithmetic masking in Z2. We also extend the notion of sharing to
polynomials (coefficient-wise): arithmetic shares of s ∈ Rq are the tuple (s0, s1) ∈ Rq if
s0 + s1 = s.

The security of masking is most often studied in the t-probing model [ISW03]. A
gadget is t-probing secure if any set of t (t = 1 for first-order masking) intermediate values
in the computations (named probes) is independent of the secret values of the inputs of
the gadget, assuming that the input shares are fresh. This abstract leakage model does
however not cover the leakage caused by glitches (or other intra-cycle data-dependent
timing) in hardware implementations, which led to the introduction of the glitch-robust
probing model [FGP+18]. In this model, a probe on a wire observes not only the value
of the wire but also all the inputs of the combinatorial circuit that computes that wire,
therefore only the synchronization elements (i.e., the registers) stop the propagation of
glitches.

2.3 Polynomial multiplication
Polynomial multiplication is one of the fundamental operations in lattice-based cryptog-
raphy. There are different approaches to implementing polynomial multiplication. The
selection of the proper implementation method depends on scheme parameters, target
performance, and platform.
Schoolbook polynomial multiplication: For polynomials a ∈ Rq and b ∈ Rq, the
polynomial multiplication c = a× b is defined as

∑n−1
i=0

∑n−1
j=0 a[i] · b[j] · xi+j . When the

multiplication is performed in a polynomial ring, a separate reduction operation with
reduction polynomial φ(x) is required. When φ(x) has a special form, this reduction
operation can be merged into the multiplication operation free of cost. For example, when
φ(x) is xn + 1, c = a× b is defined as

∑n−1
i=0

∑n−1
j=0 (−1)b(i+j)/nc · a[i] · b[j] · xi+j (mod n).

using xn ≡ −1 [LFK+19]. Although the Schoolbook method has high computational
complexity (O(n2)), it works with every parameter set and does not have any constraint
for the polynomial ring or ring modulus.
Karatsuba polynomial multiplication: Karatsuba method follows a divide-and-
conquer approach and has the complexity O(nlog2 3) [KO62]. Let a = ahx

n/2 + al

and b = bhx
n/2 + bl be polynomials of size n where ah, al, bh and bl are (n

2 − 1)-degree
polynomials. Then, a×b can be written as (ah×bh)xn +(ah×bl +al×bh)xn/2 +(al×bl).
Karatsuba method reduces the number of (n

2 − 1)-degree polynomial multiplications from

370 Kavach: Lightweight masking for polynomial arithmetic

4 to 3 by using the term (ah × bl + al × bh) = (ah + al)× (bh + bl)− ah × bh − al × bl.
Karatsuba can be applied recursively to reduce the size of the multiplication operations.
NTT-based polynomial multiplication: The NTT of an n-size polynomial a can
be computed as a[i] =

∑n−1
j=0 a[j] · ωij (mod q) for i ∈ [0, n− 1], where ω ∈ Zq is a n-th

root of the unity, i.e. it satisfies the conditions ωn ≡ 1 (mod q), ωi 6= 1 (mod q) ∀i < n.
Such a root exists only if q ≡ 1 (mod n). NTT-based polynomial multiplication has
the fastest time complexity O(n · logn) [CT65]. When the polynomial multiplication
operation is performed in a ring Rq = Zq/φ(x), a separate reduction with polynomial φ(x)
is required after the completion of multiplication. If φ(x) has the special form xn + 1,
then negative wrapper convolution (NWC) can be used to merge the reduction with the
actual polynomial multiplication. NTT requires the modulus q of ring Rq = Zq/〈xn + 1〉
to be prime. Therefore, cryptographic schemes that use such a modulus are NTT-
friendly (e.g., [BDK+18, BDK+21a] and the ones that do not are NTT-unfriendly (e.g.,
[BMD+20, MKKV21]).

2.4 Lattice-based public key encryption schemes
Several lattice-based PKE/KEM schemes are based on the Learning With Errors (LWE)
problem and its variants [Reg09]. For a given public matrix A ∈ Zk×l

q and vector
B = A × S + E ∈ Zk

q , there is no known algorithm that can recover secret vector
S ← χ(Zl

q, σ) in polynomial time where E ← χ(Zk
q , σ) is an error vector. Solving the secret

S in the presence of error E is known as the LWE problem. A variant of the LWE problem
is the Learning With Rounding (LWR) problem, which introduces deterministic errors by
scaling the elements of A× S by a non-integer constant and rounding them to the closest
integer. Ring-LWE/LWR (RLWE/RLWR) and Module-LWE/LWR (MLWE/MLWR)
problems [LS15] are implementation-friendly variants of LWE/LWR, and both operate
over polynomial rings instead of integers. In the following, we briefly describe the LPR
encryption scheme [LPR10] which has been used as a framework for building modern
LWE/LWR-based public-key encryption and encapsulation schemes.
LPR Encryption Scheme: In Algorithm 1, we present the high-level description of
key generation, encryption, and decryption procedures of the RLWE-based LPR scheme.
Although LPR-based schemes are IND-CPA secure, they are not secure against chosen
ciphertext attacks (CCA) where an adversary with access to the decrypted messages
can recover the secret key by using carefully-selected ciphertexts. In order to achieve
IND-CCA security, LWE/LWR-based schemes are using Fujisaki-Okamoto (FO) transfor-
mation [FO99] which uses a combination of encryption/decryption procedures with hash
functions to generate CCA-secure encapsulation and decapsulation procedures. With the
FO transformation, the decapsulation procedure performs a re-encryption after decrypting
the message and then compares the input ciphertext and the generated ciphertext by
re-encryption procedure. If the comparison fails, i.e. the input ciphertext is invalid, the
decapsulation mechanism outputs a random byte array as the decrypted message.

2.5 Masking lattice-based public-key schemes and gaps
In the last several years, especially during the NIST PQC standardization competition,
several masking schemes for PQC algorithms have been proposed. In this section, we
revisit a subset of existing masking schemes that are relevant to this paper.

The first masking of a ring-LWE-based LPR public-key encryption (Algorithm 1)
was proposed in [RRVV15], based on arithmetic masking in Rq. Concretely, to mask
the decryption, it splits the secret s ∈ Rq into two uniformly random arithmetic shares
s0, s1 ∈ Rq. Next, m̃′ is computed as two arithmetic shares m̃′0 = (v − u × s0) and
m̃1
′ = −u× s1. Finally, for the comparison-based decoding step, a probabilistic masked

A. Aikata, A. Basso, G. Cassiers, A. Can Mert, S. Sinha Roy 371

Algorithm 1 LPR Encryption Scheme [LPR10]
Procedure PKE.KeyGen()

a
$←− Rq

s, e← χ(Rq, σ) ∈ Rq

t = (a× s + e) ∈ Rq

return pk = (a, t), sk = (s)

Procedure PKE.Encrypt(pk = (a, t),m ∈ B32, r ∈ B32)
s′, e′, e′′ ← χ(Rq, σ, r) /* r is used as random seed */
u = (a× s′ + e′) ∈ Rq

v′ = (t× s′ + e′′) ∈ Rq

m̃ = Encode(m) ∈ Rq /* Encoding msg bits to poly. coefficients */
v = (v′ + m̃) ∈ Rq

return ct = (u, v)

Procedure PKE.Decrypt(ct = (u, v), sk = (s))
m̃′ = (v − u× s) ∈ Rq

m′ = Decode(m̃′) ∈ B32 /* Decoding poly. coefficients to msg bits */
return m′

decoder is used in [RRVV15]. A hardware implementation of the masked decryption is
provided where the masked polynomial multiplication is implemented using the NTT
method. Masking the polynomial arithmetic is simple as it incurs only d× computation
overhead while d number of arithmetic shares of the secret. On the other hand, the paper
shows that masked decoding is a more complex and slow operation. A more efficient
masked decoding technique is presented in [OSPG18]. To perform decoding on the input
arithmetic shares of a coefficient, it first shifts the distribution of the shares, then applies
the arithmetic-to-Boolean (A2B) transformation, and finally computes the sign bit. Besides
improving the masked decoding, the paper also presents a complete masking framework
for ring-LWE-based public-key encryption with CCA security (i.e., chosen ciphertext
attack resistance). Hence, the paper masks sensitive parts of the re-encryption operation
including error and ephemeral secret polynomial sampling, and random number generation.
With a first-order masked implementation, the NTT-based polynomial multiplication cost
increases to 2× and the bit-wise building blocks for example, error sampling, and random
number generation become more than 5× slower. The masked decryption for a CCA-secure
variant of NewHope [ADPS16] is around 5.7× slower than its non-masked operation.

Significant reduction in the masking overhead for CCA-secure public-key encryption
or KEM is demonstrated in [BDK+21b]. The integration of bit-wise building blocks with
the polynomial arithmetic blocks inside a masking scheme requires expensive Boolean-to-
arithmetic and arithmetic-to-Boolean conversions. The paper observes that by choosing
the modulus q to be a power-of-2, these conversions can be simplified a lot compared
to the case with a prime modulus. For such power-of-2 modulus, the paper heavily
optimizes masked logical shifting on arithmetic shares and error sampling from a binomial
distribution. On the ARM Cortex-M4 platform, masking the Saber KEM (which uses
power-of-2 modulus) incurs only 2.5× computation overhead unlike 5.7× overhead with
prime modulus in [OSPG18]. Polynomial multiplication is computed using a combination
of Toom-Cook, Karatsuba, and low-degree schoolbook methods as the NTT method is not
a natural choice with a power-of-2 modulus.

A lightweight masked hardware implementation of Saber KEM is presented in [AMD+21].
It shows an area overhead of 2.9× and the polynomial multiplication is implemented using
the Schoolbook method. In [KDB+22], the authors propose a higher-order masked Saber
implementation on ARM Cortex-M4. They show that the increase in performance overhead
for higher-order masking of Saber is smaller compared to Kyber. Their first-order masked

372 Kavach: Lightweight masking for polynomial arithmetic

implementation shows 2.7× performance overhead. Both works do not take the advantage
of secret coefficients of Saber being small.

A masked HW/SW codesign implementation of several NIST PQC finalists (such as
Saber, Kyber, and NTRU) is presented in [FBR+22]. It extends the instruction set of
a RISC-V processor by incorporating an NTT-based polynomial multiplier. Hence, all
PQC schemes irrespective of cohesion with NTT, are forced to use the NTT method
for computing polynomial multiplication. Critical non-linear operations for masking are
computed in the hardware. When the masking countermeasure is turned off, Kyber
(uses NTT-friendly prime) is around 1.2× faster than Saber (uses NTT-unfriendly power-
of-2 modulus). However, with first-order masking turned on, Kyber’s decapsulation
becomes around 1.53× slower than that of Saber. Such results clearly demonstrate that in
applications where masking countermeasure becomes essential, using a power-of-2 modulus
is more beneficial for the performance even though it may cause a minor slowdown in
polynomial multiplication. Therefore, in this work, we primarily consider masking with
power-of-2 modulus. We would like to remark that a power-of-2 modulus can be used in
standard as well as structured lattices with both LWE and LWR foundations.
Research gap: Taking advantage of small operands for the implementation of polynomial
multiplication is studied by several works. In [RB20], the authors propose an efficient
schoolbook multiplier implementation where one of the operands has small coefficients.
Their implementation uses an add-shift-based approach to perform the multiplication with
small coefficients and eliminates large multiplier units. For NTT-based multiplication
implementations in Rq where q is power-of-2, [AMJ+22, CHK+21, BAD+21] show how to
take advantage of small coefficients and use a smaller NTT-friendly modulusQ. For example,
authors in [AMJ+22] show that a 25-bit NTT-friendly prime Q would be sufficient to
perform NTT-based polynomial multiplication for Saber instead of a 34-bit prime [FSS20].

A natural question is raised in [ACC+21], can the masked implementations also
benefit from one of the multiplicands being small? Existing works targeting masked
implementations of schemes with power-of-2 modulus (e.g., Saber, Florete, Espada, and
Sable [BMD+20, MKKV21]) fail to utilize the small secret property. The size of the
datapath for schoolbook or NTT-based implementations grew in this case as shown in
previous works [FBR+22, AMD+21], which is not needed and is an undersell for efficient
MLWR-based schemes. In this work, we show how to utilize small coefficients in masked
implementations.

3 Masking NTT-based polynomial multiplication in NTT-
unfriendly rings

In this section, we introduce our first method: an efficient masked NTT-based multiplication
for small polynomials in NTT-unfriendly rings. This method is well-suited to platforms
where an NTT accelerator is already available, for example, micro-controllers with NTT
acceleration or hardware components that implement multiple lattice-based algorithms,
including NTT-based ones such as Kyber and Dilithium.

In general, NTT-based polynomial multiplication requires the coefficient modulus q to
be a prime, since otherwise (e.g., when q is power-of-2) the NTT does not exist in Rq. To
force NTT-based polynomial multiplication in such rings, one solution is to perform an
NTT-based multiplication using a large and prime modulus Q such that the coefficients
in all the intermediate values are never larger than the modulus, and therefore no actual
modular reduction (mod Q) ever happens. Then, the final result is obtained with a
reduction modulo q. In general, one must ensure Q > n · q2 to avoid unwanted modular
reductions [AMJ+22, FBR+22].

The size of Q can be reduced when one polynomial operand is always of small coefficients,

A. Aikata, A. Basso, G. Cassiers, A. Can Mert, S. Sinha Roy 373

for example, an error or secret polynomial in an LWE/LWR scheme. Concretely, if one
of the polynomials is small (i.e. all its coefficients belong to [−µ,+µ] mod q), a prime
Q > n·q·µ is sufficient. Optimized but unprotected hardware [AMJ+22] and software [SR19]
implementations of NTT-based polynomial multiplication in NTT-unfriendly rings benefit
from this relaxation on Q to improve speed and also reduce the memory requirement and
width of the datapath.

However, when the small polynomial is arithmetically masked, the shares of its coef-
ficients are uniform in Zq and are therefore not small. The natural solution is therefore
to switch back to using a large prime Q > n · q2, resulting in performance degrada-
tion [FBR+22]. The key idea of our new technique is the change of perspective: instead of
multiplying each of the secret shares in modulo q with the public polynomial (achieved by
working with a large Q > n · q2), we consider the non-masked multiplication (hence using
a smaller Q > n · q · µ) and mask the operations of this multiplication using arithmetic
masking modulo Q. Therefore, we do not care about modular reductions happening on
the shares: the final unmasked result is guaranteed to be correct.

Our new method is described in Algorithm 2. Let the unprotected polynomial multi-
plication be a× s in Rq where the public polynomial a is uniformly random in Rq and
the secret polynomial s is a small polynomial with coefficients in [−µ,+µ]. We take as
input an arithmetic sharing (s0, s1) in RQ for a prime Q > n · q · µ (converting from Rq if
needed), then compute two polynomial multiplications a× s0 and a× s1 independently in
RQ using NTTs. Finally, we perform masked modular reduction modulo q to bring the
result to Rq.

Algorithm 2 NTT-based polynomial multiplication with masking
Input: a ∈ Rq (public polynomial), s0, s1 ∈ RQ (secret shares s.t. s0 + s1 = s mod Q)
Output: t0,q, t1,q (s.t. t0,q + t1,q = a× s mod q)
1: t0,Q ← INTT(NTT(a) ? NTT(s0)) ∈ RQ

2: t1,Q ← INTT(NTT(a) ? NTT(s1)) ∈ RQ

3: {t0,q, t1,q} ← MaskedRedQ→q(t0,Q, t1,Q)
4: return t0,q, t1,q ∈ Rq

As a concrete example, let us consider Saber [BMD+20]: q = 213 andRq = Zq/〈x256+1〉.
If NTT is to be used for unprotected a × s, an ephemeral-prime modulus Q (25-bit
number [AMJ+22, CHK+21, DMG23]) is needed since the coefficients of the public a and
secret s are respectively 13 and 4-bits long. Our technique (Algorithm 2) can use the
same value for Q. Without using our technique, the coefficient of the shares of the secret
polynomial are uniformly distributed, and Q must be 34-bit for the sake of correctness,
which is commonly done in masking literature [ACC+21, FBR+22].

For one such NTT-unfriendly parameter set, the authors in [AMJ+22] propose 23, 24,
and 25-bit primes in order to support NTT-based polynomial multiplication. The LUT
consumption for making a 34×34-bit multiplier is twice as much as a 25×25-bit multiplier
and 3× compared to 23× 23-bit multiplier. The 39-bit NTT-based multiplier proposed
by the authors in [FBR+22] consumes 2,454 LUTs, 1,917 FFs, 7 DSPs, 4.5 BRAMs, and
requires 4,096 clock cycles. The proposed method ensures that no changes need to be
made to the NTT-based polynomial arithmetic unit and can therefore, finish the NTT
in just 512 clock cycles and consume only 2,257 LUTs, 1,079 FFs, 4 DSPs, and 1 BRAM
(from [AMJ+22]).

Regarding modulus conversions for arithmetic masking, a generic solution is to use
an arithmetic-to-Boolean (A2B) conversion followed by a Boolean-to-arithmetic (B2A)
conversion [BC22]. However, some of these conversions can be avoided to reduce costs, e.g.
when the input and/or output is generated/used in a Boolean-masked representation.

374 Kavach: Lightweight masking for polynomial arithmetic

4 Compact polynomial arithmetic using hybrid masking
In this section, we introduce our second method for masking polynomial multiplication.
Unlike our NTT-based method, this hybrid masking technique produces small arithmetic
share coefficients if the unmasked polynomial has small coefficients. Then, the polynomial
multiplication can be performed on the shares using any multiplication algorithm, with the
ability to optimize for the small coefficients. We introduce the hybrid sharing representation
and explain how to generate and use it. Finally, we describe how these techniques can be
applied and optimized for polynomial multiplication.

4.1 Hybrid masking
In a nutshell, hybrid masking represents a small value s in a large group Zq by starting
from an arithmetic sharing (s0, s1) in a smaller group ZK (i.e., s = s0 + s1 mod K). It
converts this modular sharing into a non-modular one (i.e., in Z) by explicitly computing
the overflow bit c: s = s0 + s1 −Kc, which is then also a correct (non-uniform) arithmetic
sharing in Zq for any q. Finally, since that overflow bit c may leak information on the
secret, we encode it using Boolean masking. These two sharings (arithmetic and Boolean)
form together a hybrid sharing.

Definition 1 (First-order hybrid sharing). Let s ∈ {0, . . . ,K−1}1, s0, s1 ∈ {0, . . . ,K−1}
and c0, c1 ∈ {0, 1}. The tuple (s0, s1, c0, c1) is a first-order hybrid sharing of s if

s = s0 + s1 −K(c0 ⊕ c1).

The hybrid sharing is uniform if (s0, s1) is a uniform arithmetic sharing of s in ZK

and if the Boolean sharing (c0, c1) is uniform and independent of (s0, s1), conditioned on
the overflow bit c = c0 ⊕ c1.

Example. For example, let K = 8, and s = 5. If the arithmetic part of the sharing is
(s0, s1) = (2, 3), then there is no overflow and c = 0 (hence (c0, c1) must be (0, 0) or (1, 1)).
However if we take s0 = 6, then s1 = 7 (the hybrid sharing definition implies s = s0 + s1
mod K), and there is an overflow, giving the carry bit c = 1.

Let us now show why it is important to mask c.

Proposition 1. In a uniform hybrid sharing (s0, s1, c0, c1) of s modulo K, the distribution
of the overflow bit c = c0 ⊕ c1 depends on s.

Proof. As noted above, s0 + s1 = s mod K. Therefore, if s0 ≤ s, then s1 = s − s0 and
c = 0. Conversely, if s0 > s, s1 = K + s − s0 and c = 1. Moreover, since (s0, s1) is
a uniform sharing of s in ZK , s0 is uniform in ZK and independent of s. As a result
Pr[c = 1] = Pr[s0 > s] = (K − 1− s)/K.

Proposition 2. In a uniform hybrid sharing (s0, s1, c0, c1) of s modulo K, for any
i, j ∈ {0, 1}, the hybrid share (si, cj) tuple is uniformly distributed over ZK × {0, 1} and
independent of s.

Proof. For all i, j ∈ {0, 1}, we marginalize with respect to c1−j the conditional independence
assumption for a uniform hybrid sharing to observe that cj is independent of (s0, s1), since
cj is independent of c. This implies that cj is independent of (si, s). Next, since (s0, s1)
are uniform arithmetic shares of s, si is independent of s. We conclude by remarking that
cj and si are uniform.

1If s belongs to another integer interval (e.g., s ∈ {−µ, . . . , µ}), we can share a shifted version of s
(e.g., s+ µ ∈ {0, . . . , 2µ}) and handle the subtraction of that offset at a later stage.

A. Aikata, A. Basso, G. Cassiers, A. Can Mert, S. Sinha Roy 375

Algorithm 3 AOverflowBit (Reg (·) indicates the need for a register in a hardware
implementation to ensure security against glitches.)
Input: Shares s0, s1 ∈ ZK , with K = 2k.
Output: Shares c0, c1 ∈ Z2 such that c0 ⊕ c1 = (s0 + s1)� k.
1: γ, c1

$←− Z2, r
$←− ZK

2: Initialize the table CA using Eq. (1)
3: T ← Reg ((s0 − r −Kγ) mod 2K)
4: T1 ← Reg ((T +Kc1 + s1) mod 2K)
5: Tl ← T1 mod K
6: Th ← T1 � k
7: c0 ← (Th + CA[Tl]) mod 2
8: return c0, c1

An interesting property of hybrid masking is that it can be viewed as (non-uniform)
three shares arithmetic sharing (s0, s1,−Kc) of s in any integer group, with the twist that
the bit c is encoded with Boolean sharing. We now discuss how to generate hybrid shares
from arithmetic shares modulo K. This will be followed by an introduction to the gadget
that exploits this property to compute any linear operation on a hybrid masked value, and
outputs arithmetically masked shares.

4.2 Hybrid shares generation
Let us first consider the problem of generating uniform hybrid shares from arithmetic
shares (s0, s1) modulo K. We can directly use s0 and s1 as the arithmetic part of the
hybrid shares and only have to compute fresh Boolean shares of c = b s0+s1

K c without
leaking any information about s = s0 + s1 mod K. In other words, we want Boolean
shares of the overflow bit of the summation s0 + s1.

In this section, we propose two solutions for this problem. The first one is inspired by
the table-based Arithmetic-to-Boolean (A2B) technique of [CT03] that can evaluate any
function on arithmetic shares in ZK and provides its result as an arithmetic sharing in ZK′ .
The second one is based on the masked modular addition of [BC22] in which the carry is
computed in order to perform the modular reduction. Although the second approach is
slower compared to the first one, it is more compact.

Table-based technique. We develop a hardware version of the A2B algorithm of [CT03]
(using n = 1 nibble, hence the fix of [Deb12] is not needed) that generates only the overflow
bit. In the following, K = 2k. Our AOverflowBit (Algorithm 3) takes two arithmetic
shares, (s0, s1) ∈ Z2

K and outputs (c0, c1) ∈ Z2
2 such that c0 ⊕ c1 = (s0 + s1) � k. The

gadget uses three uniform random values, r ∈ ZK and γ, c1 ∈ Z2, to hide the sum of
the two shares and their carry. Firstly, a table CA with K entries is generated (it is
implemented as a RAM). For a ranging from zero to K − 1, each entry is computed as

CA[a] =
{
γ, if a < K − r,
γ ⊕ 1, otherwise.

(1)

Finally, the share c0 is computed from the result of the table lookup and the overflow bit
of the index computation.

The idea behind this gadget is that since we cannot compute s0 + s1 explicitly and
compare it to K, we sample randomness r, compute (s0− r) + s1 and compare it to K − r.
Since the result of the comparison must be masked, we take the random bit γ as a Boolean
mask for the result of the comparison, which is implemented as a table lookup.

Proposition 3. AOverflowBit (Algorithm 3) is correct.

376 Kavach: Lightweight masking for polynomial arithmetic

Proof. Let us remark that Tl = (s0 + s1 − r) mod K and that Th = b((s0 + s1 − r) mod
2K)/Kc ⊕ γ ⊕ c1. Since −K < s0 + s1 − r < 2K, we identify three cases. In the first case,
−K < s0 + s1− r < 0, which implies that s0 + s1 < K, and Tl = s0 + s1− r+K, therefore
CA[Tl] = γ ⊕ 1, while Th = 1 ⊕ γ ⊕ c1, and as a result c0 = c1, which is correct. In the
second case K ≤ s0 + s1 − r < 2K, we have s0 + s1 ≥ K and Tl = s0 + s1 − r −K, and
the proof is similar to the first case. The third case 0 ≤ s0 + s1 − r < K has to be split
in two sub-cases s0 + s1 < K and s0 + s1 ≥ K, which are analyzed similarly to the other
cases.

Proposition 4. AOverflowBit is first-order glitch-robust probing secure. Its output shares
are uniformly distributed and independent of the input shares, conditioned on the unmasked
output c = c0 ⊕ c1.

Proof. Let us assume that (s0, s1) are uniform arithmetic shares of s modulo K. s0 and
s1 are the arithmetic shares of s.

We will show that any glitch-extended probe on an intermediate value is independent
of s. First, the pre-computation of the table CA does not depend on any input share.
Then, the computation of T depends on only one input share, hence it is independent
of s. Additionally, r + K · γ is uniformly distributed in {0, . . . , 2K − 1}, therefore T is
independent of s0. Next, in the computation of T1, Tl and Th, s0 does not appear (except
through T , but it is independent of s0 since r is uniform1), hence all these intermediate
values are independent of s. In the table lookup, we assume that the RAM does not glitch
(i.e., does not read multiple cells in a single cycle), therefore this only leaks the address Tl

and the read value (γ or γ⊕1). However, Tl is independent of γ (due to the selection of the
LSBs in the reduction modulo K), hence leaking both values at once is still independent of
s. Finally, in the computation of c0, Th is independent of γ thanks to the addition of c1 in
its computation, and therefore it is independent of CA[Tl], ensuring that the computation
is independent of s.

Lastly, it is clear that (c0, c1) are uniform shares due to the independent sampling of
c1. This also ensures the independence of (s0, s1), conditioned on c.

This proof relies crucially on glitch-free memory access, which has been empirically
validated by the experiments shown in Section 6.

Adder-based technique. We now sketch an adder-based algorithm of AOverflowBit.
This variant does not use a table, hence it does not require the instantiation of a RAM (it
can be fully implemented using registers and combinatorial logic), and moreover its size is
O(k) instead of O(2k) of the table-based gadget. However, the adder-based gadget has
a minimum latency of k + 1 clock cycles, in contrast with the 3 cycles for Algorithm 3
(assuming one cycle latency for RAM access).

When K = 2k, we remark that (s0, 0) and (0, s1) are two k-bit (non-uniform) Boolean
shares of s0 and s1, respectively. The masked overflow bit can then be obtained with
the Boolean-masked k-bit adder described in Algorithm 4. We use the ripple-carry
adder of [BC22], and adapt it to the hardware design context by unrolling the loops and
using the HPC2 masked hardware AND gadget [CGLS21, CS21], instead of the software
PINI1 [CS20].

Algorithm 4 instantiates k carry-generating units (i.e., full-adders that compute only
the carry-out) whose inputs are the shares a = (s0[i], 0), b = (0, s1[i]) and c = (x0[i], x1[i]).
The carry-out shares are computed as a⊕ ((a⊕ b) &(a⊕ c)). By using the AND gate in this
expression with a AND-HPC2 gadget, we achieve a latency of one cycle w.r.t. the carry-in
bit c (and two cycles with respect to the input a), leading to a total adder latency of k + 1

1Let us remark that, beyond the probing model, we should avoid horizontal attacks that recover r,
that is, re-generate the table CA often enough that an adversary is not able to recover r.

A. Aikata, A. Basso, G. Cassiers, A. Can Mert, S. Sinha Roy 377

Algorithm 4 AOverflowBit-Adder

Input: Shares s0, s1 ∈ ZK , with K = 2k.
Output: Shares c0, c1 ∈ Z2 such that c0 ⊕ c1 = (s0 + s1)� k.
1: (x0[0], x1[0])← (0, 0)
2: for i = 0, . . . , k − 1 do
3: (y0, y1)← (s0[i], s1[i])
4: (z0, z1)← (s0[i]⊕ x0[i], x1[i])
5: (t0, t1)← AND-HPC2((y0, y1), (z0, z1))
6: (x0[i+ 1], x1[i+ 1])← (t0 ⊕ s0[i], t1)
7: (c0, c1)← (x0[k], x1[k])
8: return c0, c1

Algorithm 5 MskMux (multiplexer with the masked select bit.)
Input: Boolean sharing (c0, c1) with c0, c1 ∈ Zl

2 representing c = c0 ⊕ c1, r1, r2 ∈ Zl
q.

Output: z[i] = c[i] ? r2[i] : r1[i] for i = 0, . . . , l − 1.
1: for i = 0, . . . , l − 1 do
2: u0[i]← Reg (c1[i] ? r2[i] : r1[i])
3: u1[i]← Reg (c1[i] ? r1[i] : r2[i])
4: z[i]← Reg (c0[i] & u1[i]) | Reg (!c0[i] & u0[i])
5: return z

cycles. Since Algorithm 4 is a straight port to the hardware of the masked adder of [BC22],
its correctness proof trivially carries over, and our choice of AND gadget ensures that
the security proof also remains valid (and covers glitches), since HPC2 satisfies the PINI
security property, like PINI1 (see [CGLS21] for details). Finally, AOverflowBit-Adder
can be generalized to non power-or-two K by using the modular adder of [CGLS21].

4.3 Hybrid masking of scalar linear functions
The HybridLin gadget (Algorithm 6) computes L(x) where L is a linear function (e.g.,
multiplication by a constant value) that maps {0, . . . ,K − 1} to the group Zq. The gadget
takes as input hybrid shares and outputs uniform arithmetic shares in Zq. The core
idea of its construction is a masked Mux gadget (Algorithm 5) that takes as input the
Boolean shares (c0, c1) of length-l vectors and outputs uniform arithmetic shares (v0,v1)
of K · L(1) if c = 1, or 0 if c = 0.1 Note that operations presented in Algorithm 5 are
generic for vectors of length-l. For polynomials, l = n, and for scalars, l = 1. Then, L
can be applied to the arithmetic input shares s0 and s1, leading to the output sharing
(L(s0) + v0, L(s1) + v1).

Proposition 5. If (s0, s1, c0, c1) ∈ Z2
K × Z2

2 is a hybrid sharing of x ∈ ZK and the
function L : ZK → Zq is linear, then the output (y0, y1) of HybridLin (Algorithm 6)
satisfies y0 + y1 = L(x) mod q.

Proof. We observe that v0 is equal to −r1 if c0 ⊕ c1 = 0, and to −r2 otherwise. Therefore,
since L(0) = 0, the output of the masked mux (v0, v1) is an arithmetic sharing modulo q of
−K · L(c0 ⊕ c1), (y0, y1) is an arithmetic sharing of L(s0 + s1 −K(c0 ⊕ c1)) = L(x).

Let us remark that Algorithm 5 includes registers (Reg ()), that are needed to ensure
that hardware glitches do not reduce the security order of the gadget, as discussed in
the next proof. Additional registers may be used in the implementation (e.g., to allow

1Here, we select between two public values, but the masked multiplexer can be extended to select from
more arithmetic shares by simply duplicating the logic: select v0 as either a0 or b0 depending on (c0, c1),
and duplicate that circuit to select v1 as a1 or b1.

378 Kavach: Lightweight masking for polynomial arithmetic

Algorithm 6 HybridLin (linear operation on hybrid shares.)
Input: Hybrid sharing (s0, s1, c0, c1) with s0, s1 ∈ ZK , c0, c1 ∈ Z2 representing the secret s ∈ ZK .
Input: Linear function L : ZK → Zq.
Output: Arithmetic sharing (y0, y1) of y = L(s) with y0, y1 ∈ Zq.
1: r1

$←− Zq

2: r2 ← (K · L(1)) + r1 mod q
3: v0 ← −MskMux((c0, c1), r1, r2)
4: v1 ← r1
5: y0 ← L(s0) + v0 mod q
6: y1 ← L(s1) + v1 mod q
7: return (y0, y1)

pipelining). Besides, the output of HybridLin (Algorithm 6) is a uniform sharing in the
(typically larger) group Zq. This is because L(x) is typically not small anymore, hence
having a hybrid sharing as the output of the gadget would not be efficient. Next, we prove
the security of Algorithm 6 in the glitch-robust probing model [FGP+18].

Proposition 6. HybridLin is first-order glitch-robust probing secure.1 Furthermore, its
output is a uniform arithmetic sharing in Zq.

Proof. We will prove that any glitch-extended probe is independent of the secret s if the
input hybrid sharing is uniform. First, for every variable in the computation of u0[i]
and u1[i] in Algorithm 5, the only share involved is c1[i], which is independent of s, as a
consequence of Proposition 2. Next, in the computation of v0 in Algorithm 6, we remark
that each u0[i]/u1[i] in Algorithm 5 is uniformly distributed in ZK and independent of
c1[i]. Therefore, c0[i] & u1[i] and ! c0[i] & u0[i] depend on the input share c0[i] but each
of these values is independent of c1[i]. Since only one of c0[i] and !c0[i] is non-null, a
glitch-extended probe on v0 depends on c0[i] and observes either u0[i] or u1[i] but not
both, therefore it is independent of c1[i]. Finally, a probe on y0 depends on s0 and c0[i]
(that is independent of s, by Proposition 2), and similarly, y1 only depends on s1, which is
independent of s.

To prove the uniformity of the output sharing, it suffices to remark that r1 is a fresh
uniform random value in Zq, and (y0, y1) = (L(s0)−K · L(c0 ⊕ c1)− r1, L(s1) + r1).

The security against transitions [FGP+18] of HybridLin depends on its actual im-
plementation, hence cannot be proven at an algorithmic level. Let us simply note that
security against transition is trivially guaranteed if the implementation satisfies the pipeline
definition of [CS21] (i.e., every logic gate is used once per execution). In more complex
implementations, composition techniques of [CS21] may be used. Another solution is
the use of formal verification tools such as maskVerif [BBC+19], SILVER [KSM20] or
Coco [HB21].

4.4 Hybrid masking of vector linear functions
The HybridLin gadget operates on a single scalar, hence it is fairly limited. We now
generalize it to the HybrindLinV (Algorithm 7) gadget that computes any vector linear
function L : Zl

K → Zl′

q and takes as input a length-l vector of hybrid sharings. The core
idea of this gadget is similar to HybridLin: compute L(s0), L(s1) and use MskMux to
handle the computation of K ·L(c0 ⊕ c1). We exploit the linearity of L to write the latter
expression in the canonical basis: L(c0⊕ c1) =

∑l−1
i=0 L(ei) · (c0[i]⊕ c1[i]) (see Algorithm 7

1We actually prove that the gadget is a glitch-robust probe isolating non-interference (PINI) [CS20],
which allows for easy composition of this gadget with other gadgets.

A. Aikata, A. Basso, G. Cassiers, A. Can Mert, S. Sinha Roy 379

Algorithm 7 HybridLinV (vector linear operation on hybrid shares.)
Input: Hybrid sharing (s0, s1, c0, c1) with s0, s1 ∈ Zl

K , c0, c1 ∈ Zl
2 representing the secret

s ∈ Zl
K .

Input: Linear function L : Zl
K → Zl′

q .
Output: Arithmetic sharing (y0,y1) of y = L(s) with y0,y1 ∈ Zl′

q .
1: for i = 0, . . . , l − 1 do
2: r

$←− Zq

3: r1 ← (K · L(ei)) + {r}l′
mod q {ei[i] = 1 and ei[j] = 0 for all j 6= i}

4: V 0[i]← −MskMux(({c0[i]}l′
, {c1[i]}l′

), {r}l′
, r1)

5: V 1[i]← {r}l′

6: v0 ←
∑l−1

i=0 V 0[i] mod q

7: v1 ←
∑l−1

i=0 V 1[i] mod q
8: y0 ← Reg (v0 + L(s0) mod q) + L(s1) mod q
9: y1 ← v1
10: return (y0,y1)

for the definition of ei). This expression can in turn be evaluated using l MskMux gadgets,
each being l′-element wide.

On top of this base construction, we introduce an optimization to reduce randomness
usage and save some computation. Indeed, the shares of output coordinates of HybridLinV
do not have to be independent if no computation involves these together (this condition is
often satisfied in lattice-based cryptography). Therefore, we can use the same randomness
for all coordinates. For simplicity, we keep a vector accumulator V 1, however during
implementation we use a scalar accumulator instead of a vector accumulator. Finally,
since v0 is freshly randomized, we can compute the output sharing as (Reg (v0 + L(s0)) +
L(s1),v1), resulting in a common share for all output coordinates, which spares some
logic.

Proposition 7. If (s0, s1, c0, c1) ∈ Z2l
K×Z2l

2 is a hybrid sharing of x ∈ Zl
K and the function

L : Zl
K → Zl′

q is linear, then the output (y0,y1) of HybridLinV satisfies y0 + y1 = L(x)
mod q.

Proof. We observe that V 0[i] is equal to {−r}l′ if (c0[i]⊕ c1[i]) = 0, and to −r1 otherwise.
Therefore, thanks to the linearity of L, v0 = −K · L(c0 ⊕ c1) − v1 mod q. As a result,
(v0,v1) is an arithmetic sharing modulo q of −K · L(c0 ⊕ c1) (taking the vector v1 as the
second share of all the elements). The final part of the proof is identical to the proof of
Proposition 5.

Let us now prove the security of HybridLinV.

Proposition 8. HybridLinV is first-order glitch-robust probing secure.1 In addition, each
of its output coordinates is a uniform arithmetic sharing in Zq.

Proof. The proof is almost identical to the proof of Proposition 6. The first difference is
that a glitch-extended probe on v0 may reveal a coordinate of multiple V 0[i]. This is not a
problem since the computation of every V 0[i] uses fresh randomness, hence the arguments
in the proof of Proposition 6 apply. The other difference lies in the output computation:
every coordinate of v0 is a coordinate of −K · L(c0 ⊕ c1) masked with the uniform
random r. Therefore, each output coordinate is uniform sharing, and each coordinate of
Reg (v0 + L(s0) mod q) is uniform, hence Reg (v0 + L(s0) mod q) + L(s1) mod q can be
simulated knowing only s1.

1As for Hybridlin, HybridLinV is actually glitch-robust probe isolating PINI.

380 Kavach: Lightweight masking for polynomial arithmetic

Algorithm 8 HybridPolyMul (hybrid shared polynomial multiplication with a public
polynomial.)
Input: Hybrid sharing (s0, s1, c0, c1) with s0, s1 ∈ RK , c0, c1 ∈ R2 representing the secret

polynomial s ∈ Rq.
Input: Public polynomial a ∈ Rq.
Output: Arithmetic sharing (y0,y1) of y = a× s with y0,y1 ∈ Rq.
1: for i = 0, . . . , n− 1 do
2: r

$←− Zq

3: for j = 0, . . . , n− 1 do
4: r1[j]← (−1)b(i+j)/Nc(K · a[i]) + r mod q
5: V 0[i]← −MskMux(({c0[i]}n, {c1[i]}n), {r}n, r1)
6: V 1[i]← {r}n

7: v0 ←
∑n−1

i=0 V 0[i] mod q

8: v1 ←
∑n−1

i=0 V 1[i] mod q
9: y0 ← Reg (v0 + (a× s0) mod q) + (a× s1) mod q
10: y1 ← v1 mod q
11: return (y0,y1)

4.5 Polynomial multiplication with hybrid masking
In this section, we will use hybrid masking to compute the product a× s where s is a
small secret polynomial and a is a large public polynomial.

Let the small coefficients of the secret polynomial s be in ZK . Starting from arithmetic
sharing of s in ZK , we transform it to a hybrid sharing using AOverflowBit (Algorithm 3).
We then use the HybridLinV gadget (Algorithm 7) with multiplication by a as the linear
function L. This algorithm uses two multiplications (a× s0 and a× s1) that can be
computed using any polynomial multiplication algorithm (these can take advantage of the
smallness of the coefficients of s0 and s1 to achieve better performance or area or both).
Then, we have to perform the computation on Boolean shares: MskMux and additions.
In the remaining part of this section, we introduce a small tweak (similar to [RB20])
to HybridLinV that exploits specific properties of polynomial multiplication to ease the
hardware implementation and security proof.

Our tweak, implemented in the HybridPolyMul gadget (Algorithm 8), is based on the
following observation: let L(s) = a× s, HybridLinV computes

∑n−1
i=0 a×(xi ·(c0[i]⊕c1[i])).

Assuming that one term of this sum is computed and accumulated per clock cycle, this
requires having the full a available at all clock cycles, as well as one (c0[i], c1[i]) single-
bit sharing. If a is stored in a RAM and c0, c1 in registers (which is the case in the
implementation that we use as the starting point for our implementation [RB20]), then it
is better to perform the computation as

∑n−1
i=0 a[i] ·(xi×(c0 ⊕ c1)). Another advantage of

this approach is that it manipulates in parallel all the shares instead of a single one, which
typically leads to better side-channel security. In such an implementation, the computation
of xi×(c0 ⊕ c1) can be performed with a cyclic shift register (for negacyclic ring, with a
bit to encode positive or negative sign).

For conciseness, we avoid repeating the proofs of correctness and security for HybridPolyMul,
since they are identical to the ones of HybridLinV, except for the functional change ex-
plained above, which does not have any impact on the security proof.

Performance and Area Advantage To bring forth the advantage of this method, we will
now present a comparison with the naive way of using small coefficient multipliers. We
provided a hybrid gadget, but instead, a naive way of using a small coefficient multiplier is
to split one of the coefficients into smaller parts. This technique is used in applications like
homomorphic encryption. If we assume there is no hybrid gadget, then naive masking would

A. Aikata, A. Basso, G. Cassiers, A. Can Mert, S. Sinha Roy 381

split small secret s ∈ RK into two large shares s0, s1 ∈ Rq. Now, if we want to multiply
these with the public polynomial a ∈ Rq using the compact multipliers, one option would
be to split s0 and s1 base K (e.g., s0 = s0,r ·Kr + s0,r−1 ·Kr−1 + · · · + s0,1 ·K + s0,0).
Now, this requires r multiplications, where r is the number of words when a coefficient
in Zq is sliced into smaller words in base K (r = d(log2(q)/ log2(K))e). When K = 24

and q = 213, r will be 4. Thus, we will require four multiplications per share, that is
a total of eight multiplications for a first-order masked implementation. By using the
proposed hybrid gadget, this is reduced to three multiplications only, where one of the
multiplications is just an accumulation and does not require a multiplier. Instead, if a
user decides to pay the cost in terms of area and save the runtime, then log2(q)× log2(q)
multipliers would be required. These consume 4.5× more look-up tables compared to
log2(q)× log2(K) multiplier and will require two multiplications. Thus, using hybrid shares
gives us a significant advantage over state-of-the-art methods.

Higher-order generalization. We remark that the hybrid masking technique can be
generalized to higher-order masking, with the following differences: with d shares si ∈ ZK ,
the overflow c has to be represented using multiple bits, and each of the d Boolean shares
ci is a dlog2(d)e-bit word (i.e., ci ∈ {0, . . . , d− 1}), such that

s =
d−1∑
i=0

si −K ·
d−1⊕
i=0

ci.

The definition of uniform shares is unchanged: (si)i=0,...,d−1 must be a uniform sharing
of s in ZK and (ci)i=0,...,d−1 must be a uniform Boolean sharing of c, independent of
(si)i=0,...,d−1, conditioned on c. Note that the multiplication with the Boolean shares
of the hybrid sharing (Algorithm 5) is expected to have O(d2) complexity. Hence, for
asymptotically high masking orders, this algorithm will have worse performance than
directly operating in Zq (O(d) cost). This also serves as an interesting future scope for the
proposed technique.

In this paper, we focus on optimizing the first-order masking and leave the implementa-
tion of the higher-order as future work (note that AOverflowBit-Adder already works at
arbitrary order). We use the Table-based algorithm AOverflowBit since it has the lowest
latency. Next, we will introduce an efficient hardware instantiation of HybridPolyMul.

5 Implementation of masked polynomial multiplication
In Section 4, we presented an algorithmic optimization technique for masked and efficient
implementation of polynomial multiplication in lattice-based public-key algorithms. Exper-
imental evaluation is needed to validate the efficiency of the proposed algorithms. In this
section, we present a first-order DPA-protected hardware implementation of polynomial
multiplication using the hybrid masking scheme.1 This proof-of-concept architecture works
in Rq = Z213/(x256 + 1) and the unprotected secret polynomial’s coefficients are in [−4, 4].

The first step of the multiplication is loading the secret polynomial s, which has
its coefficients in [−4, 4]. We use a shifted representation where µ = 4 is added to
each coefficient, resulting in unsigned coefficients in the range [0, 8] (this shift will be
compensated later to preserve the correctness of the result). For the sake of simplicity, our

1Note that the masking technique (non-hybrid) in Section 3 for NTT-based polynomial multiplication
in NTT-unfriendly rings does not require a separate implementation and evaluation, as it does not lead to
architectural challenges (we already give the implementation cost in Section 3 by adapting a well-known
architecture). Regarding security, the NTT routine is evaluated twice in isolation on the two secret-share
polynomials without requiring any interaction between the shares, therefore no order reduction can happen
if the state is properly cleared between the two multiplications.

382 Kavach: Lightweight masking for polynomial arithmetic

Register

Figure 1: Architecture diagram illustrating the AOverflowBit unit

implementation receives as input the uniform arithmetic shares (s0, s1) modulo K of the
shifted s, where K = 24 and n = 256. The initial sharing of this long-term secret is out
of the scope of our implementation. As a second step, we convert the input arithmetic
sharing into hybrid sharing by computing the Boolean shares c0, c1, using a pipelined
implementation of Algorithm 3, as illustrated in Fig. 1. Then, we implement the core part
of the multiplication, as described in Algorithm 8.

Our implementation is based on the open-source hardware library provided by [RB20].
The polynomial multiplier in this library uses a heavily-parallel schoolbook algorithm
by instantiating 256 small-area multiply-and-accumulate (MAC) units in parallel in the
hardware for the polynomial ring Rq = Z213/(x256 + 1). Moreover, it relies on the property
that one operand polynomial is always small (e.g., with coefficients in [−4, 4]), and then
it optimizes the MAC units to reduce the area consumption. This multiplier is, there-
fore, a natural starting point for our implementation since our hybrid-shares polynomial
multiplication algorithm is based on small-coefficient polynomial multiplications.

1
negacyclic rotation

cyclic rotation

111111

5555555

coefficient a[i]

data bus for coefficient mod q

random r[i]

Figure 2: Polynomial multiplier architecture for the hybrid masking scheme.

Fig. 2 shows the high-level architecture diagram of our schoolbook polynomial multi-
plier. The two main differences with the schoolbook multiplier of [RB20] are the changes
in the MAC unit to support the Boolean-masked multiplication a×(c0 ⊕ c1) on top of
the normal multiplication (used for a× s0 and a× s1), and the addition of the Boolean
secret polynomial buffer to store c1 (c0 is stored in the other secret polynomial buffer).
The multiplier operates in three steps, following the requirements of Algorithm 8: (1) com-
putation of a×(c0 ⊕ c1) (first share in the accumulator buffer, and the second share v1
in a separate buffer not shown on Fig. 2), (2) accumulation of a× s0 in the accumulator
buffer, and (3) accumulation of a× s1 in the accumulator buffer.

We start with the description of steps (2) and (3), which work identically to the unpro-

A. Aikata, A. Basso, G. Cassiers, A. Can Mert, S. Sinha Roy 383

0

0

1

1

+

Figure 3: Secure multiply-and-accumulate unit for computing acc[i+j] = acc[i+j]+c[j]·a[i]
using Boolean shares c0[j], c1[j] of c[j]. Registers for glitches are not shown.

0

0

1

1

+

0

1

Figure 4: MAC (multiply and accumulate) unit architecture diagram. It computes
multiplication for both Boolean as well as arithmetic shares.

tected multiplication in [RB20]. Before starting a multiplication, the entire polynomial
si is loaded into the secret buffer of Fig. 2. It is a shift register that can do a negacyclic
rotation, computing si ← x× si mod (x256 + 1); the coefficients are stored in the buffer
in the signed magnitude representation. During the actual polynomial multiplication, in
every cycle, one coefficient of a (say a[j]) is multiplied by all coefficients of si, and then
the results are accumulated (addition or subtraction depending on the sign of si[j]) in
the accumulator buffer. In the next cycle, the secret polynomial buffer is shifted, and
the process is repeated with the new coefficient a[j + 1]. For a 256-coefficient polynomial
multiplication, 256 cycles are required, excluding the overhead of data loading. The
accumulator buffer is not reset before or after the si multiplication, and the ‘Boolean
buffer’ is not used.

For the first step, we compute a sharing of −a×(K · c+{µ}) where {µ} is a polynomial
with all coefficients set to µ. It compensates for the original shift and proceeds as follows.
The polynomial (K · c0 + {µ}) is loaded in the regular secret polynomial buffer (the
multiplication and addition is just a bit concatenation), and the Boolean polynomial c1 is
loaded in the 256-bit buffer ‘Boolean buffer’ which is also a circular shift register. To
process the Boolean coefficients, the normal MAC unit of [RB20] is augmented with the
secure Boolean unit of Fig. 3, implementing the MskMux logic of Algorithm 8. This unit is
integrated into the original MAC unit, with proper sign handling and registers to prevent
glitches, which gives Fig. 4. In this area-optimized combined unit, a signal mul_type
selects between unmasked operation (for steps (2) and (3)) and masked operation.

Let us finally discuss the security of our implementation. We rely on the security argu-
ments of Section 4 for HybridPolyMul and remark that our implementation optimizations
do not break the security of this gadget. Indeed, the set of glitch-extended probes for the
extended MAC unit is the same as for the basic one, and using the same register for s0
and c0 is not an issue since even jointly, these shares are still independent of the secret.

384 Kavach: Lightweight masking for polynomial arithmetic

Table 1: Implementation results of the design on Xilinx Artix-7 xc7a100tftg256-3 for the
parameters n = 256,K = 24, and q = 213.

Masking Algorithm Area Frequency Poly. Mul. Latency
(LUT/FF/DSP/BRAM) (MHz) (clock cycles)

Proposed AOverflowBit 590/1,014/0/1 130 92
Proposed HybridPolyMul 25,214/13,280/0/1 130 1020
Naive PolyMul 62,163/8,801/0/1 125 752

Unmasked PolyMul 17,429/5,083/0/1 250 336

Moreover, this unit is pipelined, and hence, the transitions happen between independently
masked variables (except for the adder in front of the accumulator, but this only adds old
values of the accumulator into the extended probes, which is not an issue, as it contains
only one of the two shares). Next, we discuss the results of the implementation.

5.1 Implementation results
We implemented the proposed architecture design on Xilinx Artix-7 xc7a100tftg256-3
FPGA using Xilinx Vivado 2019.1. The synthesis and implementation strategies were kept
to Vivado defaults. The KEEP_HIERARCHY flag was set in the security-critical components
of the modules to avoid unwanted optimizations. The complete design achieves a clock
frequency of ≈ 130 MHz. The implementation of Algorithm 3 (AOverflowBit) illustrated
in Fig. 1, which generates the Boolean shares, consumes 590 LUTs, 1,014 FFs, 0 DSPs,
and 1 BRAM. The CA table (Eq. (1)) is pre-generated and stored before processing each
polynomial, however, it can be refreshed more often. Its latency is 92 clock cycles for
processing one set of polynomials. The complete core polynomial multiplication unit
shown in Fig. 2 consumes 25,214 LUTs and 13,280 FFs. It can process one polynomial
multiplication in 340 clock cycles and consumes 1020 clock cycles to multiply the hybrid
shares of a secret polynomial with a public polynomial. From Table 1, it is evident that the
area-time increase of the proposed technique with respect to the unmasked implementation
is much less compared to the naive masking (the secret is split into two shares and the
multiplication requires big multipliers).

Our masked polynomial multiplication implementation consumes 1.7× more area than
the unmasked implementation in [RB20] (17,429 LUTs and 5,083 FFs). This is because
we have instantiated n = 256 MskMux combined with 256 compact multipliers. Therefore,
adding the registers to every MAC unit for glitch prevention further contributed to the area
consumption. However, this is an implementation choice, and if one MskMux is instantiated
for the multiplication with the Boolean shares, there will be no area overhead. Regarding
time overhead, one unmasked polynomial multiplication translates to two multiplications
and one accumulation in the masked domain. As discussed earlier (Section 4.5), the total
area-time overhead of this design is less than the naive masked implementations.

6 Side-channel evaluation
In this section, we discuss the side-channel evaluation setup and results. Our setup is
based on a ChipWhisperer NAE-CW305-04-7A100-0.10-X1 board which features an Artix-7
FPGA in the FTG256 Package, and an Atmel ATSAM2U32-AU microcontroller that acts
as a USB to control FPGA, as well as a trigger for starting the computations. We generate
the bitsream with Vivado 2019.1. The FPGA uses a 10 MHz clock signal generated by the
onboard PLL and crystal. The power consumption is measured with a 5 Ω shunt resistor,

1https://media.newae.com/datasheets/NAE-CW305_datasheet.pdf

 https://media.newae.com/datasheets/NAE-CW305_datasheet.pdf

A. Aikata, A. Basso, G. Cassiers, A. Can Mert, S. Sinha Roy 385

amplified on-board with a 20 dB low-noise amplifier, and measured with the Picoscope 6000.
The oscilloscope is synchronized with the FPGA clock and acquires 312.5 MS/s.

As mentioned in the previous section, our implementation is based on the Module-KEM
design provided in [RB20]. It implements Saber, and the implementation can multiply
several polynomials at once and accumulate them, depending on the polynomial vector
dimension. For example, a public polynomial vector A, of dimension three will have three
polynomials a[0],a[1],a[2]. When this is multiplied with the secret polynomials vector S of
dimension three, the multiplication result of A×S is a[0]× s[0] + a[1]× s[1] + a[2]× s[2].
Since we have an accumulator, we can keep accumulating the results on the fly for all three
multiplications without having to do this as a separate operation, which avoids additional
time overhead.

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

500

0

500vo
la

tg
e

(m
V

)

5

0

-5

t-v
al

ue

samples
(31.25 samples per clockcycle)

0 1 2 3 4 5 6 7 8 9

500

0

500vo
la

tg
e

(m
V

)
t-v

al
ue

0 1 2 3 4 5 6 7 8 9

10

0

-10

t-v
al

ue

20

-20

30

40

-30

samples
(31.25 samples per clockcycle)

Figure 5: Raw measurement data of AOverflowBit and polynomial multiplication of the
hybrid shares. Top: t-test figures with mask ON for 100,000 traces; Bottom: t-test
figures with mask OFF for 200 traces.

T-test evaluation. We measure first the AOverflowBit which generates shares C0 and
C1 for polynomial vectors S0 and S1, where both S0 and S1 are secret vectors consisting
of three polynomials. Then, this is followed by multiplication of C0,C1 with public

386 Kavach: Lightweight masking for polynomial arithmetic

polynomial vector A of dimension three. Next, we multiply A with S0 and finally with
S1. A hardware implementation of the stream cipher Trivium is used as a source of
randomness.

We employ the Test Vector Leakage Assessment (TVLA) method introduced in [GJJR11]
to validate the security of our implementation. Namely, we run a first-order fixed-versus-
random T-test with 100,000 traces for the secret shared variable S (A is kept fixed). The
results are reported in Fig. 5: no first-order leakage is detected for the commonly-used
significance threshold of ±4.5 for the T-statistic. As a sanity check, we also ran the
first-order t-test with 200 traces and randomness masking disabled (Fig. 5), which shows
clear first-order leakage. In Fig. 5, the timestamps t0 − t4 show the different operations
evaluated by the test. The interval t0–t1 is the generation of shares C0 and C1 for secret
vectors S0 and S1. Then, the multiplication of A with C0,C1 is performed during the
interval t1–t2. This is followed by multiplication of A with S0 and S1, during the t2–t3
and t3–t4 intervals, respectively.

7 Conclusion and future work

In this work, we proposed an efficient masking method for polynomial multiplication of
NTT-unfriendly schemes that can benefit from one of the operands being small. Not only
does it improve the masking of the current NTT-unfriendly schemes, but it also promotes the
design of new schemes. The proposed hybrid gadget helps retain the small secret property
and saves significant area in masked implementations. Most of the lattice-based schemes
have small secrets (ternary or binomial or Gaussian distributed). They can benefit from
hybrid masking unless the scheme makes NTT representation an integral part of the scheme.
Our contributions are therefore directly applicable to implementations of algorithms such
as SABER [BMD+20], Scabbard [MKKV21], NTRU [HPS06] or LAC [LLZ+18]. In the
long term, our results should aid future lattice-based scheme design choices (in particular
the power-of-two versus NTT-friendly trade-off).

This work raises further research questions. A first direction that would be interesting
to explore is the use of RSA/ECC coprocessors for masking lattice-based PQC. Since
these are widely deployed, they are an attractive target for implementing PQC (especially
when retrofitting PQC into existing systems). Non-masked implementations for Saber
and Kyber have been proposed in [GMR21], using the Kronecker substitution method,
and the most efficient variants exploit the property that one of the polynomials involved
in the product always has small coefficients, both for NTT-friendly and unfriendly rings.
Our hybrid gadgets (e.g. HybridLinV or HybridPolMul) could therefore be used, and
they can simply use the algorithms of [GMR21] for the polynomial multiplication. For
the MskMux (Algorithm 5) part of these gadgets, many possible software implementations
depend on the available instructions: the most natural solution is the use of a conditional
move instruction, but arithmetic solutions are also possible (using 0/1 multiplications,
then additions), or even using the bitwise logical operations (emulating our hardware
implementation).

Secondly, we used a schoolbook multiplier for hybrid masking implementation (Sec-
tion 5). However, we emphasize that this is not the only type of multiplication that can
be used with this masking technique: other multiplication types, such as the Karatsuba or
Toom-Cook multipliers, can also be used. The integration of these multipliers with the
Boolean masking part of the hybrid masking, as we do with our integrated MAC unit, is a
future direction for optimization work.

A. Aikata, A. Basso, G. Cassiers, A. Can Mert, S. Sinha Roy 387

Acknowledgement
This work was supported in part by Semiconductor Research Corporation (SRC) and the
State Government of Styria, Austria – Department Zukunftsfonds Steiermark. We thank
the anonymous reviewers for their useful suggestions and comments. We also thank Fan
Zhang for shepherding the paper.

References
[AAB+19] Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C. Bardin,

Rami Barends, Rupak Biswas, Sergio Boixo, and many more. Quantum
supremacy using a programmable superconducting processor. Nature, 2019.
https://doi.org/10.1038/s41586-019-1666-5.

[ACC+21] Amin Abdulrahman, Jiun-Peng Chen, Yu-Jia Chen, Vincent Hwang,
Matthias J. Kannwischer, and Bo-Yin Yang. Multi-moduli NTTs for Saber on
Cortex-M3 and Cortex-M4. IACR Transactions on Cryptographic Hardware
and Embedded Systems, 2022(1):127–151, Nov. 2021.

[ADPS16] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. Post-
quantum Key Exchange - A New Hope. In 25th USENIX Security Symposium,
USENIX Security 16, Austin, TX, USA, August 10-12, 2016, pages 327–343.
USENIX Association, 2016.

[AMD+21] Abubakr Abdulgadir, Kamyar Mohajerani, Viet Ba Dang, Jens-Peter Kaps,
and Kris Gaj. A lightweight implementation of saber resistant against side-
channel attacks. In Avishek Adhikari, Ralf Küsters, and Bart Preneel, editors,
Progress in Cryptology – INDOCRYPT 2021, pages 224–245, Cham, 2021.
Springer International Publishing.

[AMJ+22] Aikata, Ahmet Can Mert, David Jacquemin, Amitabh Das, Donald Matthews,
Santosh Ghosh, and Sujoy Sinha Roy. A unified cryptoprocessor for lattice-
based signature and key-exchange. IEEE Transactions on Computers, pages
1–13, 2022.

[BAD+21] Andrea Basso, Furkan Aydin, Daniel Dinu, Joseph Friel, Avinash Varna,
Manoj Sastry, and Santosh Ghosh. Where Star Wars Meets Star Trek:
SABER and Dilithium on the Same Polynomial Multiplier. Cryptology ePrint
Archive, Paper 2021/1697, 2021. https://eprint.iacr.org/2021/1697.

[BBC+19] Gilles Barthe, Sonia Belaïd, Gaëtan Cassiers, Pierre-Alain Fouque, Benjamin
Grégoire, and François-Xavier Standaert. maskverif: Automated verification
of higher-order masking in presence of physical defaults. In ESORICS (1),
volume 11735 of Lecture Notes in Computer Science, pages 300–318. Springer,
2019.

[BC22] Olivier Bronchain and Gaëtan Cassiers. Bitslicing arithmetic/boolean masking
conversions for fun and profit with application to lattice-based kems. IACR
Trans. Cryptogr. Hardw. Embed. Syst., 2022(4):553–588, 2022.

[BDK+18] J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M. Schanck,
P. Schwabe, G. Seiler, and D. Stehle. CRYSTALS - Kyber: A CCA-Secure
Module-Lattice-Based KEM. In 2018 IEEE European Symposium on Security
and Privacy (EuroS P), pages 353–367, 2018.

https://doi.org/10.1038/s41586-019-1666-5
https://eprint.iacr.org/2021/1697

388 Kavach: Lightweight masking for polynomial arithmetic

[BDK+21a] Shi Bai, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky,
Peter Schwabe, Gregor Seiler, and Damien Stehlé. CRYSTALS-Dilithium.
Proposal to NIST PQC Standardization, Round3, 2021. https://csrc.nist.
gov/Projects/post-quantum-cryptography/round-3-submissions.

[BDK+21b] Michiel Van Beirendonck, Jan-Pieter D’anvers, Angshuman Karmakar, Josep
Balasch, and Ingrid Verbauwhede. A side-channel-resistant implementation
of saber. J. Emerg. Technol. Comput. Syst., 17(2), apr 2021.

[BMD+20] Andrea Basso, Jose Maria Bermudo Mera, Jan-Pieter D’Anvers, Sujoy
Sinha Roy Angshuman Karmakar, Michiel Van Beirendonck, and Frederik
Vercauteren. SABER: Mod-LWR based KEM (Round 3 Submission to NIST
PQC), 2020.

[CGLS21] Gaëtan Cassiers, Benjamin Grégoire, Itamar Levi, and François-Xavier Stan-
daert. Hardware private circuits: From trivial composition to full verification.
IEEE Trans. Computers, 70(10):1677–1690, 2021.

[CHK+21] Chi-Ming Marvin Chung, Vincent Hwang, Matthias J. Kannwischer, Gregor
Seiler, Cheng-Jhih Shih, and Bo-Yin Yang. NTT multiplication for ntt-
unfriendly rings new speed records for saber and NTRU on cortex-m4 and
AVX2. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2021(2):159–188, 2021.

[CS20] Gaëtan Cassiers and François-Xavier Standaert. Trivially and efficiently
composing masked gadgets with probe isolating non-interference. IEEE
Trans. Inf. Forensics Secur., 15:2542–2555, 2020.

[CS21] Gaëtan Cassiers and François-Xavier Standaert. Provably secure hardware
masking in the transition- and glitch-robust probing model: Better safe than
sorry. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2021(2):136–158, 2021.

[CT65] James W. Cooley and John W. Tukey. An algorithm for the machine calcu-
lation of complex fourier series. Mathematics of Computation, 19:297–301,
1965.

[CT03] Jean-Sébastien Coron and Alexei Tchulkine. A new algorithm for switching
from arithmetic to boolean masking. In CHES, volume 2779 of Lecture Notes
in Computer Science, pages 89–97. Springer, 2003.

[Deb12] Blandine Debraize. Efficient and provably secure methods for switching from
arithmetic to boolean masking. In CHES, volume 7428 of Lecture Notes in
Computer Science, pages 107–121. Springer, 2012.

[DMG23] Viet Ba Dang, Kamyar Mohajerani, and Kris Gaj. High-speed hardware
architectures and FPGA benchmarking of crystals-kyber, ntru, and saber.
IEEE Trans. Computers, 72(2):306–320, 2023.

[DPPvW22] Léo Ducas, Eamonn W. Postlethwaite, Ludo N. Pulles, and Wessel P. J. van
Woerden. Hawk: Module LIP makes lattice signatures fast, compact and
simple. IACR Cryptol. ePrint Arch., page 1155, 2022.

[FBR+22] Tim Fritzmann, Michiel Van Beirendonck, Debapriya Basu Roy, Patrick
Karl, Thomas Schamberger, Ingrid Verbauwhede, and Georg Sigl. Masked
accelerators and instruction set extensions for post-quantum cryptography.
IACR Trans. Cryptogr. Hardw. Embed. Syst., 2022(1):414–460, 2022.

https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions

A. Aikata, A. Basso, G. Cassiers, A. Can Mert, S. Sinha Roy 389

[FGP+18] Sebastian Faust, Vincent Grosso, Santos Merino Del Pozo, Clara Paglialonga,
and François-Xavier Standaert. Composable masking schemes in the presence
of physical defaults & the robust probing model. IACR Trans. Cryptogr.
Hardw. Embed. Syst., 2018(3):89–120, 2018.

[FO99] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and
symmetric encryption schemes. In Annual international cryptology conference,
pages 537–554. Springer, 1999.

[FSS20] Tim Fritzmann, Georg Sigl, and Johanna Sepúlveda. RISQ-V: tightly coupled
RISC-V accelerators for post-quantum cryptography. IACR Trans. Cryptogr.
Hardw. Embed. Syst., 2020(4):239–280, 2020.

[GJJR11] Gilbert Goodwill, Benjamin Jun, Joshua Jaffe, and Pankaj Rohatgi. A testing
methodology for side channel resistance. 2011.

[GMR21] Aurélien Greuet, Simon Montoya, and Guénaël Renault. On using RSA/ECC
coprocessor for ideal lattice-based key exchange. In Shivam Bhasin and
Fabrizio De Santis, editors, Constructive Side-Channel Analysis and Secure
Design - 12th International Workshop, COSADE 2021, Lugano, Switzerland,
October 25-27, 2021, Proceedings, volume 12910 of Lecture Notes in Computer
Science, pages 205–227. Springer, 2021.

[HB21] Vedad Hadzic and Roderick Bloem. COCOALMA: A versatile masking
verifier. In FMCAD, pages 1–10. IEEE, 2021.

[HPS06] Jeffrey Hoffstein, Jill Pipher, and Joseph H Silverman. Ntru: A ring-based
public key cryptosystem. In Algorithmic Number Theory: Third International
Symposiun, ANTS-III Portland, Oregon, USA, June 21–25, 1998 Proceedings,
pages 267–288. Springer, 2006.

[IBM] IBM. Expanding the IBM Quantum roadmap to anticipate the future of
quantum-centric supercomputing. https://research.ibm.com/blog/ibm-
quantum-roadmap-2025.

[ISW03] Yuval Ishai, Amit Sahai, and David A. Wagner. Private circuits: Securing
hardware against probing attacks. In CRYPTO, volume 2729 of Lecture Notes
in Computer Science, pages 463–481. Springer, 2003.

[KDB+22] Suparna Kundu, Jan-Pieter D’Anvers, Michiel Van Beirendonck, Angshuman
Karmakar, and Ingrid Verbauwhede. Higher-order masked saber. In Clemente
Galdi and Stanislaw Jarecki, editors, Security and Cryptography for Networks
- 13th International Conference, SCN 2022, Amalfi, Italy, September 12-14,
2022, Proceedings, volume 13409 of Lecture Notes in Computer Science, pages
93–116. Springer, 2022.

[KO62] A Karatsuba and Yu Ofman. Multiplication of many-digital numbers by
automatic computers. Dokl. Akad. Nauk SSSR, 145(2):293–294, 1962.

[KSM20] David Knichel, Pascal Sasdrich, and Amir Moradi. SILVER - statistical
independence and leakage verification. In ASIACRYPT (1), volume 12491 of
Lecture Notes in Computer Science, pages 787–816. Springer, 2020.

[LFK+19] Weiqiang Liu, Sailong Fan, Ayesha Khalid, Ciara Rafferty, and Máire O’Neill.
Optimized schoolbook polynomial multiplication for compact lattice-based
cryptography on fpga. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 27(10):2459–2463, 2019.

https://research.ibm.com/blog/ibm-quantum-roadmap-2025
https://research.ibm.com/blog/ibm-quantum-roadmap-2025

390 Kavach: Lightweight masking for polynomial arithmetic

[LLZ+18] Xianhui Lu, Yamin Liu, Zhenfei Zhang, Dingding Jia, Haiyang Xue, Jingnan
He, and Bao Li. LAC: practical ring-lwe based public-key encryption with
byte-level modulus. IACR Cryptol. ePrint Arch., page 1009, 2018.

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On Ideal Lattices and
Learning with Errors over Rings. In Advances in Cryptology – EUROCRYPT
2010, volume 6110 of Lecture Notes in Computer Science, pages 1–23. Springer
Berlin Heidelberg, 2010.

[LS15] Adeline Langlois and Damien Stehlé. Worst-case to average-case reductions
for module lattices. Designs, Codes and Cryptography, 75(3):565–599, 2015.

[MKKV21] Jose Maria Bermudo Mera, Angshuman Karmakar, Suparna Kundu, and
Ingrid Verbauwhede. Scabbard: a suite of efficient learning with rounding
key-encapsulation mechanisms. IACR Trans. Cryptogr. Hardw. Embed. Syst.,
2021(4):474–509, 2021.

[MOP07] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power analysis
attacks - revealing the secrets of smart cards. Springer, 2007.

[MP21] Michele Mosca and Marco Piani. 2021 quantum threat timeline report:
Global risk institute. Technical report, evolutionQ, 2021. available at https:
//globalriskinstitute.org/publication/2021-quantum-threat-
timeline-report-global-risk-institute-global-risk-institute/.

[OSPG18] Tobias Oder, Tobias Schneider, Thomas Pöppelmann, and Tim Güneysu.
Practical cca2-secure and masked ring-lwe implementation. IACR Transac-
tions on Cryptographic Hardware and Embedded Systems, 2018(1):142–174,
Feb. 2018.

[RB20] Sujoy Sinha Roy and Andrea Basso. High-speed instruction-set coprocessor
for lattice-based key encapsulation mechanism: Saber in hardware. IACR
Transactions on Cryptographic Hardware and Embedded Systems, 2020(4):443–
466, Aug. 2020.

[Reg09] Oded Regev. On lattices, learning with errors, random linear codes, and
cryptography. Journal of the ACM (JACM), 56(6):1–40, 2009.

[RRVV15] Oscar Reparaz, Sujoy Sinha Roy, Frederik Vercauteren, and Ingrid Ver-
bauwhede. A masked ring-lwe implementation. In CHES, pages 683–702.
Springer, 2015.

[Sho97] Peter W. Shor. Polynomial-Time Algorithms for Prime Factorization and
Discrete Logarithms on a Quantum Computer. SIAM Journal on Computing,
26(5):1484–1509, Oct 1997.

[SR19] Sujoy Sinha Roy. Saberx4: High-throughput software implementation of saber
key encapsulation mechanism. In 2019 IEEE 37th International Conference
on Computer Design (ICCD), pages 321–324, 2019.

https://globalriskinstitute.org/publication/2021-quantum-threat-timeline-report-global-risk-institute-global-risk-institute/
https://globalriskinstitute.org/publication/2021-quantum-threat-timeline-report-global-risk-institute-global-risk-institute/
https://globalriskinstitute.org/publication/2021-quantum-threat-timeline-report-global-risk-institute-global-risk-institute/

	Introduction
	Background
	Notation
	Masking
	Polynomial multiplication
	Lattice-based public key encryption schemes
	Masking lattice-based public-key schemes and gaps

	Masking NTT-based polynomial multiplication in NTT-unfriendly rings
	Compact polynomial arithmetic using hybrid masking
	Hybrid masking
	Hybrid shares generation
	Hybrid masking of scalar linear functions
	Hybrid masking of vector linear functions
	Polynomial multiplication with hybrid masking

	Implementation of masked polynomial multiplication
	Implementation results

	Side-channel evaluation
	Conclusion and future work

