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Abstract. 32-bit software implementations become increasingly popular for embedded
security applications. As a result, profiling 32-bit target intermediate values becomes
increasingly needed to evaluate their side-channel security. This implies the need of
statistical tools that can deal with long traces and large number of classes. While
there are good options to solve these issues separately (e.g., linear regression and
linear discriminant analysis), the current state of the art lacks efficient tools to solve
them jointly. To the best of our knowledge, the best-known option is to fragment
the profiling in smaller parts, which is suboptimal from the information theoretic
viewpoint. In this paper, we therefore revisit regression-based linear discriminant
analysis, which combines linear regression and linear discriminant analysis, and
improve its efficiency so that it can be used for profiling long traces corresponding
to 32-bit implementations. Besides introducing the optimizations needed for this
purpose, we show how to use regression-based linear discriminant analysis in order to
obtain efficient bounds for the perceived information, an information theoretic metric
characterizing the security of an implementation against profiled attacks. We also
combine this tool with optimizations of soft analytical side-channel attack that apply
to bitslice implementations. We use these results to attack a 32-bit implementation of
ISAP instantiated with Ascon’s permutation, and show that breaking the initialization
of its re-keying in one trace is feasible for determined adversaries.
Keywords: Linear Regression · Linear Discriminant Analysis · Belief Propagation

1 Introduction
Single-trace side-channel attacks have recently gained interest due to their increasing
relevance for different emerging applications in embedded secure design. For example, Kan-
nwischer et al. showed their impact for post-quantum cryptographic algorithms [KPP20]
and Bellizia et al. highlighted their importance for leakage-resistant modes of opera-
tion [BBC+20]: on the one hand, they are the main attack vector to break the confidential-
ity of schemes leveraging an internal re-keying, like Ascon [DEMS21], Spook [BBB+20] or
TEDT [BGP+20], assuming that the initialization and finalization are strongly protected
(e.g., with masking); on the other hand, schemes like ISAP even reduce their long term
security (and integrity) to the assumption that such attacks are hard [DEM+20].

Looking at these references, it appears that single-trace attacks are in general easy
against 8-bit implementations: Soft Analytical Side-Channel Attacks (SASCA) are indeed
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readily applicable in this context [VGS14]. By contrast, they are considered hard in
the case of large parallel (e.g., 128-bit hardware) implementations, due to the limited
side-channel signal that then can be collected [USS+20, BMPS21]. In-between these two
extremes, the situation is currently more fuzzy. For example, Kannwischer et al. only show
simulated attacks against 32-bit implementations under a Hamming weight assumption
(which reduces the cardinality of the leakages to consider from 232 to 33), and Bellizia et
al. could only target a 16-bit implementation of Keccak. This leads to an uncomfortable
situation given the importance of 32-bit embedded microcontrollers in the benchmarking
of side-channel resistant lightweight and post-quantum cryptography.1 To the best of our
knowledge, the only work which succeeded targeting a concrete 32-bit implementation so
far is the recent Fragment Template (FT) attack of You and Kuhn [YK21].

Intuitively, the main reason that makes such attacks challenging is their profiling
complexity, which is due to the combined difficulty of dealing with large intermediate
values and long leakage traces that makes the direct application of Chari et al.’s template
attacks hardly realistic [CRR02]. More precisely, when taken separately, these two issues
have good solutions. Profiling large target intermediate values is known to be efficiently
performed thanks to Linear Regression (LR), as introduced by Schindler et al. [SLP05].
And the problem of estimating the covariance of long leakage traces can be mitigated
thanks to dimensionality reduction, e.g., with Linear Discriminant Analysis (LDA) [SA08].
The only attempt to combine these two techniques observed that LR and LDA form an
effective combination (significantly better than, e.g., LR and principal component analysis),
but concluded that estimating 32-bit templates was not practical [CK14], which actually
led (a subset of) the authors to investigate FT attacks. The latter rather considers the
independent modeling of (e.g., 8-bit) fragments of target intermediate variables. But this
approach is conceptually unsatisfying, since it implies that a part of the signal is considered
as algorithmic noise, which is suboptimal from the information extraction viewpoint.

Based on this state of the art, the main goal of this work is to optimize Regression-
based Linear Discriminant Analysis, next coined RLDA, so that 32-bit target intermediate
values can be efficiently profiled. Our contributions in this respect are threefold. First,
we detail the optimized technique and how to implement it efficiently. Second, we
show how to use RLDA in order to rapidly bound the Perceived Information (PI), an
information theoretic metric that characterizes the (data) complexity of a profiled side-
channel attack [DFS19, dCGRP19, BHM+19]. Third, we describe how to combine RLDA
with SASCA and optimize SASCA in order to make it more efficiently applicable against
the 32-bit target intermediate values of a bitslice cryptographic implementation.

As a result, we exhibit a concrete attack that breaks the initialization of the re-keying
used by ISAP implemented in a 32-bit bitslice fashion. We additionally show that RLDA
consistently outperforms FT. Besides applying such powerful profiling methods for the first
time, our results highight new research challenges towards their further optimization, in
particular for the (heuristic) SASCA. Given the potential (algorithmic and technological)
improvements of RLDA in the future, these results also suggest that the security of
leakage-resistant pseudorandom functions (like used in ISAP) based on 32-bit unprotected
implementations may not be sufficient against determined adversaries.

We note that RLDA can naturally be applied in the context of multi-trace attacks
(a.k.a. differential side-channel attacks) as well. Due to its efficiency and wide applicability,
we hope it can become a workhorse for profiled side-channel security evaluations.

Related works. As an alternative to “classical” profiled attacks based on templates,
linear regression and dimensionality reduction (see references in the above state of the
art), a large amount of recent works investigate the applicability of machine learning and

1 https://csrc.nist.gov/Projects/lightweight-cryptography,
https://csrc.nist.gov/projects/post-quantum-cryptography.

https://csrc.nist.gov/Projects/lightweight-cryptography
https://csrc.nist.gov/projects/post-quantum-cryptography
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deep learning to the context of profiled side-channel analysis. We cite [HZ12, MPP16] for
early results in this direction and [CDP17, MDP20] for more recent ones. Like classical
template attacks, these works are hardly applicable to large target intermediate values,
due to profiling complexity reasons. One notable exception is the neural estimation of
the mutual information proposed in [CLM20]. However, contrary to our work, the latter
can only be used to estimate the security level of an implementation, not to mount an
attack (in that sense it is only similar to our PI bound of Subsection 3.2). We also note
the recent [KDB+22] which performs analytical attacks against implementations of stream
cipher based on a Hamming weight assumption (to reduce profiling complexity).

2 Background
In this section, we first remind the LR, LDA and (baseline) RLDA techniques for profiled
attacks, together with the FT which has been proposed as another way to solve the problem
we tackle.2 We then introduce the PI metric that we will use to quantify the quality of a
profiled model. We finally describe the SASCA that we will use as a mean to exploit the
leakage of many target intermediate values in a leaking implementation.

Notations. We use capital letters X for random variables, bold letters x for vectors,
capital bold letters X for matrices and calligraphic letters X for sets. We additionally use
the notation X = (x1 . . .xn) to denote the matrix whose columns are the vectors xi, and
the notation 1n to denote the vector of length n whose coordinates are all 1.

We use the following conventions: ns is the number of samples in a trace, np and na

are respectively the number of profiling and attack traces, b is the number of bits of the
profiled variable, and p is the LDA reduced subspace dimensionality.

We denote by f̂M[l∗|X = x] the estimation by model M (e.g., LR, LDA, . . . ) of the
probability density of the leakage trace l∗ conditioned on the intermediate variable X
having value x. Then, the distribution of X is always computed using the Bayes rule
(assuming that the prior distribution if X is known):

f̂M[X = x|l∗] = f̂M[l∗|X = x] Pr[X = x]∑
x′∈X f̂M[l∗|X = x∗] Pr[X = x′]

. (1)

2.1 Regression-based leakage profiling
LR-based profiled attacks have been introduced by Schindler et al. [SLP05]. They can be
viewed as a variant of Chari et al.’s template attacks [CRR02], where the deterministic
part of the leakage function is expressed as a linear combination of basis functions, in
order to reduce the number of profiling traces. For every time sample s in a leakage trace,
instead of estimating this deterministic part thanks to the mean of the sample for every
class (i.e., every possible value x ∈ X = Z2b of the target variable), the LR-based attack
fits a weighted sum of nb basis functions denoted as βi:

ms(x) = aT
s · β(x) =

nb−1∑
i=0

ai,sβi(x),

where the ai,s’s are the weights of the model learned by profiling. A simple choice for the
basis functions is the linear basis, where each function βi corresponds to a single bit of the

2 The authors of [SLP05] and [CK14] respectively denote LR attacks and RLDA as stochastic attacks
and SLDA, where the S stands for stochastic. We use the term regression-based and therefore the letter R
in our acronyms, which is more descriptive and in line with statistical textbooks terminology.
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target value x:

βi(x) =


1 if i = 0,
1 if

⌊
x/2i−1⌋ mod 2 = 1,

−1 otherwise,
(2)

with nb = b + 1. The profiling step then collects a set of np traces L = (l1 · · · lnp
) and

their corresponding values x = (x1, x2, . . . , xnp) ∈ Xnp . Letting l′s be the sth row of L
and β(x) =

(
β(x1) . . .β(xnp)

)
, it minimizes the norm of the residual:

rT
s = (l′s)T − aT

s · β(x). (3)

The minimization of ‖rs‖ is an ordinary linear least squares problem that can be trans-
formed into a small linear system using the normal equations:

(l′s)T · β(x)T = aT
s · β(x) · β(x)T , (4)

for each time sample s ∈ {1, . . . , ns}. Once ms(x) is computed, it is used as the mean for
a pooled template [CK13], i.e., we estimate a single approximate covariance matrix for all
the traces Σ̂, computed as the empirical covariance of the residual R = (r1 · · · rns

)T :

Σ̂ = 1
np
RRT . (5)

(There is no need to subtract the mean since r has mean 0 by construction.)

Finally, the modeled probability density for a new leakage trace l∗ is:

f̂LR[l∗|X = x] = 1√
(2π)n

∣∣∣Σ̂∣∣∣ exp
(
−1

2(l∗ −m(x))T Σ̂−1(l∗ −m(x))
)
, (6)

where m(x) = (m1(x), . . . ,mns
(x)). The conditional distribution f̂LR[X|l∗] can in turn be

derived from the probability density function p̂LR[l∗|X] using Bayes’ rule.

2.2 Linear discriminant analysis

The exploitation of long traces using (pooled) Gaussian templates or LR-based attacks can
be resource-intensive (i.e., require many profiling traces and a long computation time) due
to the need to accurately estimate and invert a large covariance matrix Σ̂. A good solution
to mitigate this problem is to apply Fisher’s LDA in order to reduce the dimensionality of
the trace while preserving (most of its) useful content [SA08]. In a nutshell, LDA finds
a linear projection to a fixed-dimensionality subspace that maximizes the side-channel
Signal-to-Noise Ratio (SNR) [Man04] in that subspace. Formally, it finds the projection
matrix W ∈ Rns×p that maximizes the ratio between the inter-class scatter SB and the
intra-class scatter SW , that is [DHS01]:

arg max
W

∣∣W TSBW
∣∣

|W TSWW |
·
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Given a set of traces L, let L(x) be the subset of traces in L for which X = x. The scatter
matrices can then be computed as:

µ̂(x) = 1
|L(x)|

∑
l∈L(x)

l,

µ̂ = 1
|L|
∑
l∈L

l,

SB =
∑
x∈X
|L(x)| (µ̂(x)− µ̂)(µ̂(x)− µ̂)T ,

SW =
∑
x∈X

∑
l∈L(x)

(l− µ̂(x))(l− µ̂(x))T ,

and the maximization can be rewritten as the generalized eigendecomposition problem:

SBwi = λiSWwi,

where wi is the ith column of W (we consider only the p largest eigenvalues and the
associated eigenvectors). Once the projection is known, the traces are projected in the
subspace and any model can be built from the projected traces. In the particular case of
pooled Gaussian templates, the model becomes:

f̂LDA[l∗|X = x] = 1√
(2π)n

∣∣∣Σ̂W

∣∣∣ exp
(
−1

2(W T l∗ −W T µ̂(x))T Σ̂−1
W (W T l∗ −W T µ̂(x))

)
,

with Σ̂W = |L|−1
W TSWW . If the number of dimensions after projection p is small (i.e.,

p� ns, with ns the number of samples in the raw traces), the LDA uses only a small part
of the spectrum of the trace’s covariance (or equivalently scatter) matrix, which converges
fairly fast, hence mitigates the “big covariance estimation” problem.

2.3 Baseline regression-based linear discriminant analysis
The previous sections outline the respective merits of LR-based attacks and LDA: the
efficient profiling of large states (i.e., many bits) for LR-based attacks and the efficient
handling of long traces (i.e., many samples) for LDA. Since our goal is to efficiently profile
long traces with large states, combining both methods is a natural solution.

In a nutshell, the baseline RLDA model proposed in [CK14] first computes the co-
efficients as of the linear regression for each time sample s in the trace, following the
technique presented in Subsection 2.1. Then, it performs the LDA, but uses the regressed
class means m(x) instead of the directly estimated means µ̂(x), both in the computation
of the scatter matrices SW and SB, and in the final Gaussian probability formula.

Formally, after computing the regression as in Subsection 2.1, we define the coefficient
matrix A = (a0 · · ·ans)T , such that m(x) = Aβ(x). Then, we define the regressed inter-
and intra-class scatter matrices Sreg

B and Sreg
W as:

Sreg
B =

∑
x∈X
|L(x)| (m(x)− µ̂)(m(x)− µ̂)T ,

Sreg
W =

∑
x∈X

∑
l∈L(x)

(l−m(x))(l−m(x))T .

Let us remark that Sreg
W can equivalently be defined as the scatter of the residual (which

has mean 0): Sreg
W = rTr (see Equation 5). The following optimization problem is then
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solved to obtain the projection matrix W reg for a chosen dimension parameter p:

W reg = arg max
W∈Rns×p

∣∣W TSreg
B W

∣∣
|W TSreg

WW |
·

Finally, the pooled noise covariance matrix can be estimated from the intra-class scatter
Σ̂W reg = |L|−1

W regTSreg
WW reg, and the model becomes:

f̂RLDA[l∗|X = x] = α exp
(
−1

2(W regT (l∗ −m(x)))T Σ̂−1
W reg (W regT (l∗ −m(x)))

)
, (7)

with α = 1/
√

(2π)p|Σ̂W reg |.

2.4 Fragment template attacks
As a solution to the challenges in running a RLDA on a 32-bit state [CK14], You and
Kuhn introduced FT attacks [YK21]. Their main idea is to split the variable of interest
into 2 (or more) smaller fragments which can be profiled thanks to RLDA and treat the
rest of the state as (algorithmic) noise. In the attack phase, the information extracted
from each fragment is then recombined. Concretely, they analyzed the leakage of 32-bit
words thanks to four 8-bit fragments, and exploited this model in a SASCA against Keccak.
Their SASCA is based on single-bit variables, therefore they additionally marginalize the
8-bit probabilities from each fragment to single-bit probabilities.3

2.5 Perceived information
The PI of a leakage model is a side-channel metric that characterizes the amount of
information that can be extracted about a target variable X from leakage traces using
a given model [RSV+11]. It is related to the success rate of an adversary that uses this
model [DFS19, dCGRP19, MDP20], and it is a lower bound for the Mutual Information
(MI) between the leakage and the target variable [BHM+19, MCHS22], which characterizes
the worst-case security of an implementation and therefore makes an interesting tool for
side-channel security evaluations [SMY09]. Concretely, and given a model f̂[l|x] and a set
of leakage traces L′, the PI can be estimated as:

P̂I(X,L) = H(X) + 1
|L′|

∑
x∈X

∑
l∈L′x

log2 p̂[x|l], (8)

where H(X) is the entropy of X. The set of traces L′ used to estimate the PI must differ
from the set of traces used to fit the model, otherwise the estimation is biased.

2.6 Soft analytical side-channel attacks
The previous models (LR, LDA, RLDA and FT) can be used in order to extract information
on a target intermediate variable X. However, a cryptographic implementation performs
computations on multiple values that depend on a single key, and an adversary can then
build models for multiple variables X1, . . . , Xnv

. The question therefore arises of how to
exploit the leakage of all these operations. In particular, while it is in principle possible to
compute the joint probability of the variables in order to find the maximum likelihood
key (which would be the optimal solution), it is often infeasible for computational reasons,
as it requires enumerating a state whose size is comparable to the key size. SASCA were

3 Theoretically, it could be possible to improve their attack with an 8-bit factor graph. But the bit-level
representation of Keccak is naturally more suited to a binary description.
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Figure 1: Ascon S-box for the initialization of ISAP’ re-keying (the dashed lines are 0) and
corresponding factor graph (the ¬, ⊕ and � symbols are bitwise NOT, XOR and AND).

introduced to circumvent this problem [VGS14]. They leverage the known relationships
between the variables manipulated by an implementation and approximate the joint
distribution thanks to a message passing algorithm that exploits local inference rules.

In more details, a SASCA is based on a factor graph, that is a bipartite graph whose
nodes are either variables Xi or relations Ri, and whose edges represent the involvement
of a variable in a relation (e.g., a variable is the sum of two other variables). Each variable
Xi has an a priori distribution, typically derived from the leakage, p̂(X = x). For example,
a factor graph for the Ascon S-box that we will use next is shown in Figure 1, where
the blue nodes are leaky variables and the red nodes are relations. The yellow and green
nodes are also variables but they are respectively non-profiled and known. The belief
propagation algorithm works by computing probability distributions (over the domain of
X) P (t)

X , m(t)
X→R and m(t)

R→X for each variable X and for each edge connecting X to R.
The algorithm is initialized by setting m(0)

R→X to the uniform distribution for all edges.
Next, the belief propagation performs a number of three-step iterations incrementing t
that depend on the graph size and structure (starting at t = 1):

1. Intermediate state computation: for every variable node X,

P
(t)
X (x) = p̂(X = x)

∏
R∈∂X

m
(t−1)
R→X(x),

where ∂X denotes the set of neighbors of X.

2. From intermediate states to relations, the message is the probability of the state,
except for the message received from the target relation:

m
(t)
X→R(x) = P

(t)
X /m

(t−1)
R→X(x).

3. From relations to intermediate states, the message is computed by summing the
product of the incoming messages over all “compatible” values:

m
(t)
R→X(x) =

∑
xi∈Xi for i=1,...,k

ψR(x, x1, . . . , xk)
k∏

i=1
m

(t)
X→R(xi),

where {X1, . . . , Xk} = ∂R\X and ψR(·) is the relation that determines compatibility.
The factor ψR equals 1 if the relation is satisfied, and 0 otherwise.
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Running the belief propagation results in the final distributions P (t∗)
X for all variables of

interest. Convergence in a bounded number of iterations is guaranteed if the factor graph
is a tree. In the (frequent) case where it contains cycles, stopping the propagation after a
few iteration is a common heuristic but does not guarantee convergence [VGS14].

3 Practical RLDA algorithms for large states
The previous section recalled how LR and LDA can be combined into a baseline RLDA,
giving a conceptually powerful model that can be trained with relatively few traces.
However, RLDA becomes computationally expensive when the number of bits in the state
grows. Indeed, using the formulas of Subsection 2.3 has a complexity Θ

(
2bn2

s

)
for profiling,

and Θ
(
2b(b+ p)ns

)
for computing the distribution of a variable from one leakage trace.4

In the following, we mitigate these performance bottlenecks by introducing improved
solutions for efficient RLDA. We first describe a profiling algorithm with polynomial
complexity, namely Θ

(
n2

s(b+ np)
)
computation and Θ

(
n2

s

)
memory, with the additional

advantage of being incremental: it can accumulate traces during their acquisition using
a constant amount of memory. We next provide an optimized method for computing a
probability distribution from the model in Θ

(
(ns + 2b)p

)
computations (i.e., we gain a

factor ns). In Section 3.2, we finally design a method allowing to quickly estimate the
model quality with a new algorithm that computes the PI for large variables.

3.1 Efficient RLDA implementation
We next introduce our two steps to improve the efficiency of the RLDA. Precisely, we
first highlight efficient and incremental formulas in order to compute the regression and
the scatter matrices, and we discuss how to compute the projection. We next propose to
slightly modify the projection in order to simplify the probability computations.
These efficient profiling computations are summarized in Algorithm 1.

Algorithm 1 Efficient RLDA profiling.
Input: Parameters ns, b, np and p.
Input: Batches of profiling traces and associated intermediate values (L1,x1), (L2,x2) . . . .
Output: W eff and Aeff matrices for use in Equation 10.

1: nb ← b+ 1
2: B ← 0nb×nb ; C ← 0ns×nb ; SL ← 0ns×ns

3: for each acquired batch (Li,xi) do
4: B ← B + β(xi)β(xi)T

5: C ← C +Liβ(xi)T

6: SL ← SL +LiL
T
i

7: Solve the system C = A ·B for A ∈ Rns×nb .
8: µ̂← C∗,1/np (C∗,1 is the first column of C).
9: Compute Sreg

B and Sreg
W using Proposition 1 and Proposition 2.

10: Find the p largest eigenvalues and associated eigenvectors W reg that solve Equation 9.
11: Compute the symmetric eigendecomposition V ΛV T of Σ̂W reg = W regTSreg

WW reg/np.
12: W norm ← V Λ−1/2

13: W eff = W regW norm

14: Aeff ←W eff T
A

4 The optimization of [CK14] reduces the attack complexity to Θ
(
p(ns + 2b)

)
at the cost of Θ

(
2bp
)

memory, which (even with enough memory) is not efficient due to memory bandwidth saturation.
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First, for the regression, we have to solve the linear system:

C = A ·B,

for the unknown A with:

B = β(x)β(x)T =
np∑
i=1

β(xi)β(xi)T ,

C = Lβ(x)T =
np∑
i=1

liβ(xi)T ,

where B is a full-rank square matrix if the span of the set of bit-vectors xi is Fb.5 This
system is therefore a re-writing of the normal equations (Equation 4) in a matrix form.

Let us remark that B and C can be computed incrementally while the profiling traces
are being acquired or loaded. For improved implementation efficiency, one may also
decompose x and L in small blocks rather than single elements (resp., columns).

Next, we derive an efficient formula for the inter-class scatter matrix Sreg
B , avoiding the

sum over the 2b classes, as formalized by the following proposition.

Proposition 1 (Efficient Sreg
B formula).

Sreg
B = ABAT − npµ̂µ̂

T .

Proof. First, we observe that

∑
x∈X
|Lx|m(x) =

np∑
i=1

m(xi) =
np∑
i=1

Aβ(xi) = Aβ(x)1np ,

is the first column of AB, since the first column of β(x)T is 1np by construction (the first
basis function is the constant 1). Therefore, it is equal to the first column of C, which is
itself equal to L1np

=
∑np

i=1 li. Hence∑
x∈X
|Lx|m(x) = npµ̂

by definition of µ̂. We then expand the definition of Sreg
B :

Sreg
B =

∑
x∈X
|Lx|

[
m(x)m(x)T −m(x)µ̂T − µ̂m(x)T + µ̂µ̂T

]
,

which, using the previous result, gives

Sreg
B =

np∑
i=1

m(xi)m(xi)T − npµ̂µ̂
T .

We conclude the proof by remarking that
np∑
i=1

m(xi)m(xi)T = Aβ(x)(Aβ(x))T . (Aβ(x)) (Aβ(x))T = Aβ(x)βT (x)AT = ABAT .

5 For example, this happens with overwhelming probability for the regression with the linear basis
when x is selected uniformly at random and the profiling set is large enough.
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And for Sreg
W , we similarly derive the following incremental formula.

Proposition 2 (Efficient Sreg
W formula).

Sreg
W = LLT −CAT −ACT +ABAT .

Proof. We expand the definition of Sreg
W :

Sreg
W =

np∑
i=0

[
lil

T
i − lim(xi)T −m(xi)lTi + m(xi)m(xi)T

]
,

= LLT −L(Aβ(x))T −Aβ(x)LT +Aβ(x)(Aβ(x))T ,

and the claim then follows from the definitions of B and C.

The matrix LLT can be computed incrementally as
∑np

i=1 lil
T
i . Exploiting such a

proposition nevertheless requires some attention since it may not always be numerically
stable if a lot of traces are needed for profiling. In practice though, assuming that the
adversary/evaluator measures traces made of 8-bit or 16-bit integers and the accumulator
is a 64-bit integer, the computation remains exact as long as |L| < 232).6

Once the scatter matrices are known, one can partially solve the generalized eigenproblem:

Sreg
B wi = λiS

reg
Wwi, (9)

to get the projection matrix W reg = (w1 · · ·wp). This is fairly efficient since both scatter
matrices are symmetric semi-positive definite, and we usually only need a small part of
the spectrum (the one corresponding to the p� ns largest eigenvalues). Moreover, if the
traces are noisy and np > ns, the matrix Sreg

W is non-singular with probability 1, which
makes the problem easy to solve [PW69]. At this stage, we could compute Σ̂−1

W reg and
then use Equation 7. However, in order to further simplify the model, we will modify the
projection to get a Gaussian distribution with unit covariance. Namely, we compute the
eigendecomposition of the symmetric positive-definite (if we profile with at least p noisy
traces) p× p matrix: Σ̂W reg = |L|−1

W regTSreg
WW reg:

Σ̂W reg = V ΛV T

where Λ is the diagonal matrix of eigenvalues and V is the orthonormal matrix of
eigenvectors. Then, we set W norm = V Λ−1/2. The final projection matrix is W eff =
W regW norm, and we compute Aeff = W eff T

A. As a result,

W eff T
l∗ −Aeffβ(x) = W normT

(
W regT (l∗ −m(x))

)
and since W normW normT = Σ̂−1

W reg , we can re-write Equation 7 as

f̂RLDA[l∗|X = x] = α exp
(
−1

2

∥∥∥W eff T
l∗ −Aeffβ(x)

∥∥∥2
)
. (10)

Let us note that we do not need to compute α = 1/
√

(2π)p|Σ̂W reg | since we only have to
know f̂RLDA[l∗|X = x] up to a constant factor to apply Bayes rule.

Profiling complexity. Overall, RLDA profiling using Algorithm 1 has a computational
complexity of Θ

(
n2

s(b+ np)
)
and memory usage Θ

(
n2

s

)
.7 Remarkably, and contrary to

the baseline method of Subsection 2.3, this complexity is not exponential in b.
6 If numerical precision is a concern, an easy improvement is to ensure that the mean of the traces is

close to zero, which can be done by computing the mean of a few traces and subtracting it to every trace.
7 We simplified these expressions by assuming that b ≤ ns and b ≤ np.
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Attack complexity. For one attack trace l∗, computing the full distribution of X us-
ing Equation 10 and Equation 1 has a computational cost Θ

(
(ns + 2b)p

)
, instead of

Θ
(
2b(b+ p)ns

)
for a naive implementation, since we can amortize the cost of computing

Aeffβ(x) to Θ (p) on average by caching some intermediate sums. The main memory usage
is dominated by the storage of the resulting distribution which has cost Θ

(
2b
)
, while

the cache used for the above optimization is small: Θ (pb). When na traces are available
for the attack, we compute Equation 10 independently for each trace and multiply the
resulting distributions, which has computational complexity Θ

(
na(ns + 2b)p

)
.

Multi-trace optimisation. There are cases where multiple traces correspond to the same
value of the variable X. For example, there is only one value for X in the Simple Power
Analysis (SPA) setting, and the number of attack traces na can be larger than the number
of possible values for X in a traditional differential analysis (DPA) setting. In such cases,
the following optimization reduces the computation cost of computing the RLDA on na

traces that share a common X value to the cost of a single-trace attack, up to the cost of
summing all the attack traces together, i.e., time complexity of Θ

(
nans + (ns + 2b)p

)
.

It is well-known that Equation 10 can be simplified by removing the quadratic term in
l∗ from the sum [CK13], which is what makes LDA “linear”:∥∥∥W eff T

l∗ −Aeffβ(x)
∥∥∥2

=
∥∥∥W eff T

l∗
∥∥∥2
− 2(W eff T

l∗)TAeffβ(x) +
∥∥Aeffβ(x)

∥∥2
.

This scales the terms by a factor independent of x, which disappears when applying the
normalization of Equation 1, leading to a formula linear in l∗. Then, the product of
the distributions for the na traces is turned into a sum of the exponents. We revisit
this technique by keeping the exponent in the form of a squared norm, which makes
it very efficient to compute and avoids numerical overflows in the exponential (which
otherwise would require a normalization pass before computing the exponential to avoid
overflows), while maintaining the explicit computations of probabilities to discriminate the
key (contrary to [CK13]). Our technique is derived as follows:

f̂RLDA[(l∗1, . . . , l∗na
)|X = x] =

na∏
i=1

α exp
(
−1

2

∥∥∥W eff T
l∗i −Aeffβ(x)

∥∥∥2
)
,

= α(l∗1 ,...,l∗na
) exp

− 1
2na

∥∥∥∥∥W eff T
na∑
i=1

l∗i − naA
effβ(x)

∥∥∥∥∥
2
 , (11)

where the normalization factor α(l∗1 ,...,l∗na
) does not have to be computed, as it cancels out

in Equation 1. The correctness of Equation 11 follows from the equality:

na∑
i=1

∥∥∥W eff T
l∗i −Aeffβ(x)

∥∥∥2
= 1
na

∥∥∥∥∥W eff T

(
na∑
i=1

l∗i

)
− naA

effβ(x)

∥∥∥∥∥
2

+ ω(l∗1 ,...,l∗na
),

where ω(l∗1 ,...,l∗na
) depends only on l∗i and W eff .

3.2 Efficient PI bound
The previous section described a tool enabling to evaluate a model for large (e.g., 32-
bit) target intermediate values. As an adversary/evaluator, such a tool can directly be
used to mount improved attacks, which we will further detail in Section 5. But as an
evaluator, it may also happen that one is just interested to gauge the security level of
an implementation, without mounting explicit attacks. This is typically what happens
when using shortcut formulas like [DFS19, dCGRP19] for divide-and-conquer attacks
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and [GGSB20] for analytical attacks. In this case, the evaluation problem essentially
reduces to the estimation of an information theoretic metric like the PI.

Looking at Equation 8, estimating the PI by sampling boils down to estimate a model
|L′| times – the value of |L′| depending on the security level. However, in order to turn the
leakage (conditional) likelihoods f̂[l|x] into probabilities p̂[x|l] for the target intermediate
value, Bayes’s rule must be applied. This implies evaluating the model over all the
possible classes x′ ∈ X , where X grows exponentially with the number of bits b of X. For
intermediate target sizes, like the 32-bit ones we consider in this work, it may result in
a situation where despite feasible, evaluating the model exhaustively Θ (|L′| · |X |) times
becomes cumbersome. In this section, we therefore propose a way to improve the efficiency
of the PI estimation, by replacing its exact computation with cheaper bounds. Precisely,
we show a solution to reduces the Θ (|L′| · |X |) computational complexity of the exact
estimation down to Θ (|L′| · S + |X | logS) for the approximated one, at a Θ (S) memory
cost, where the parameter S determines the tightness of the bounds.

Concretely, instead of computing p̂[x|l] exactly for every x, we will bound it by clustering
some x values according to some metric. These bounds will then be translated into bounds
on the estimated PI. More precisely, using the RLDA model, we have:

f̂[X = x|l] =
exp(− 1

2 ‖l −m(x)‖2)∑2b−1
x′=0 exp(− 1

2 ‖l −m(x′)‖2)
·

Our core idea is that if m(x′) and m(x′′) are close to each other, then the correspond-
ing terms in the denominator will have close values, hence we can compute the term
exp(− 1

2 ‖l −m(x′)‖2) for x′ and use it to infer bounds for the term exp(− 1
2 ‖l −m(x′′)‖2).

As a result, our goal (to gain efficiency) is to find many x′′ classes close to each class x′ for
which we compute the exponentiation. For this purpose, we perform a preprocessing to
identify the classes that are close to each other, then compute all the relevant terms, and
finally put these results together to get bounds for all f̂[X = x|l] values.

The preprocessing is parameterized by a distance threshold t ≥ 0 and builds a set
X ′ ⊂ X and a map σ : X → X ′ such that ‖m(x)−m(σ(x))‖ ≤ t for every x ∈ X . Each
x′ ∈ X ′ is named a cluster center, and the pre-images of x′ form a cluster. For every
cluster center, we compute the size of its cluster s(x′). The construction of X ′ and s(·) is
done according to Algorithm 2, where the map σ is implicit: σ(x) is the nearest point to x
at the time x is processed. Its correctness can be verified by observing that the expected
properties on σ(.) and s(.) are kept satisfied at every iteration (when considering only the
subset of values x ∈ X that have already been processed). We illustrate the result of the
clustering in Figure 2. Let S = |X ′|, the time complexity of this algorithm is O (|X| · logS)
and its memory complexity is O (X ) when computing σ−1, or O (S) otherwise.

Once clustering is performed, we can compute probability bounds knowing only the cluster
centers and the cluster sizes using the following proposition.

Proposition 3 (Probability bounding with clustering). Let X ′ and s(·) be the outputs of
Algorithm 2 for the inputs X , m and t, and let us denote α(y) = exp(− 1

2y). Then, for any
l ∈ Rp: ∑

x′∈X ′
s(x′) · lx′ ≤

∑
x∈X

α
(
‖l−m(x)‖2

)
≤
∑

x′∈X ′
s(x′) · ux′ ,

where:

lx′ = α
(

(‖l−m(x′)‖+ t)2
)
,

ux′ = α
(

(max (0, ‖l−m(x′)‖ − t))2
)
.
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Algorithm 2 Clustering.
Input: A set of classes X , a model m : X → Rp and a threshold distance t.
Output: A set of cluster centers X ′ (represented by nn in the algorithm), cluster sizes

s(·) and list of classes for each cluster, next denoted as σ−1.
. NN is a set of elements in (X ,Rp) with logarithmic cost (in its size) insert and
nn : Rp → X (nearest neighbor) query (retrieves the stored x ∈ X that corresponds to
closest stored vector). We instantiate it with a k-d tree [Ben75].

1: X ′ ← ∅
2: s← Map.newEmpty()
3: nn← NN.newEmpty()
4: for x ∈ X do
5: x′ ← nn.nearest(m(x))
6: if ‖m(x)−m(x′)‖ > t then
7: X ′ ← X ′ ∪ {x}
8: nn.insert(x,m(x))
9: s(x)← 0
10: σ−1(x)← ∅
11: x′ ← x
12: s(x′)← s(x′) + 1
13: σ−1(x′)← σ−1(x′) ∪ {x} . Only when using Equation 13 and not Equation 12.

Figure 2: Illustration of the clustering-based PI computation for the set of classes X =
{x0, . . . , x4}. The cluster centers are X ′ = {x0, x3} in our example, and the bound from
Proposition 3 is 3lx0 + 2lx3 ≤

∑
x∈X α

(
‖l− xi‖2

)
≤ 3ux0 + 2ux3 .

Proof. Let x ∈ X and x′ = σ(x) (hence ‖m(x)−m(x′)‖ ≤ t), using the triangular
inequality we get:

‖l−m(x)‖2 ≤ (‖l−m(x′)‖+ ‖m(x)−m(x′)‖)2 ≤ (‖l−m(x′)‖+ t)2
.

We proceed similarly to calculate the lower bound. Starting from the triangular inequality
‖l−m(x′)‖ ≤ ‖l−m(x)‖ + ‖m(x)−m(x′)‖, we get ‖l−m(x)‖ ≤ ‖l−m(x′)‖ − t, and
then ‖l−m(x)‖2 ≤ (max (0, ‖l−m(x′)‖ − t))2.

We now have α−1 (ux′) ≤ ‖l−m(x)‖2 ≤ α−1 (lx′), which leads to the expected result
by observing that α(·) is a decreasing function and then summing over all x ∈ X .

Corollary 1. With the same hypotheses as Proposition 3, and assuming that:

f̂[X = x|l] =
α
(
‖l −m(x)‖2

)
∑

x′∈X α
(
‖l −m(x′)‖2

) ,
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the following holds:

α
(
‖l −m(x)‖2

)
∑

x′∈X ′ s(x′) · ux′
≤ f̂[X = x|l] ≤

α
(
‖l −m(x)‖2

)
∑

x′∈X ′ s(x′) · lx′
. (12)

Proof. The two inequalities are trivial consequences of Proposition 3.

We can then bound the PI by using the probability bounds of Corollary 1 in Equation 8,
since this formula is increasing with p̂[X = x|l]. The trade-off between the tightness of the
bound and the computation cost is controlled with the parameter t.

When this trade-off is not satisfactory, we next propose an improvement of the method.
It is based on the observation that the largest contributors to the gap between the
probability upper- and lower-bounds are the clusters that are near to l. Indeed, the value
of lx′ and ux′ are small for cluster centers x′ that are far from l, compared to the closer
ones, due to exponential shrining with ‖l−m(x′)‖2. Therefore, even a large relative gap
ux′/lx′ for these far clusters does not translate into a large difference on the overall sums∑

x′∈X ′ s(x′) · lx′ and
∑

x′∈X ′ s(x′) · ux′ . Conversely, the gap on the closest clusters will
have the most impact on the overall tightness of the final bounds. We therefore propose
to nullify this gap by computing the exact probability f̂[l|X = y] for all classes y in
the close clusters, instead of relying on the bounds. Concretely, we implement this by
storing list of all classes in each cluster when running Algorithm 2 (i.e., we store the map
σ−1 : X ′ → P(X )).8 Then, when evaluating probability bounds for some leakage l, we
look in the nn structure (from Algorithm 2) for the cluster centers that are the closest
to l, and add them to a set X ′′, stopping before the total size of the associated clusters
exceeds a computational cost threshold ζ (i.e., we ensure

∑
x′′∈X ′′ s(x′′) ≤ ζ).9 Finally,

we use the following bounds:

α
(
‖l −m(x)‖2

)
Z +

∑
x′∈X ′\X ′′ s(x′) · ux′

≤ f̂[X = x|l] ≤
α
(
‖l −m(x)‖2

)
Z +

∑
x′∈X ′\X ′′ s(x′) · lx′

, (13)

where:
Z =

∑
y∈Y

α
(
‖l −m(y)‖2

)
, with Y =

⋃
x′′∈X ′′

σ−1(x′′).

Remark. We assumed a uniformly distributed X. The method can be adapted to a
non-uniform X by storing the total probability of the clusters in s(·) instead of their sizes.

4 Atomic experiments
In this section, we investigate the ability of RLDA to exploit the leakage of a 32-bit ALU
for a single isolated instruction and we analyze the obtained PI bounds. We compare the
PI of the RLDA model with the one of state-of-the art models: LDA, LR and FT.

4.1 Experimental setup
We designed this first experiment to produce well isolated and easy to interpret leakages.
The target 32-bit ARM instruction is a single XOR between two values stored in registers.
As shown in Figure 3, this instruction is surrounded by nop instructions to separate the
leakage of this instruction from other leakages (e.g., caused by memory accesses). The

8 Which significantly increases the memory usage of the algorithm but not its computational complexity.
9 Taking ζ as a small multiple of the number of clusters |X ′| works well in practice.
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XOR operands are independent uniform random values, and the target value is the result
of the operation. As a result, the leakage of the operands cannot be exploited by the
RLDA (like in a 1st-order masked implementation). The register writeback leakage is also
reduced by overwriting an operand: this produces mainly a transition leakage which is
then equivalent to leakage from the other operand. The impact of a more realistic setting
including pipeline noise will be discussed with an improved SASCA in the next section.

ldrd r5 ,r6 ,[ r0] // Load 2 random b- bit values ( other bits set to 0)
NOP6 // Macro that generates 6 nop instructions , to flush the pipeline .
bl <trigger_up >
NOP6
eor.w r5 ,r5 ,r6 // Target instruction
NOP6
bl <trigger_low >

Figure 3: Target ARM assembly code for the atomic experiment.

Measurements were performed on the ChipWhisperer CW308 board, with an STM32F303
target (Cortex-M4, 3-stage pipeline). The target was running an 80 MHz clock derived in-
ternally from a 8 MHz external crystal. We used the Tektronix CT-1 AC current probe and
we sampled our signal with the Picoscope 6424E at 625 MSample/s with 12-bit resolution.
For each experiment, we used 1.3 million profiling traces and 1000 evaluation traces.

4.2 Analyzing various bus sizes
We analyzed the PI of the RLDA model (with a linear basis) when profiling the result of
the XOR operation for different simulated bus sizes by keeping some bits of the operands
set at 0. We profiled with multiple subspace dimensionalities: p = 1, 2, 3, 4 using the full
leakage trace ns = 500 samples (i.e., no POI selection). We also evaluated the tightness of
our PI bound by running it with multiple clustering thresholds t = 0.05, 0.15, 0.25, 0.35,
and aborting if the number of clusters |X ′| exceeds 220, to limit the computational cost.
We allowed the exact calculation of the likelihood for ζ = max(216, 16 · |X ′|) classes, which
leads to a reasonnable overhead in execution time when there are many clusters and ensures
that we calculate the exact PI when the cost to do so is low. The results are in Figure 4,
where we add the MI of a Hamming Weight (HW) model for comparison purposes.

We first observe that the PI of the model grows with the number of target bits b (the
entropy of the target variables increases as well). For p = 1, the PI of our model is close
the to the MI of HW leakages, and it exceeds it for all values of b when p ≥ 2. Moreover,
the PI of the model increases with p (for any fixed b > p), but saturates quickly: the
improvement between p = 3 and p = 4, which matches the intuition that most the leakage
lies in a low-dimentional subspace.10 Next, regarding the tightness of the clustering-based
PI bounds, we observe that it decreases as the threshold t increases. This leads to an
accuracy vs. efficiency trade-off, since the efficiency mostly depends on the number of
clusters (reported in Table 1). This number is limited by two parameters: the total number
of classes 2b, and the number of clusters needed to cover the space of possible leakage
values. Intuitively, this space is p-dimensional and the extreme values depend on the SNR
of the leakage in this projected space (the noise variance is normalized to 1), while we
try to cover it with balls of radius t. As for the computation cost: for the largest case
(b = 32, p = 4), the RLDA profiling runs in about 18 s, the clustering takes approximately
4 h and the PI bounds computation using the evaluation traces takes about 10 s. The

10 We did not study larger p values due to limitations of our PI estimation method (the clustering with
k-d tree becomes less efficent). However, the RLDA is not limited to such low dimensions: its main limit
is the increased risk of over-fitting, which can be limited with a sufficiently large profiling dataset.



Gaëtan Cassiers, Henri Devillez, François-Xavier Standaert and Balazs Udvarhelyi 285

0

2

4

6

8
p = 1 p = 2

4 8 12 16 20 24 28 320

2

4

6

8

Target state width (b)

PI
[b
it]

p = 3

4 8 12 16 20 24 28 32

p = 4

RLDA t = 0.05 RLDA t = 0.15 RLDA t = 0.25
RLDA t = 0.35 MI HW leakage

Figure 4: PI bounds for a XOR instruction leakage profiled with the RLDA model, for
various values of the model parameters b, p, and of the PI estimation clustering parameter
t. Identically colored lines represent the upper- and the lower-bound on the PI. The black
line corresponds to the MI obtained from simulated Hamming weight leakages.
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Table 1: Logarithm of the number of clusters (log2(X ′)) for the atomic experiment. The
cell color represents the ratio |X ′| / |X |: darker cells reflect less effective clustering.

b p t p t
0.05 0.15 0.25 0.35 0.05 0.15 0.25 0.35

8

1

6.9 6.0 5.3 5.0

2

8.0 7.6 7.4 7.3
16 9.5 8.1 7.4 6.9 14.8 12.8 11.5 10.9
24 10.5 8.8 8.1 7.8 17.5 14.7 13.3 12.4
32 11.2 9.6 8.8 8.4 19.0 16.0 14.6 13.6
8

3

8.0 7.6 7.6 7.6

4

8.0 7.6 7.6 7.6
16 15.9 14.6 13.2 12.5 16.0 15.1 14.6 13.5
24 18.0 16.1 14.9 19.0 16.8
32 18.3 16.9 19.6

implementation is multi-threaded, with the exception of the clustering and was run on a
2.7 GHz AMD CPU. The k-d tree implementation has not been optimized.

4.3 Comparison with related leakage models

We also compared the RLDA with other profiled leakage models. Namely, we considered
the LDA of Subsection 2.2 profiled using all the 500 samples of the traces (like RLDA), the
LR-based profiling of Subsection 2.1 combined with a POI selection taking the p points
with the highest SNR in the traces (POI selection is needed in this case, since we were not
able to accurately estimate the large covariance matrices without this preprocessing), and
the FT of Subsection 2.4 with 8-bit fragments (the PI reported is then the sum of the PI
on all fragments) — this model is denoted as FT8. For completeness, we also analyzed
FT with 1-bit fragments (denoted as FT1) and FT with 8-bit fragments marginalized to
single)-bit variables (denoted as mFT8). The results for the cases b = 16 and b = 32 are
shown in Figure 5. For the 16-bit bus, all models are analyzed. For the 32-bit case, we
could only run FT and RLDA, since the other have a too high computational cost.

Starting with the 16-bit bus experiment, the PI of the RLDA can be evaluated exactly
(i.e., no clustering is needed) and the resulting model achieves the highest PI of all models.
The gains over FT are expected since these models artificially increase the amount of
algorithmic noise due to their fragmentation process. The gains over the LR-based attack
are presumably due to the suboptimal selection of POIs (i.e., selecting multiple univariate
POIs with the SNR does not ensure that their multivariate selection is good, for example
due to correlated leakage samples that may bring limited additional information). As for
the LDA, it performs worse than the RLDA due to higher class mean estimation errors.
Despite the large total profiling dataset, each class mean estimation for the LDA relies
on only 20 traces per class on average, since there are 216 classes in total. For a similar
reason, the PI of the LDA model slowly decreases after p = 6. This effect does not appear
for the RLDA, thanks to the regularization effect of the linear regression.

When moving to the 32-bit state, we need the clustering to estimate the PI of the
RLDA, leading to uncertainty on the value of the PI for the RLDA. As in the 16-bit
case, we observe that FT performs quite poorly compared to RLDA. The gap between
the bounds for RLDA becomes wide for p > 2, and we could not compute meaningful
bounds for p > 6. However, the results with the 16-bit bus suggest that there is not much
information to gain by increasing p significantly beyond 5. Besides, and despite we cannot
cheaply estimate the PI in those cases, we can still use the resulting models to run attacks.
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Figure 5: Comparison of profiled models for 16- and 32-bit bus.

5 SASCA against 32-bit bitslice implementations

We now use the RLDA model in order to mount an attack against a 32-bit software
implementation of ISAP-A [DEM+20]. More precisely, we focus on the initialization
of ISAP’s re-keying which constitutes an interesting target since it heavily relies on
the fact that the implementation of the Ascon-p permutation is secure against Simple
Power Analysis (SPA). Besides, the Ascon-p permutation allows for a fully in-register
implementation, which is in contrast with the Keccak permutation considered in [YK21],
that requires many (leaky) memory accesses, and the ISAP-K implementation considered
in [BBC+20] that was only 16-bit (and therefore more leaky as well).

As a result, our goal in this section is to demonstrate a single-trace attack. In this
context, it is crucial to extract as much information as possible from 32-bit leakages, which
is enabled by RLDA. Concretely, we target the first round of the initial permutation of
ISAP, whose input is the long-term key and a fixed IV. We profile all the states of the
S-box layer using RLDA, then mount a SASCA with the factor graph of Figure 1, and we
finally compute the rank of the correct key using the algorithm of [PSG16].

For this purpose, we first introduce a new efficient algorithm for the computation of
the belief propagation on bitwise AND function nodes. While such Θ

(
b2b
)
algorithms

using fast transforms are well-known for modular additions and bitwise XOR [PPM17], we
introduce a Θ

(
b2b
)
algorithm for the AND belief propagation, which (to the best of our

knowledge) is the first to improve over the state-of-the-art naive algorithm with complexity
Θ
(
22b
)
. This allows us to perform a SASCA with b > 16 in reasonable time.

In the rest of the section, we first give more details on the target implementation and
our attack methodology. We then present and discuss the attack results.

5.1 Efficient belief propagation for AND gates

Let X, Y and Z be random variables in {0, . . . , 2b − 1} such that X&Y = Z, where &
denotes the bitwise AND. Let x = (x0, . . . , x2b−1) ∈ R2b denote the distribution of X
(Pr[X = i] = xi), and similarly for Y and Z. To run the belief propagation, we have to
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compute f(x,y), g(z,x) and g(z,y), where:

a = f(x,y) iff ak =
∑

i,j s.t. i&j = k

xiyj ,

a = g(z,x) iff aj =
∑

i,k s.t. i&j = k

zkxi.

We use the triangular matrices U0 = V0 =
(
1
)
and:

Ub =
(
Ub−1 Ub−1

0 Ub−1

)
, Vb =

(
Vb−1 0
Vb−1 −Vb−1

)
,

whose inverses are U−1
0 = V −1

0 =
(
1
)
:

U−1
b =

(
U−1

b−1 −U−1
b−1

0 U−1
b−1

)
, V −1

b = Vb.

For any vector a ∈ R2b , we use the short-hands aU = Uba and aV = Vba.

Proposition 4 (SASCA AND result distribution). For any x,y, z ∈ R2b ,

z = f(x,y) ⇔ zU = xU � yU ,

where � denotes the element-wise product.

Proof. Let us first remark that since Ub is invertible, both directions of the equivalence
imply each other, therefore we prove the left-to-right implication.

We work by induction: we first verify the base case b = 1 by remarking that f(x,y) =
(x0y0 + x0y1 + x1y0, x1y1), which implies:

zU = (x0y0 + x0y1 + x1y0 + x1y1, x1y1) = (x0 + x1, x1)� (y0 + y1, y1) = xU � yU .

Then, for any b > 1, we denote x|0 = (x0, . . . , x2b−1−1), x|1 = (x2b−1 , . . . , x2b−1), and
similarly for y and z. We remark that z = f(x,y) implies:

z|0 = f(x|0,y|0) + f(x|0,y|1) + f(x|1,y|0),
z|1 = f(x|1,y|1),

which, using the induction hypothesis and the linearity of the multiplication with U , gives:

z|U0 = x|U0 � y|U0 + x|U0 � y|U1 + x|U1 � y|U0 ,
z|U1 = x|U1 � y|U1 .

This can be re-written as:

z|U0 + z|U1 = x|U0 � y|U0 + x|U0 � y|U1 + x|U1 � y|U0 + x|U1 � y|U1 ,
z|U1 = x|U1 � y|U1 .

The first equation can be simplified to z|U0 + z|U1 = (x|U0 + x|U1 )� (y|U0 + y|U1 ), leading to:

zU =
(
z|U0 + z|U1
z|U1

)
=
(
x|U0 + x|U1
x|U1

)
�
(
y|U0 + y|U1
y|U1

)
= xU � yU .
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Proposition 5 (SASCA AND operand distribution). For any x,y, z ∈ R2b ,

y = g(z,x) ⇔ yV = xU � zV .

Proof. The proof is very similar to the one of Proposition 4. We only explain the main
difference in the induction argument (the base case is changes similarly). y = g(z,x)
implies:

y|0 = g(z|0,x|0) + g(z|0,x|1),
y|1 = g(z|0,x|0) + g(z|1,x|1),

which is then re-written as:

yV |0 = zV |0 � x|U0 + zV |0 � x|U1 = zV |0 � (x|U0 + x|U1 ),
yV |0 − y|V1 = zV |0 � x|U1 − z|V1 � x|U1 = (zV |0 − z|V1 )� x|U1

leading to yV = zV � xU .

Eventually, the computations xU = Ubx and xV = Vbx (as well as their inverses) can
be performed in-place and in time Θ

(
b2b
)
using an algorithm based radix-2 butterflies.

5.2 Attack target and methodology
Our attack target is the C reference implementation of the Ascon-p permutation running
on a Cortex-M4 microcontroller compiled with optimizations.11 We keep only the S-
box computation in the trace and use the same side-channel acquisition setup as in
Subsection 4.1. Each acquisition is repeated 100 times to give averaged traces that
contain less noise, which is allowed by the threat model of ISAP. The initial state of the
permutation is the initial state for the IsapRk (f = enc), that is: (K0,K1, IVKE, 0, 0)
with IVKE = 0x01804001_0C01060C. The permutation state is stored in 10 32-bit registers,
which fits into the register file of the target. Hence, there is no register spilling, which
would cause increased leakage. Each 64-bit word of state is split into two registers: the 32
LSBs and the 32 MSBs, that we refer to as the lower and upper parts of the states.

We used 100k profiling traces to build a RLDA model with p = 10 for both parts of
the non-zero variables in the Ascon S-box, plus the distance between the key words (i.e.,
K0 ⊕K1). After getting the distribution for all the target variables using RLDA, we run a
SASCA using the graph of Figure 1 twice, setting the IV to the known constant: one for
the lower part and one for the upper part of the state. Each SASCA is executed with two
belief propagation iterations, which is sufficient to propagate all the variables information
to the key and limits the instability of the loopy belief propagation algorithm.

We compare our RLDA-based attack with the state of the art by running the same
attack with the mFT8 model (marginalized 8-bit fragment templates) of [YK21], using
the same parameters and set of attack and profiling traces as for the RLDA.

5.3 Attack results and discussion
We ran the attack on 6 randomly chosen keys, leading to the final key rank distributions
shown in Table 2. For the RLDA model, after the SASCA, the correct key is within
enumeration power (i.e., rank less than 264) in a majority of the cases. The rank of the
key pre-SASCA (i.e., using only the leakage on the key words) is most of the time below
270, which remains within enumeration range for determined adversaries. We also observe
a strong improvement of the ranks compared to fragment templates.

11 https://github.com/ascon/ascon-c/blob/33abe4bee86/crypto_aead/ascon128av12/ref/round.h.
We use arm-none-eabi-gcc version 9.2.1 with flags -Os -mthumb -mcpu=cortex-m4.

https://github.com/ascon/ascon-c/blob/33abe4bee86/crypto_aead/ascon128av12/ref/round.h
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Table 2: Attack of a 32-bit ISAP-A implementation for 6 randomly chosen keys. The
number given is the base 2 logarithm of the rank of the correct key.

k0 k1 k2 k3 k4 k5

RLDA Pre-SASCA 63.9 69.4 70.6 67.4 69.4 65.2
RLDA Post-SASCA 51.3 62.0 61.1 66.3 74.3 48.2
mFT8 Pre-SASCA 89.5 92.7 101.8 92.7 104.6 77.7
mFT8 Post-SASCA 80.1 87.7 104.9 91.6 102.5 75.8

Table 3: PI bounds for profiled variables in the ISAP-A implem. (p = 4, t = 0.5).
Variable PIlower part PImFT8

lower part PIupper part PImFT8
upper part

K0 9.918 ± 0.653 6.233 10.132 ± 0.575 5.204
K1 15.162 ± 0.000 10.408 11.416 ± 0.175 6.897
A 14.853 ± 0.088 6.53 12.879 ± 0.297 4.91
C 8.726 ± 1.111 6.231 9.547 ± 0.805 5.13
L1 8.485 ± 1.217 5.816 6.806 ± 1.830 5.046
L2 7.904 ± 0.148 5.905 7.659 ± 0.143 4.706
L3 8.087 ± 1.376 5.929 7.327 ± 1.640 5.12

We additionally computed the PI of our RLDA models (under the same settings as
Subsection 4.2 but reduced to p = 4, hence they are worse than the models we used for
the attacks), which are shown in Table 3. We observe that the PI is sometimes lower and
sometimes higher than the one of the experiment in Subsection 4.2. Two opposing effects
can explain these differences. First, the pipeline is now full, leading to multiple states
leaking simultaneously and therefore generating more computational/algorithmic noise.
Second, the increased amount of computation on every state increases the leakage. In
particular, computations such as K1&IV create leakage on a subset of the bits of a state,
adding information on K1. We note that the mFT8 has lower PI than the RLDA (by
roughly 1.5 to 8 bits, depending on the variable), which explains the worse key ranks.

We finally discuss the execution time of the attacks, when run on 8 cores of a AMD
Epyc 7501 2.0 GHz CPU. First, the profiling of the RLDA takes less than 2 minutes for
all 14 target variables. Then, the computation of the distributions from the RLDA for one
attack trace takes less than 15 second per variable. The belief propagation for one attack
is performed in about 2.7 h (it is single-threaded). As for the memory usage, the most
expensive step is the SASCA, for which our (far from optimal) prototype implementation
stored 35 distributions of 32 GiB each, summing to 1.13 TiB of RAM.

6 Conclusions
In this paper we proposed optimized solutions to compute the RLDA profiled model,
allowing it to scale up to 32-bit targets. We then used this model as the basis for a single-
trace SASCA against an implementation of the Ascon-p S-box on a 32-bit microcontroller.
An important application for such an attack is the ISAP-A re-keying. Our results indeed
show for the first time that the SPA security on which this re-keying relies can be attacked
when implemented on unprotected 32-bit microcontrollers. Our current results target the
initialization of the re-keying (which could be pre-computed) and open various directions
for further resarch. First, the RLDA model is fairly simple and it could be improved
towards better generality and accuracy, which could be useful to attack less leaky targets
than the Cortex-M4. Among possible directions, one could consider the use of a larger (e.g.,
quadratic) basis for the regression or the use of Quadratic Discriminant Analysis (QDA)
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instead of LDA. Whether efficiently profiling long traces for large target intermediate
values is possible with more advanced (e.g., deep learning) models is an interesting open
problem as well. Besides, since our attack is bottelnecked by the SASCA, due to its
heuristic nature and its time complexity, it would be interesting to investigate sparse and
computationally efficient representations for distributions. This could help in growing the
attacked states towards 64 bits, where computing full distributions is infeasible, and to
extend our attacks beyond the initialization of ISAP’s re-keying.
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