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Abstract. In this paper, we present the first chosen-ciphertext (CC) cache-timing
attacks on the reference implementation of HQC. We build a cache-timing based
distinguisher for implementing a plaintext-checking (PC) oracle. The PC oracle uses
side-channel information to check if a given ciphertext decrypts to a given message.
This is done by identifying a vulnerability during the generating process of two vectors
in the reference implementation of HQC. We also propose a new method of using
PC oracles for chosen-ciphertext side-channel attacks against HQC, which may have
independent interest.
We show a general proof-of-concept attack, where we use the Flush+Reload technique
and also derive, in more detail, a practical attack on an HQC execution on Intel
SGX, where the Prime+Probe technique is used. We show the exact path to do key
recovery by explaining the detailed steps, using the PC oracle. In both scenarios, the
new attack requires 53, 857 traces on average with much fewer PC oracle calls than
the timing attack of Guo et al. CHES 2022 on an HQC implementation.
Keywords: Side-channel attacks · Code-based cryptography · NIST PQC standard-
ization · HQC

1 Introduction
Quantum computing is rising as a new fundamental area in computer science research.
Security estimates for most of our deployed cryptographic primitives are seriously affected
by this development. Predictions of future developments are contested [Kal20] and it
is hard to know when a large-scale quantum computer outperforming classic ones in
cryptanalysis will appear. However, it is important and well established that the transition
to post-quantum secure cryptographic algorithms must happen well before this time.
Encrypted sensitive data might be stored for cryptanalysis at some time in the future.

Newly proposed cryptographic primitives must consider possible attacks from classical
adversaries as well as from quantum ones. But protection against theoretical attacks is not
sufficient. Cryptographic algorithms need to be implemented when deployed, and deployed
implementations need to withstand also other practical implementation attacks, such as
side-channel attacks [Koc96] and fault attacks [BDL97].

An important aspect of a cryptographic design is the difficulty and complexity of
securing an implementation of the design against relevant implementation attacks. It
is often emphasized that a cryptographic algorithm offering simplicity and efficiency in
its secure implementation is an important parameter when comparing cryptographic
algorithms.
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Side-channel attacks [Koc96] assume an additional channel of information for the
attacker, often being measurements of power consumption of the device under attack, or
measurements of timing variations. Timing attacks was first described by Kocher [Koc96]
and they are notably one of the most dangerous implementation attacks. The information
channel may come from direct time measurements on the targeted device, but could alter-
natively involve an attacker only connected to the target device through a communication
channel. This may even extend to the possibility of mounting an attack remotely over
a network [BB05, BT11, KPVV16, MSEH20, MBA+21]. One of the well known remote
exploitations is the Lucky Thirteen attack [AP13] on TLS.

Timing attacks exploit the timing variations which have a dependence with the secret
key. Collecting enough timing information might allow the recovery of (a part of) the
secret key. These timing variations may be in form of direct variations in the executed
code (say from if-then statements), or it might come from other indirect variations on the
executing device. A main class of such variations are the cache-timing attacks, where we
use the timing difference appearing from the use of cache memory. Caches are typically
shared among executing programs, which means that a malicious program can monitor
cache activities and extract information on the execution of the other programs using
the shared cache. Past research has demonstrated the huge impact of cache attacks on
extracting secret keys in cryptographic primitives [AGTB19, CFSY22, CGYZ22, DME+18,
GPTY18, GPS+20, LYG+15, OST06, GBY16] or other sensitive information [GRB+17,
GSM15, SKH+19, YFT20].

HQC [AAB+20] is a proposed code-based post-quantum secure key encapsulation
mechanism (KEM), where the security is based on the hardness of decoding random
quasi-cyclic codes in the Hamming metric. It has been selected as a KEM candidate in the
fourth round of the NIST PQC standardization project [NIS]. NIST has further claimed
to standardize either HQC or BIKE at the end of the fourth round, making HQC one of
the most relevant active candidates in this NIST PQC standardization effort.

As such, much attention has been devoted to side-channel cryptanalysis of HQC. So far,
the focus has mainly been on power analysis or extracting electromagnetic traces [SRSW20,
GLG22b, SHR+22, GLG22a]. Timing attacks are in general not directly applicable due to
the default option of constant-time implementations. In [GHJ+22], however, a key-recovery
timing attack on HQC was described, caused by an implementation weakness in the step
that used a procedure called rejection sampling in randomness generation. This is the
only known timing attack on HQC and one can protect against it by a more careful
implementation of the rejection sampling step. The attack efficiency was further improved
in [GNNJ23] with techniques from coding theory.

1.1 Contributions
In this paper, we present the first chosen-ciphertext cache-timing attacks on the reference
implementation of HQC. The setting is a chosen-ciphertext side-channel attack, modeled
by building a plaintext-checking (PC) oracle. The PC oracle uses side-channel information
to check if a given ciphertext decrypts to a given message. With access to the public
key, we can encrypt messages. Together with the PC oracle, this is sufficient to perform
a key-recovery attack on such post-quantum primitives. We show the exact path to
do key-recovery by explaining the detailed steps, spliting into an online phase and an
offline phase, using the PC oracle. To the best of our knowledge, this attack is the first
cache-timing attack among the many chosen-ciphertext side-channel attacks against NIST
PQC KEM candidates.

New techniques. We build a cache-timing based distinguisher for implementing the PC
oracle. This is done by identifying a vulnerability during the randomness generation
process of two vectors in the reference implementation of HQC. In this work, we formally
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introduce a concept called cache line indicator to describe the timing behavior in the
implementation of HQC. Deducing the cache line indicator gives the cache-timing based
distinguisher, providing us the basis to build the PC oracle for a full key-recovery attack.

Our second contribution is a new key-recovery approach from a PC oracle against HQC.
We exploit the sparsity of the HQC key and search for a vector v such that the vectors v
and v− y decode to two different messages m1 and m2, where one of the two messages are
equal to a selected message m. Since one decoding block (called inner code block in the
concatenated code construction of HQC) of y is of Hamming weight fewer than 1 with a
good probability (of larger than or close to 50%), we could recover these inner blocks of y
with further offline processes. We note that similar techniques can be applied to the secret
vector x. Thus, one can collect a sufficient number (i.e., close to n) of secret entries and
then recover the full key (x, y) with Gaussian Elimination or some light information set
decoding procedures.

Implementations. We show a proof-of-concept attack, where we use the Flush+Reload
technique [YF14] to realize the cache line indicator. We also derive, in more detail,
a practical attack on an HQC execution on Intel SGX, where the Prime+Probe tech-
nique [OST06, LYG+15] is used. The corresponding model is discussed and experimental
results are presented. In the Flush+Reload setting, we need 53, 857 traces on average
(i.e., decryption oracle calls) to fully recover the secret key. We can obtain a similar
trace/sample complexity in a practical Prime+Probe attack on an Intel SGX platform
using the SGX-Step [BPS17] framework.

Comparisons with [GHJ+22]. Our attack bears similarities to the one in [GHJ+22] as
both employ timing attacks on HQC; nevertheless, the underlying mechanisms of these
two attacks significantly differ. Firstly, the work [GHJ+22] observes the number of calls
to the sampling function (more calls take longer time), whereas our novel attack focuses
on secret-dependent cache-timing access during vector sampling. Second, the attack
in [GHJ+22] recovers a portion of the secret y by introducing noise perturbations to
repeatedly alter the status of the HQC decryption algorithm (correct or failure) in an
online manner; in contrast, we introduce a novel two-stage procedure in which the offline
phase identifies a state already at the decoding boundary—where a minor perturbation
can affect the decryption result—and the online phase leverages the sparsity of y, using
the targeted subvector of y as the perturbation source to detect if the subvector is all
zeroes or has a weight of one. In this new method, we also target the secret vector x to
recover additional subvectors with a weight limited to one. The new algorithm capitalizes
on the extreme sparsity of the secret in HQC, enabling the recovery of secret blocks
(including hundreds of secret bit entries) after a reasonable number of repetitions using a
different offline-determined error pattern at the decoding boundary each time, in contrast
to the bit-wise recovery method in [GHJ+22]. Our newly proposed key recovery method
significantly reduces the number of required queries.

1.2 Organisation
The remaining parts of the paper are organized as follows. In Section 2, we present the
background information on the HQC scheme, cache-timing attacks, and the Intel SGX
platform. Section 3 presents the novel methodology to build a distinguisher to distinguish
if the HQC.CPAPKE.Dec function succeeds based on a cache-timing vulnerability in the
referenced HQC implementation. This is followed by a full-key recovery attack against HQC
from the new cache-timing distinguisher in Section 4. We then present the experimental
results in Section 5 and finally conclude the paper in Section 6.
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2 Background
In this section, we present necessary background on HQC and cache-timing attacks. We
denote F2 the binary finite field and R the polynomial ring F2[X]/(Xn − 1) for a positive
integer n. Given a polynomial h ∈ R, we denote wH (h) the Hamming weight of h.
The notation sample(R) means we sample an element from R uniformly at random and
sample(R, w) includes the additional constraint that the sampled element needs to have,
namely, a Hamming weight of w.

2.1 Hamming Quasi Cyclic – HQC
HQC [AAB+20] is a code-based post-quantum IND-CCA secure KEM, whose security is
based on the hardness of decoding random quasi-cyclic codes in the Hamming metric. It has
been solicited as a KEM candidate in the fourth round of the NIST PQC standardization
[NIS]. NIST claimed to standardize one code-based KEM primitive between HQC and
BIKE at the end of the fourth round. Similar to other NIST PQC PKE/KEM candidates,
the HQC proposal starts with an IND-CPA version named HQC.CPAPKE and then
presents an INC-CCA KEM named HQC.CCAKEM through a CCA transform (in HQC,
the Hofheinz-Hövelmanns-Kiltz (HHK) transformation [HHK17] is used).

The PKE version of HQC. The algorithm HQC.PKE (shown in Figure 1) consists of
three sub-procedures, HQC.CPAPKE.KeyGen, HQC.CPAPKE.Enc, and HQC.CPAPKE.Dec.
In HQC.CPAPKE.KeyGen, the algorithm uniformly samples three polynomial elements
h, x, and y, where the Hamming weights of x and y are fixed to be w. Then, the secret
key is set to be (x, y) and the public key is (h, s = x+ h · y). In HQC.CPAPKE.Enc, the
algorithm firstly initializes the pseudo-random number generator (PRNG) by a seed θ.
Then, the sampling process becomes deterministic. The algorithm then uniformly samples
from R the polynomials r1 and r2 with Hamming weight wr and e with Hamming weight
we. The ciphertext is then set to be c = (u, v) with u = r1 + h · r2 and v = mG + s · r2 + e.
The matrix G depends on the employed linear code that will be described later. The
algorithm HQC.CPAPKE.Dec then applies a decoder with the input v − u · y which is
mG+s ·r2 +e− (r1 +h ·r2) ·y = mG+x ·r2−r1 ·y+e, since s = x+h ·y. If the Hamming
weight of the error term e′ = x · r2 − r1 · y + e is small (i.e., bounded by the employed
decoder’s capability), then the decoder could correct such an error and the decryption
succeeds.

Input:
Output: sk, pk
h =sample(R)
x =sample(R, ω)
y =sample(R, ω)
sk = (x, y)
pk = (h, s = x+ h · y)

(a) HQC.CPAPKE.KeyGen

Input: pk, m, θ
Output: c = (u, v)

sampleInit(θ)
r1 =sample(R, ωr)
r2 =sample(R, ωr)
e =sample(R, ωe)
u = r1 + h · r2
v = mG + s · r2 + e

(b) HQC.CPAPKE.Enc

Input: sk = (x, y), c =
(u, v)

Output: m
m=C.Decode(v − u · y)

(c) HQC.CPAPKE.Dec

Figure 1: HQC.CPAPKE

Code construction. In a recent proposal of HQC from June 2021, the scheme designs a
decoding approach with concatenated code with an internal duplicated Reed-Muller code
and an outer Reed-Solomon code. The resulting code gives a publicly known generator
matrix G ∈ Fk×n1n2

2 , where k = 8k1.
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We show the concrete parameters of HQC in Table 1. The computations in HQC are
done in the ambient space Fn

2 and the remaining n− n1n2 useless positions are discarded.
The concatenated code C combines an internal duplicated Reed-Muller code with the outer
Reed-Solomon code. The inner duplicated Reed-Muller code is defined with parameters
[n2, 8, n2/2] and the outer Reed-Solomon code is [n1, k1, n1 − k1 + 1]. In the encoding
procedure, a message m ∈ Fk1

28 is encoded into m1 ∈ Fn1
28 by the outer Reed-Solomon code.

Then, the inner duplicated Reed-Muller code encodes each byte m1,i into m̄1,i ∈ Fn2
2 ,

where 0 ≤ i < n1. Thus, we get mG = (m̄1,0, · · · , m̄1,n1−1).

Table 1: The HQC parameter sets [AAB+20]. The base Reed-Muller code is defined by
the first-order [128, 8, 64] Reed-Muller code.

RS-S Duplicated RM
Instance n1 k1 dRS Mult. n2 dRM n1n2 n ω ωr = ωe

hqc-128 46 16 31 3 384 192 17664 17669 66 75
hqc-192 56 24 33 5 640 320 35840 35851 100 114
hqc-256 90 32 49 5 640 320 57600 57637 131 149

Similarly, to decode V = v − u · y, V ∈ Fn1n2
2 is divided into n1 blocks, i.e., V =

(V0, · · · , Vn1−1), where Vi ∈ Fn2
2 is called an inner block and 0 ≤ i < n1. Each Vi is

decoded by the inner duplicated Reed-Muller code into V̄i ∈ F8
2, where 0 ≤ i < n1. Then,

V̄ is obtained as a string of length 8n1 bits, which is denoted as (V̄0, · · · , V̄n1−1). For
each i ∈ [0, n1), we call V̄i an internal codeword. It can be seen that V̄ is a noisy codeword
of the outer Reed-Solomon code, which can be decoded into k1 elements over F256 and
transformed to k1 message bytes.

The KEM version of HQC. The KEM construction (shown in Figure 2) is based upon
the PKE version of HQC, but additionally calls three independent cryptographic hash
functions G, H, and K. Note that the seed θ is generated by m, thus the sampling process
only depends on m during the encryption.

Input: pk
Output: K, c = (u, v), d
m=sample(Fk

2)
θ = G(m)
c =HQC.CPAPKE.Enc(pk,m, θ)
K = K(m, c)
d = H(m)

(a) HQC.CCAKEM.Encaps

Input: sk = (x, y), c = (u, v), d
Output: K
m′=HQC.CPAPKE.Dec(sk, c)
θ

′ = G(m′)
c

′ =HQC.CPAPKE.Enc(pk,m′, θ′)
if c 6= c′ & d 6= H(m′) then

K =⊥
(b) HQC.CCAKEM.Decaps

Figure 2: HQC.CCAKEM

2.2 Cache Attacks
Cache. The cache is a small bank of memory that bridges the speed gap between the
fast processor and the slow memory by utilizing temporal and spatial locality. That is, the
memory is divided into lines and recently used lines are stored in the cache. When the
processor accesses memory, it first checks whether the requested memory address is in the
cache. If it is, indeed, in the cache—or a cache hit—the data is retrieved from the cache,
resulting in a fast serving time. On the other hand, if the requested memory address is
not in the cache—or a cache miss—the processor needs to retrieve the data from the main
memory and put it into the cache, resulting in a slow serving time.
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Set-associative caches. In modern processors, the cache structure is usually set-associative.
With this structure, the cache is divided into multiple sets where each set contains a
certain number of ways. A memory line can be mapped into a single cache set and can
only be stored in the particular set that it is mapped to. The details of the mapping
function are considered proprietary knowledge, and vendors do not always publicly disclose
such information. Nevertheless, previous research [HWH13, IES15, MSN+15, YGL+15]
has reverse-engineered some of the mapping functions, thus allowing ones to determine the
cache set that a given memory line is mapped to.

Cache-based side-channel attacks. Caches are usually shared among multiple programs.
This means that a malicious program can monitor cache activities and infer information on
the execution of the other programs using the shared cache. Past research has demonstrated
the impacts of cache attacks, which range from recovering encryption keys [AGTB19,
CFSY22, CGYZ22, DME+18, GPTY18, GPS+20, LYG+15, OST06, GBY16] to other
sensitive information [GRB+17, GSM15, SKH+19, YFT20].

Flush+Reload. Flush+Reload [YF14] is cache-based side-channel attack that exploits
the timing difference whether the data is in the cache. In the flush phase, the attacker
performs clflush to clear memory lines in the cache. Then, the attacker waits for the
victim to execute. Since the memory lines are empty, any victim memory access will put
data in the cache. Finally, in the reload phase, the attacker re-accesses the memory lines
that have been removed in the flush phase. A short access time indicates that the memory
line has been brought back into the cache during the victim’s execution, while a long access
time indicates that that memory resides in the main memory and has not been brought
back into the cache. Hence, the attacker can learn which memory line(s) the victim has
accessed.

Prime+Probe. Prime+Probe [OST06, LYG+15] is another cache-based side-channel
attack. It exploits set-associativity and causes contention. In the prime phase, the attacker
completely fills the target cache set with its own data. Then, the attacker waits for the
victim to execute. Since the target cache set is already full, any memory access caused by
the victim must result in attacker’s data being removed from the cache. Finally, in the
probe phrase, the attacker measures the time to access the data used in the prime phase to
fill the target cache set. A short access time implies that the data still resides in the cache.
On the other hand, a long access time implies that the attacker’s data has been evicted by
the victim’s execution. Therefore, the attacker can infer the cache set that the victim has
accessed during the prime and probe phases. Utilizing the mapping between address bit
and cache sets, the attacker can get some (partial) information about the address that the
victim accessed.

2.3 Intel SGX
Intel Software Guard Extensions (SGX) is a set of extensions of the Intel instruction set
that allows running code in trusted execution environments called enclaves. SGX aims
at protecting the contents inside the enclave from any other code running on the same
machine, including protection from the operating system (OS), virtual machine manager,
and the high privileged system management mode. To achieve this aim, the processor
encrypts the memory space of the enclave and imposes restrictions when switching between
enclave and non-enclave.

Note that SGX does not consider the OS as trusted. This means that SGX assumes
the OS can be malicious. Since SGX does not provide protection against side-channel
attacks [AMG+15, CD16], this has led to a stronger attack model that includes a malicious
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or compromised OS. In other words, the model assumes that the attacker may control
the OS and can use privilege instructions. There exist various attacks that exploit this
powerful attacker’s ability. Examples include attacks on the page tables [XCP15, BWK+17],
branch target buffers [LSG+17], caches [SWG+17, MIE17, BMD+17], and memory false
dependency [MES18].

A technique that has been used (e.g., in [LSG+17, MIE17]) to improve the attack is to
employ the OS’s ability to interrupt the enclave frequently. This allows attackers not only
to obtain a high temporal resolution but also to observe memory accesses nearly at every
single instruction performed by the victim enclave.

In terms of protections against SGX attacks, several approaches have been proposed.
For example, compiler-level page table masking [SCNS16] and modification to page table
entries within the SGX hardware [SP17] have been demonstrated to mitigate page table
attacks. Other compiler-level protections based on randomization [BCD+17] and binary
code retrofitting [WWB+17] have been introduced to prevent cache attacks. Detecting
excessive OS interruptions [CZRZ17] has been proposed as a solution to attackers with
OS privilege. Note however that the robustness and efficiency of the aforementioned
protections are yet to be verified.

3 Plaintext-Checking Oracle from Cache-Timing Leakage
The core problem in a chosen-ciphertext side-channel attack against HQC is to build
a plaintext-checking (PC) oracle to check if HQC.CCAKEM.Decaps(sk, c) = m, given c
and m. In this section, we first present a vulnerability during the generating process of
the two vectors, namely r1 and e, in the reference implementation of HQC. 1 Then, we
introduce an important definition, which is called cache line indicator, to describe the
cache-timing behavior during the implementation of HQC. Based on the cache-timing
leakage from the vulnerability, we develop a PC oracle, which is essential to build our key
recovery attack against HQC.

3.1 The Sampling Process of r1 and e

Now we describe the sampling process of the vectors r1 and e in the reference im-
plementation of HQC.2 In the reference implementation, both the vectors r1 and e
are allocated with the data type uint64_t. The vectors r1 and e are sampled by
calling vect_set_random_fixed_weight in Listing 1. From the code, the function
vect_set_random_fixed_weight_by_coordinates is called to determine the coordinates
of the nonzero components. Then, the corresponding bits are modified in the loop according
to the coordinates recorded in the array tmp.

It can be observed that in the sampling process, only parts of the vectors are loaded
into the cache. When sampling the vectors r1 and e, only ωr bits of r1 and e are modified,
which indicates that at most ωr cache lines are accessed. This is crucial to determine
whether HQC.CCAKEM.Decaps(sk, c) = m, given c and m.

3.2 Cache Line Indicator
Now we introduce the definition of the cache line indicator, which describes whether a
cache line is accessed during the implementation of the sampling process.

1The reference version can be found through the link https://pqc-hqc.org/implementation.html.
2The generation of the vector r2 is different from the generation of r1 and e because r2 is only used

during the multiplication with the vector s and only the nonzero components of r2 are recorded. The
oracle we construct is based on the timing leakage when generating r1 and e.

https://pqc-hqc.org/implementation.html
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1 void vect_set_random_fixed_weight(seedexpander_state *ctx, uint64_t *v, uint16_t
weight) {↪→

2 uint32_t tmp[PARAM_OMEGA_R] = {0};
3 vect_set_random_fixed_weight_by_coordinates(ctx, tmp, weight);
4 for (size_t i = 0; i < weight; ++i) {
5 int32_t index = tmp[i] / 64;
6 int32_t pos = tmp[i] % 64;
7 v[index] |= ((uint64_t) 1) << pos;
8 }
9 }

Listing 1: Vulnerable function

Definition 1. A cache line indicator of a vector b is a binary vector vb ∈ F`b
2 , where `b is

the number of cache lines needed to load the vector b into the cache. In a process where b
is involved, if the i-th cache line is accessed, the i-th component of vb, denoted as vi

b, is 1;
otherwise, vi

b is 0, where 0 ≤ i < `b.

Given a vector b, the cache line indicator can be deduced directly during the implemen-
tation, which is called offline deduction. For example, at the beginning of the sampling
process, the vector r1 is initialized as a zero vector. Then, only ωr bits of r1 are modified
to be one. If the 64i-th, · · · , (64i+ 63)-th bytes of the vector r1 are zero, the i-th cache
line is not accessed, which means that vi

r1
= 0; otherwise, vi

r1
= 1, where 0 ≤ i < `b.3

As we are targeting at attacking hqc-128, `r1 + `e = 2× d17664/(8× 64)e = 70 cache
lines are used to fully load r1 and e into the cache. In this work, we construct special
ciphertexts such that only a part of cache lines are hit during the decapsulation, which
means the cache line indicators vr1 and ve are sparse vectors instead of random vectors.
Thus, the cache line indicator can be used to identify the cache behavior during the
execution of hqc-128.

The cache line indicator can also be deduced from the cache-timing information leakage
applying a side-channel attack, which is called online query. In the later section, we show
how to apply the Flush+Reload [YF14] and Prime+Probe [LYG+15, OST06] attacks in
two different scenarios in more details. Now, we present the general process of deducing
the cache line indicators of the vectors r1 and e with a cache-timing attack.

In an online query, the victim begins to execute the decapsulation function by calling
HQC.CCAKEM.Decaps(sk, c), where sk is a secret key and c is a ciphertext. The victim
samples r1. The attacker obtains the timing leakage information through the cache-timing
attack, which can help to deduce the cache line indicator of the vectors r1. The victim
samples e. Similarly, the attacker applies the cache-timing attack and obtains the cache
line indicator of the vector e.

Now we define a cache-timing oracle O(sk, c) to represent the process of an online query,
where sk is an unknown secret key and c is a ciphertext. The cache-timing oracle O(sk, c)
outputs the cache line indicators of r1 and e, i.e., (vr1 , ve), during the decapsulation
HQC.CCAKEM.Decaps(sk, c).

3.3 PC Oracle
We denote the PC oracle, which can be used to check if HQC.CCAKEM.Decaps(sk, c) = m,
as DO(sk,·)(m, c), where c is a ciphertext,m is a message and sk is the unknown secret key. In
Algorithm 1, the PC oracle DO(sk,c)(m) is constructed with the cache-timing oracle O(sk, c)
mentioned in Subsection 3.2. As shown in lines 2–3 in Algorithm 1, the attacker computes
the initial seed θ from the message m, initializes the sampling process with the seed, and

3The cache line size is typically fixed to 64 bytes on x86/x64 CPUs.
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obtains the vectors r̄1 and ē. Then, the attacker deduces the cache line indicators vr̄1

and vē from r̄1 and ē using the offline deduction (See line 4 in Algorithm 1). In line 5 of
Algorithm 1, the attacker calls the cache-timing oracle O(sk, c), which returns the cache line
indicators of r1 and e, i.e., (vr1 , ve), during the decapsulation HQC.CCAKEM.Decaps(sk, c).
From lines 5–9 in Algorithm 1, the attacker compares (vr̄1 , vē) with (vr1 , ve). If vr1 = v̄r1

and ve = v̄e, the PC oracle returns 1 and a zero vector, which indicates that the underlying
plaintext during the decapsulation HQC.CCAKEM.Decaps(sk, c) is m; otherwise, the PC
oracle returns 0 and (vr1 , ve) to be used in the key-recovery attack to be discussed in
Section 4.

Algorithm 1 The PC Oracle DO(sk,·)(m, c)

1: procedure DO(sk,·)(m, c)
2: θ = G(m), sampleInit(θ), r̄1 =sample(R, ωr), ē =sample(R, ωe)
3: Deduce the cache line indicators vr̄1 and vē from r̄1 and ē.
4: (vr1 , ve) = O(sk, c).
5: if vr1 = vr̄1 and ve = vē then
6: return (1,0)
7: else
8: return (0, vr1 , ve)

Now we analyze the success rate of the PC oracle. We assume that for the ciphertext c,
the number of cache lines accessed during the generation of the vectors r1 and e is no
more than Tc, namely wH (vr1) + wH (ve) ≤ Tc. The vectors r1 and e are distributed
uniform randomly. Then, the probability that vr1 = v̄r1 and ve = v̄e is no more than
P = ( Tc

`r1 +`e
)wr+we . Thus, the accuracy of the PC oracle is at least

1− P = 1− ( Tc

`r1 + `e
)wr+we . (1)

Note that when Tc decreases, the success rate of the PC oracle increases.

4 Key-Recovery Attack Against HQC
4.1 Framework
We apply the PC oracle described in Section 3 to build a key-recovery attack against
HQC. Our key-recovery attack is inspired by the timing key-recovery attack in the litera-
ture [GHJ+22], yet the mechanisms are totally different. That is, instead of observing the
number of calls to the sampling function (more calls take longer time) as in [GHJ+22],
we observe cache-timing access of sampled vectors. Furthermore, our new key-recovery
method is divided into an online and offline phases (whereas [GHJ+22] is all online) and
requires significantly fewer queries (compared to [GHJ+22]) thanks to the property of
the concatenated code.4 To be more specific, we construct a chosen ciphertext in the
key-recovery attack carefully by utilizing an algebraic structure of the concatenated code
used in HQC, whereas in the approach of [GHJ+22], the chosen ciphertext are generated
randomly, which leads to more queries required. Another advantage of our approach is
that the basis message and constant error constructed in the offline phase can be reused
to recover other keys against HQC.

In our technique, the attacker searches for an invalid ciphertext C = (1, v), called edge
ciphertext, such that

C.Decode(v − y) 6= C.Decode(v), (2)
4The accuracy of the PC oracle in [GHJ+22] is also nearly 1 according to Table 3 from [GHJ+22].



S. Huang, R. Q. Sim, C. Chuengsatiansup, Q. Guo, and T. Johansson 145

where 1 is the multiplicative identity of R. Note that C.Decode(v − y) is the underlying
message during the decapsulation of the ciphertext C, which is called an edge message.
It can be seen that the difference in the decoding results in Inequality 2 is caused by
the addition of the secret key y. If the attacker finds an edge ciphertext C such that
Inequality 2 holds, it would help the attacker to recover y. The process of recovering x is
slightly different from the process of recovering y, which is demonstrated in Appendix A.

To find the edge ciphertext C in Inequality 2, the attacker starts by constructing an
invalid ciphertext C0 with some requirements, which is called a basis ciphertext. The
underlying message of the basis ciphertext C0 is called a basis message. Then, the attacker
injects an error E to the basis ciphertext C0 such that C = C0

⊕
E is the edge ciphertext.

To efficiently find the inner block of y which makes Inequality 2 hold, we carefully
choose the injected error E in our technique. The injected error E is summed up by two
vectors, namely, constant error and random error.

The constant error, denoted as Ec, includes (ddRS/2e − 1) nonzero inner blocks and
(2n1 − ddRS/2e+ 1) zero inner blocks. For example, as for the variant hqc-128, there are
(ddRS/2e−1) = 15 nonzero inner blocks in the constant error. The purpose of constructing
the constant error is to avoid the impact of the corresponding inner blocks of y on the
decrypting result of the decapsulation.

The random error, denoted as Er, contains only one nonzero inner block and (2n1 − 1)
zero inner blocks. The nonzero inner block in the random error is, indeed ,the inner block
that causes the difference of the decoding results in Inequality 2.

The key-recovery attack includes two phases, namely, the offline phase and the online
phase. As it will be shown in Subsection 4.2, the purpose of the offline phase is to search
the basis ciphertext C0 and construct the constant error Ec. It should be noted that the
basis message m along with the constant error Ec can be reused to recover other keys
against HQC applying our approach. In the online phase, demonstrated in Subsection 4.3,
the attacker builds the random error Er and recovers the inner blocks of the secret key y
with the Hamming weight no larger than 1.

4.2 Offline Phase
Constructing the basis ciphertext C0. In the offline phase, the method of constructing
the basis ciphertext C0 follows the key-recovery attack in the literature [GHJ+22]. The
attacker manually sets r1 to 1 (i.e., the multiplicative identity of R) and both r2 and e
to 0 (i.e., the zero vector). In this case, the basis ciphertext is C0 = (u, v) = (1,mG). It
can be observed from the procedure PKE.Decrypt that v − uy = mG − y. It indicates
that the error that the decoder has to correct during the decryption is indeed y, which is
the second half of the secret key.

As mentioned in Subsection 3.2, to increase the success rate of the PC oracle deployed
in our attack, we require that wH (vr1) + wH (ve) should be no larger than a threshold Tc,
where r1 and e are the sampled vectors during the decapsulation of C0. As for our attack
against hqc-128, the choice of Tc is to be discussed in Subsection 5.3.

We show the procedure of generating a basis ciphertext C0 in Algorithm 2. The attacker
first randomly generates a message m. As shown in lines 4–5 of Algorithm 2, with a
message m the attacker can deduce the cache line indicators of r1 and e easily applying
the offline deduction. The vectors r1 and e can be directly deduced without knowing y
because both mG−y and mG are decoded to m. If wH (vr1)+wH (ve) ≤ Tc, the algorithm
returns the basis ciphertext C0 = (1,mG); otherwise, it steps back to line 2 and picks
another message m randomly. As can be observed from Algorithm 2, the procedure of
generating C0 is independent of the secret key.

Constructing the constant error Ec. The first half of the constant error is zero, and
the second half of the constant error contains (ddRS/2e − 1) nonzero inner blocks. The
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Algorithm 2 Generating a basic ciphertext C0

1: procedure GenText(Tc)
2: while 1 do
3: Randomly pick a message m
4: Compute θ = G(m), sampleInit(θ), r1 =sample(R,ωr), e =sample(R,ωe)
5: Deduce vr1 and ve according to Definition 1.
6: if wH (vr1) + wH (ve) ≤ Tc then
7: return C0 = (1,mG)
8: else
9: Continue.

constant error is constructed block-wise. Next, we show two important definitions, namely,
n-bit domain and constant error block.

Definition 2. Given an inner block CI , the n-bit domain of the inner block CI ∈ Fn2
2 is a

set containing all the binary strings S ∈ Fn2
2 such that wH (CI − S) ≤ n, which is denoted

as U(CI , n).

Definition 3. Suppose that an inner block of a ciphertext C0, denoted as CI , is decoded
into an internal codeword V by the Reed-Muller decoder. A constant error block ec is a
binary string in Fn2

2 such that each S in U(CI + ec, n) is decoded into a different internal
codeword V ′ 6= V using the Reed-Muller decoder. The integer n is called constant distance.

Suppose that C2
0 [i] is the i-th inner block of the second half of the ciphertext C0 and yi

is the i-th inner block of y with wH (yi) < n for some i ∈ [0, n1). If the attacker obtains
a constant error block ec with a constant distance n, C2

0 [i]
⊕
ec and C2

0 [i]
⊕
ec

⊕
yi are

decoded into the same internal codeword during the decapsulation. It indicates that the
addition of the i-th block of y will not affect the result of the decapsulation of C

⊕
E,

where E = (0, E0), the i-th inner block of E0 is ei, and the other inner blocks are zero.
In Algorithm 3, we show the procedure of constructing a constant error block. In line 3

of Algorithm 3, the attacker randomly picks a binary string ec ∈ Fn2
2 with wH (ec) = L0,

where L0 is a preset parameter. Then, the attacker checks whether CI + ec is decoded into
another internal codeword V1 different from the original internal codeword V . (See lines
4–5 of Algorithm 3.) If V1 6= V , the attacker checks whether U(CI + ec, n) is a constant
domain; otherwise, the attacker goes back to line 3 of Algorithm 3 and generates another
binary string (See lines 9–14 of Algorithm 3.). If U(CI + ec, n) is a constant domain,
Algorithm 3 returns the constant error block ec; otherwise, the attacker generates a new
binary string.

The constant error Ec is constructed from constant error blocks in Algorithm 4. In
Algorithm 4, the input Ic is an array of any (ddRS/2e − 1) integers with a range from 0
to (n1 − 1), which records the positions of constant error blocks. It can be seen from
Algorithm 4 that the attacker calls ConstBlk(·,·,·) to build the corresponding constant
error blocks according to the array Ic.

It should be noted that the offline phase can be done in practical time as verified
through experiments in Subsection 5.3.

4.3 Online Phase
Now we present the process of recovering one inner block of y. Without loss of generality,
we show the method of recovering the j-th inner block of y, where 0 ≤ j < n1 and
j /∈ Ic. The attacker first searches for a random error Er in a special form and obtains
the edge ciphertext C1 = C0

⊕
Ec

⊕
Er to make Inequality 2 hold. Then, the attacker
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Algorithm 3 Constructing a constant error block
1: procedure ConstBlk(CI ,n,L0)
2: while 1 do
3: Randomly pick a binary string ec ∈ Fn2

2 with wH (ec) = L0
4: Decode CI using the Reed-Muller decoder and denote the result as V .
5: Decode CI + ec using the Reed-Muller decoder and denote the result as V1.
6: if V = V1 then
7: continue
8: else
9: flag=1
10: for each binary string S ∈ U(CI + ec, n) do
11: Decode S using the Reed-Muller decoder and denote the result as V2.
12: if V2 6= V1 then
13: flag=0
14: break
15: if flag=1 then
16: return ec

17: else
18: continue

Algorithm 4 Constructing the constant error
1: procedure ConstError(C0,Ic,n,L0)
2: Ec = (0,0). . index is an array of (ddRS/2e − 1) integers.
3: for each integer i in the array Ic do
4: E2

c [i] =ConstBlk(C0[i],n,L0) . E2
c is the second half of Ec. E2

c [i] is the i-th
inner block of E2

c .
5: return Ec
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recovers yj by modifying C1 and making an offline deduction with the corresponding
modified ciphertexts.

To search for an edge ciphertext C = (1, v) such that Inequality 2 holds, our approach
considers the following two cases:{

Case 1: C.Decode(v) = m, C.Decode(v − y) = m′;
Case 2: C.Decode(v) = m′, C.Decode(v − y) = m;

(3)

where m is the basis message and m 6= m′.
Given a ciphertext C = (1, v), the attacker can detect whether it is an edge ciphertext

following one of the two cases in Equation 3. As the decoder in HQC is publicly available,
the attacker can verify whether C.Decode(v) = m by calling the decoder. Verifying whether
C.Decode(v−y) = m is equivalent to determining whether HQC.CCAKEM.Decaps(sk, C) =
m, which can be detected by applying the PC oracle DO(sk,·)(m,C).

The method of searching for an edge ciphertext is shown in Algorithm 5. The attacker
first initializes the counter variable cnt to zero. As shown in lines 4–5 of Algorithm 5,
the attacker randomly generates a random error Er with a single nonzero inner block of
Hamming weight L1, which is a preset parameter. Then, the attacker checks whether the
ciphertext C1 = C0

⊕
Ec

⊕
Er follows one of the two cases defined in Equation 3. If C1

is a Case 1 ciphertext then Algorithm 5 returns 1, C1 and the cache line indicators vr1 , ve

obtained from the online query. (See lines 9–10 of Algorithm 5.) If C1 is a Case 2 ciphertext
then Algorithm 5 returns (2, C1). (See lines 11–14 of Algorithm 5.) Otherwise, the attacker
increases cnt and continues. If the attacker still cannot find an edge ciphertext after
randomly generating Er for T times where T is a preset threshold, Algorithm 5 outputs 0,
which means yj = 0. The complexity of Algorithm 5 is at most T times of calling the
decoder C.Decode(·) and the PC oracle DO(sk,·)(·, ·).

Algorithm 5 Searching for an edge ciphertext C1

1: procedure BuildError(C0, m, Ec, j, L1, T )
2: cnt = 0
3: while cnt < T do
4: Er = 0
5: Assign E2

r [j] as a random binary string such that wH
(
E2

r [j]
)

= L1.
6: C1 = C0

⊕
Ec

⊕
Er

7: m′ = C.Decode(C2
1 ) . C2

1 is the second half of C1.
8: (flag, vr1 , ve) = DO(sk,·)(m,C1)
9: if flag = 0 and m = m′ then
10: return (1, C1, vr1 , ve)
11: else if flag = 1 and m 6= m′ then
12: return (2, C1)
13: else
14: Increase cnt by 1 and continue
15: return 0

The procedure of recovering yj is shown in Algorithm 6. As presented inside the loop
from lines 23–30 in Algorithm 6, the attacker generates L2 edge ciphertexts to execute the
attack and record the possible value of yj from every iteration, where L2 is a parameter
chosen by the attacker. If all the results from the L2 iterations suggest that some bits in yj

should be 1, then the attacker concludes that this bit of yj is 1. (See line 28 and line 30 in
Algorithm 6.) In each iteration, the attacker starts by generating an edge ciphertext C1.
If BuildError(C0, m, Ec, j, L1, T ) returns 0, Algorithm 6 outputs yj = 0. Otherwise,
Algorithm 6 continues guessing yj by doing a modification on the edge ciphertext C1 with
respect to the two different cases.
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If BuildError(C0, m, Ec, j, L1, T ) finds a Case 1 edge ciphertext, the attacker calls
GuessCase1(C1, vr1 , ve), where vr1 and ve are the cache line indicators obtained from
the online query when the victim calls the decapsulation of C1. For each i ∈ [0, 384),
the attacker flips the i-th bit of C1 and executes an offline deduction. (See lines 5–8 of
Algorithm 6.) As shown from lines 9–10 in Algorithm 6, if the resulted cache line indicators
are exactly vr1 and ve, the attacker sets the i-th bit of yj to be 1. Otherwise, the attacker
continues to the next guess.

If BuildError(C0, m, Ec, j, L1, T ) finds a Case 2 edge ciphertext, the attacker calls
GuessCase2(C1, m), where m is the basis message. In this case, for each i ∈ [0, 384),
the attacker flips the i-th bit of C1 and decodes the corresponding ciphertext C2. (See
lines 15–17 of Algorithm 6.) If the underlying message is indeed m, the i-th bit of yj is set
to be 1. Otherwise, the attacker continues the process.

Algorithm 6 Recovering yj

1: procedure GuessCase1(C1, vr1 , ve)
2: Initialize yj as 0.
3: for each i ∈ [0, 384) do
4: C2 = C1
5: Filp the i-th bit of the j-th inner block of C2

2 .
6: m′ = C.Decode(C2

2 ).
7: θ = G(m′), sampleInit(θ), r̂1 =sample(R, ωr) and ê =sample(R, ωe).
8: Deduce the cache line indicators vr̂1 and vê from r̂1 and ê.
9: if vr̂1 = vr1 and vê = ve then
10: yj [i] = 1
11: return yj

12: procedure GuessCase2(C1, m)
13: Initialize yj as 0.
14: for each i ∈ [0, 384) do
15: C2 = C1
16: Filp the i-th bit of the j-th inner block of C2

2 .
17: m′ = C.Decode(C2

2 ).
18: if m = m′ then
19: yj [i] = 1
20: return yj

21: procedure KeyRecover(C0, Ec, m, j, L1, L2, T )
22: Initialize yj as 0.
23: for each integer i ∈ [0, L2) do
24: (flag, C1, vr1 , ve)=BuildError(C0, m, Ec, j, L1, T )
25: if flag = 0 then
26: return yj = 0
27: else if flag = 1 then
28: yj = yj & GuessCase1(C1, vr1 , ve)
29: else if flag = 2 then
30: yj = yj & GuessCase2(C1, m)
31: if yj = 0 then
32: return wH (yj) > 1
33: else
34: return yj

The procedure of recovering the inner blocks of y with Hamming weight smaller than 1
against hqc-128 is summarized in Algorithm 7. In the offline phase, the attacker starts by
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constructing a basis ciphertext C0. The attacker can randomly choose the positions of
the nonzero inner blocks of the constant error. Without loss of generality, the attacker
can set the indices of the nonzero inner blocks of the constant error to Ic = {0, 1, · · · , 14}.
As shown in lines 4–5 of Algorithm 7, which is the online phase, for each i ∈ [15, 46), the
attacker assumes that wH (yi) ≤ 1 and tries to recover yi. Similarly, the attacker switches Ic

to be {15, 16, · · · , 29} and builds another constant error to recover the remaining inner
blocks of y. (See lines 6–9 of Algorithm 7.)

Note that the complexity of Algorithm 7 is at most L2 · (T + 384) times of calling the
decoder C.Decode(·) and L2 · T times of calling the PC oracle DO(sk,·)(·, ·). As will be
discussed in Subsection 5.3, this procedure can be done in practical time.

Algorithm 7 Recovering inner blocks of y of hamming weight less than 1
1: C0 =GenText(Tc)
2: Ic = {0, 1, 2 · · · , 14}
3: Ec =ConstError(C0,Ic,n,L)
4: for each integer i ∈ [15, 46) do
5: yi =KeyRecover(C0, Ec, m, j, L1, L2, T )
6: Ic = {15, 16, 17 · · · , 29}
7: E′c =ConstError(C0,Ic,n,L)
8: for each integer i ∈ [0, 15) do
9: yi =KeyRecover(C0, E′c, m, i, L1, L2, T )

With the new technique, the attacker can recover the inner blocks of the secret vector y
with Hamming weight no larger than 1. The probability that a randomly sampled inner
block in y has a Hamming weight of k is shown in Table 2 of [GLG22b]. According to
the table, for the variant hqc-128, about 57.82% on average of the inner blocks of y have
Hamming weight no larger than 1, which can be recovered with the new method.

We further observed that instead of fully recovering the secret vector y, one can recover
a proportion of both y and x, and obtain the remaining entries in x and y by solving the
system of linear equations representing the polynomial equation

s = x+ h · y (4)

in a matrix form, where the public key pk= (h, s) is publicly available. In general, if we
can recover 50% of the entries in y and x in total, the remaining entries can be efficiently
recovered via Gaussian Elimination. The recovering procedure also works if we recover a
slightly smaller number of entries via a light post-processing Information Set Decoding
(ISD) algorithm [EB22].

The idea of using both the x and y secret vectors is a novel approach and it works
well for all three HQC parameter sets. For instance, for the variants hqc-128 and hqc-256,
the proportion of recovered blocks is 57.82% and 57.20% respectively, both being larger
than 50% (meaning only Gaussian Elimination works). For the variant hqc-192, one
can only recover 46.5% of the 112 inner blocks according to Table 2 of [GLG22b], i.e.,
approximately 33331 entries. Thus, about nr = n− 33331 = 2520 additional secret entries
are needed. Because the HQC system is very sparse, one can merely randomly sample nr

secret entries among the unknown ones and hope that they are all zero. The weight of x
(or y) is 100, and 30% of the recovered inner blocks are of weight one, so the undecided
non-zero positions are 140 in expectation. After substituting the known secret entries, the
remaining is thus a decoding problem with code length n+nr = 38371, code dimension 2520,
and weight 140 since one needs to solve a sparse equation system with 38371 unknowns,
35851 parity-check equations, and a solution with only 140 non-zero entries. The recent
syndrome decoding estimator [EB22] reports that the solving complexity with Stern’s
algorithm is 248.8 bit operations, still practical for a modern computer.
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An alternative method. Instead of employing post-processing with ISD, we can search
again for an invalid ciphertext (u, v) with the polynomial u(X) = Xt0 ∈ R, where t0
is an integer. This technique is equivalent to considering a cyclic shift of y since the
ambient space is R = F2[X]/(Xn − 1). Note that the multiplication u · y = u(X) · y
during the decryption is to cyclically shift y to the left by t0 bits. This technique could
help to determine more zero positions in y, but only requires more online traces. It is
interesting to note that the constant errors constructed to recover inner blocks of y can
still be reused here. Similar techniques can also be applied to the secret polynomial x.
Since this technique can have non-trivial implementation complexity and is unnecessary
in our target implementation of hqc-128, we leave the elaborated investigation for future
research.

5 Experiments and Results
This section demonstrates our cache attacks based on the cache line indicator. We first
describe our attack in a close-to-ideal scenario where we assume the attacker can control
the environment so that the obtained cache side-channel information has relatively low
noise. This serves as a baseline to evaluate whether we can, indeed, obtain the side-
channel information that is essential for our key recovery analysis. We then proceed to
a more realistic scenario where we remove such assumption. In both cases, our attack
targets the NIST hqc-128 reference implementation.The code for our attack is available at
https://git.sec.cs.adelaide.edu.au/rqsim/cache-timing-attack-against-hqc.

Besides the cache attacks, we also verify our key-recovery attack with experiments in an
ideal scenario. Based on our experimental results, our technique is much more efficient than
the query scheme in [GHJ+22]. Specifically, our approach requires only 53, 857 queries,
which is much fewer than 866, 000 queries in [GHJ+22].

5.1 Proof-of-Concept Attack
For our proof-of-concept attack, we use the Flush+Reload technique to verify that we can
realize the cache line indicator as described in Definition 1. The reason for using Flush+
Reload is that the attack is fairly simple. It achieves the granularity of a cache line as
desired (i.e., aligning with the concept of cache line indicator), and it has a very few false
positive rate. We would like to emphasize that the purpose of this proof-of-concept attack
is to demonstrate that the leakage does happen at the cache.

Threat model. For the proof-of-concept experiment, we adopt a threat model, already
explored in the literature, e.g.., [PBY17]. In this model, the attacker uses the Flush+
Reload attack. For that, we assume the attacker can evict memory locations it shares with
the victim, e.g., using the clflush instruction, and later measure the access time to those
locations. Moreover, as in [PBY17], we embed the Flush+Reload in the victim code. We
further assume that the attacker can measure every cache access with no errors.

Experimental setup. We implement the attack on a Dell Inspiron 15-7568 laptop running
Ubuntu 18.04.6 LTS. The machine is equipped with an Intel Core i3-6100U CPU having a
3072 KB last-level cache (LLC). We use the Mastik toolkit [Yar16] to perform the Flush+
Reload attack. We take multiple measures to reduce measurement noise. That is, we
disable automatic power management and Intel Turbo Boost. We also set the Intel scaling
driver to performance state, where the CPU is expected to run at the maximum frequency,
which we set to 2.20GHz. We further disable the cache prefetcher and separate the core
that run the victim and attacker from other programs.

https://git.sec.cs.adelaide.edu.au/rqsim/cache-timing-attack-against-hqc
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1 int monitored_lines = 35;
2

3 for (int i = 0; i < monitored_lines; i++)
4 clflush(&r1[i*8]);
5

6 vect_set_random_fixed_weight(&seedexpander, r1, PARAM_OMEGA_R);
7

8 int fr_r1_accessed_lines[35] = {0};
9 for (int i = 0; i < monitored_lines; i++) {

10 int res = memaccesstime(&r1[i*8]);
11 if (res < LIMIT)
12 fr_r1_accessed_lines[i]++;
13 }

Listing 2: Flush+Reload attack code

Attack procedure. In our attack, we target cache line accesses when the vectors r1 and e
are sampled, i.e., when the function vect_set_random_fixed_weight is executed. Since
the attack proceeds similarly for r1 and e, in the following we only describe the procedure
for r1.

As in a typical cache-based side-channel attack, the attacker first sets the cache into a
known state. In our case, we use the clflush instruction to evict the vector r1 from the
cache (Listing 2, lines 3–4). After that, the attacker lets the victim perform the sampling
of r1 (Listing 2, line 6). During this sampling, the victim updates some locations in the
array, which implies accesses to some cache lines. Finally, the attacker re-accesses the
array and measures the access time (Listing 2, lines 8–12). A short access time (i.e., less
than LIMIT) indicates that the victim has accessed that array slot during the sampling.
Note that the time threshold (i.e., LIMIT) to determine whether a line had been accessed
or not is machine dependent, and the attacker can pre-determine this before the attack.

Results. We run our experiment using 1000 random samples of ciphertext. The exper-
imental results confirm that we can correctly identify the cache line accesses, i.e., if we
detect that the cache lines have been accessed, those cache lines were, indeed, accessed. In
other words, we have 100% true positive and do not experience any false positive.

5.2 Practical Attack
While the results from the proof-of-concept attack are very accurate, the attack scenario
may not be realistic in the sense that we modify the victim program (i.e., to flush cache
lines) and assume perfect measurement (i.e., no measurement errors). We now move to
a more realistic attack scenario, where we remove the assumption of measuring cache
accesses without errors and the requirement to embed the Flush+Reload into the victim
code. For our practical attack, we use Prime+Probe to attack a victim code running inside
a secure SGX enclave that aims to protect the execution inside it.

Threat model. We assume that the victim implements a virtual Hardware Security
Module (HSM) [HSM] using an SGX enclave. That is, to benefit from the security
guarantees of SGX, including harware protection against a malicious operating system
(OS) and the ability to attest that the code executes within a trusted environment. Thus,
we assume that the victim cryptographic code executes within an SGX enclave.

As in prior SGX attacks, we assume a malicious OS, which is under the control of
the attacker [MIE17, BPS17, BMD+17, LSG+17]. Consequently, the attacker can execute
priveleged instructions, and, in particular, control the memory layout, including disabling
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the use of Address Space Layout Randomization (ASLR) in the enclave. Also, the attacker
can use SGX-Step [BPS17] to single-step the enclave. On the other hand, we assume that
there are no software vulnerabilities in the enclave as well as no vulnerabilities in the
SGX [BMW+18, vSMK+21, BKS+22]. We further assume that the attacker cannot read
or write the enclave memory.

Experimental setup. We implement the attack on a Dell Inspiron 15-7568 laptop running
Ubuntu 18.04.6 LTS. The machine is equipped with an Intel Core i3-6100U CPU having a
3072 KB last-level cache (LLC). We verify experimentally that the LLC is divided into
four slices, each with 1024 sets, and has an associativity of 12. To reduce noise due to
performance tuning, we apply multiple approaches as follows. We disable automatic power
management and Intel Turbo Boost. We also set the Intel scaling driver to performance
state, where the CPU is expected to run at the maximum frequency, which we set to
2.20GHz. We further disable the cache prefetcher and isolate the core that runs the victim
thread.

We use the Mastik toolkit [Yar16] to perform the Prime+Probe attack targeting the
last-level cache. We additionally use SGX-Step [BPS17] to achieve a higher temporal
resolution. The SGX-Step also enables the attacker to manipulate the local APIC to
interrupt the enclave at timed intervals. At each interrupt, SGX exits the enclave with an
Asynchronous Enclave Exit (AEX) procedure that securely saves the execution state. The
interrupt handler will return to the Asynchronous Exit Pointer (AEP) before resuming
execution in the enclave. Using the SGX-Step framework, we set up the interrupt handler to
point to a modified spy function. We further disable Address Space Layout Randomization
(ASLR) to obtain the virtual address of the locally defined vectors r1 and e before running
the attack. Note that under the SGX attack, a malicious OS is within the attack model.

Attack preparation. We first identify the cache lines to monitor then use Mastik [Yar16]
to create the eviction sets. Before spying on the victim, the attacker needs to identify
the cache sets of the vectors r1 and e in the last-level cache. Note that r1 and e are local
variables, and the attacker can get their virtual address by monitoring its address with
Address Space Layout Randomization (ASLR) disabled. After virtual to physical address
translation, the attacker determines the cache sets that r1 and e map to, which are encoded
in bits 6–16 of the physical address (assuming a 64-byte cache line size).

The attacker further needs to identify cache slices. However, the cache slices cannot
be determined from the address as the hash function that maps the address to the cache
slices is undisclosed. There have been previous works, e.g., [SBWE21], that monitored all
the possible slices that the target address maps to, and observed accesses only in the lines
with the correct mapping. We notice that our machine, however, introduces noisy accesses
in cache sets of an incorrect slice mapping, making it difficult to distinguish the correct
mapping from the incorrect one. To cope with this issue, we determine the slice mapping
of the r1 and e addresses prior to performing the Prime+Probe attack. The idea is as
follows. After initializing the enclave, we call a function that accesses all the elements of r1
and e in the enclave and perform Prime+Probe on this function using all possible slice
mappings. Despite the noise, we are able to distinguish the correct slice mapping since we
now know the accesses to r1 and e, i.e., all the elements. There have been previous works
that reverse-engineered the slice hash function [IES15, MSN+15], but we did not have to
resort to those approaches.

Attack procedure. Similar to previous works [SBWE21, CGYZ22], we apply a controlled-
channel attack [XCP15] to stop the enclave at the start of the attack. Then, we use SGX-Step
to single-step each instruction. Specifically, we exit the enclave after one instruction when
the APIC timer interrupt arrives, after which the interrupt handler redirects to the spy AEP
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function before returning to the enclave again. In the AEP function, we perform Prime+
Probe to observe the cache accesses at the lines that store the vectors. Assuming that
vectors r1, e, and the vect_set_random_fixed_weight function are aligned to different
pages, we can use the page access bit to identify when to record the Prime+Probe infor-
mation. For example, if the page access bit for r1 and vect_set_random_fixed_weight
are set, we infer that the r1 vector is being accessed in vect_set_random_fixed_weight.
We then record the r1 access information. Before returning to the enclave, we prime
the cache sets ready to be probed in the next interrupt. Note that the target func-
tion vect_set_random_fixed_weight is directly from the HQC reference implementation
found in the NIST submission. The only modification we made to the code is removing
print statements, which is basically for a debugging purpose.

Analysis. Thanks to the ability to single-step using the SGX-Step framework, we can
observe accesses to cache lines at each access in line 7 of Listing 1. Since our aim is to
detect whether there is an access rather than when the access has occurred, the attacker
can, in theory, conclude that there has been an access whenever an access has been detected
in a single step. However, in practice, we found that there were noises in the experiments,
resulting in a high false positive rate. To be precise, we found that out of 1000 samples of
random ciphertext c, approximately 4% of the cache lines across all the samples have been
incorrectly identified as access.

To improve the result, we employ a more meticulous analysis technique that could
identify as well as filter out the noise. We note that when monitoring accesses at each
step in line 7 of Listing 1, we observe the effect of speculative execution. For example, if
vect_set_random_fixed_weight accesses cache line 0 at iteration step 52, the attacker
may also detect accesses at cache line 0 at some prior steps as well. According to this
observation, we define the rules to identify accesses in the presence of speculative execution
as follows. For each cache line:

1. If we have access in all steps, we are not certain if there had been an access or not.
Thus, we mark this cache line as “not confident”.

2. Else, if we have n consecutive accesses, we mark it as “accessed”.

3. Else, if we have k consecutive accesses at the first k steps, we mark it as “accessed”.

4. Else, if we have j consecutive accesses at the first j steps, and the line is not marked
as accessed, we mark it as “not confident”.

5. Otherwise, we mark it as “not accessed”.

In our experiment, we classify accesses using the above rules with n ≥ 4, j = 1 and
1 < k ≤ n.5 Without taking these measures, the number of false positives would be too
high for the attack. Note that we may detect some single accesses at step 0 for a cache
line. This could be a genuine access or noise. If this is the only access in the cache line,
we need to mark it as not confident

Regarding rule 1, we note that when vect_set_random_fixed_weight should, in
theory, not access a particular cache line, yet in some cases the attack returns a result
where the cache line was detected to have been accessed in all steps. Hence, we classify
the access of a cache line with such a pattern as “not confident”.

Results. We run the experiment using 1000 random samples of ciphertext. There are 332
samples that we are confident in classifying all the cache line accesses, and 442 samples
that we are confident in classifying all but one of the 70 cache lines (35 cache lines for

5We try different values of n, j, k; the aforementioned combination turns out to provide good accuracy.
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each of r1 and e). The remaining samples are within 8 non-confident cache lines. In this
experiment, we correctly identify the cache line access 99.9% on average. To test if our
classification rules are overfitting, we perform another batch of 1000 random samples of
ciphertext; we also observe a similar result. That is, more than 90% of the samples have
the number of not confident lines within 8, and the accuracy of identifying accesses is
99.9%. The running time of each sample is roughly 10 seconds, including the use of Mastik
and setting up the enclave to be single-stepped.

5.3 Key-Recovery Attack
We verify our key-recovery attack in Algorithm 7 and Algorithm 9 with experiments.
In the experiments, we assume an ideal oracle which returns the exact cache indicators
after each implementation of hqc-128. The code to verify the attack is available at
https://github.com/xiaohuangthu/hqc-cache-timing-attack.

As for the offline phase, we construct 1000 basis ciphertexts applying Algorithm 2.
We set Tc to 50, which means at most Tc = 50 cache lines out of 70 are hit during the
underlying sampling process of a basis ciphertext. According to Equation 1, the accuracy
rate of the PC oracle against hqc-128 is 1− 1.2× 10−22 ≈ 1. For a random basis ciphertext,
the probability that wH (vr1) + wH (ve) ≤ Tc is

PG =
(`r1 +`e

Tc

)
· Twr+we

c

(`r1 + `e)wr+we
. (5)

According to Equation 5, the attacker needs to generate 1/PG ≈ 5.15 × 104 random
messages to find such a basis ciphertext. In our experiments, we need 6.23× 105 random
messages, larger than the estimated value but still easily achieved in practice. We also
builds constant errors with Ic = {0, 1, 2, · · · , 14} and I ′c = {15, 16, 17, · · · , 29}, respectively
for each basis ciphertext in our experiments applying Algorithm 4. We set the parameter L0
in Algorithm 4 to 200 and the constant distance n to 2. As observed from our experiments,
the attacker needs to generate 3.32 random inner blocks to find one constant error block.
Therefore, the complexity of the offline phase is mainly determined by the process of
generating the basis ciphertext, which costs 6.23 × 105 ≈ 219.25 calls of the sampling
process.

As for the online phase, we verify our result with 1000 different random keys. We
recover parts of inner blocks of x and y by implementing Algorithm 9 and Algorithm 7,
respectively. In our attacks, we set the Hamming weight of the nonzero inner block in
the random error, i.e., L1, to 150. We also set the number of iterations L2 to 10 and the
threshold T to 600 in Algorithm 9 and Algorithm 7. In our experiments, the attacker can
find 53.06 inner blocks of the secret key sk, out of which 49.36 blocks are correct. The
attacker makes approximately 53857 online queries in one attack, which sharply decreases
866, 000 queries in [GHJ+22]. From our experiments, the attacker obtains more than 46
correct inner blocks in 836 cases out of 1000 different keys. Thus, the success rate of our
attack is 83.6%.

Note that if the attacker obtains more than 46 correct inner blocks of sk, the attacker
can recover the full secret key by solving the system of linear equations derived from the
polynomial equation of Equation 4, with the method discussed in Subsection 4.3. To be
more specific, the attacker can randomly select 46 blocks from the 53.06 guessed inner
blocks. If all the 46 blocks are correct, the attacker fully recovers the secret key; otherwise,
the attacker selects another combination of 46 guessed inner blocks. The probability that
the attacker chooses 46 right inner blocks is (49

46)
(53

46)
≈ 1.2× 10−4. Thus, to fully recover the

secret key, the attacker needs to solve 1/1.2× 10−4 ≈ 8366.43 systems of linear equations.
This procedure can be practically done offline via amortizing computational costs. For

https://github.com/xiaohuangthu/hqc-cache-timing-attack
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instance, the attacker first groups the positions based on whether they are in the 53 guessed
inner blocks, and applies Gaussian Elimination to positions outside these blocks to get
them into echelon form. Then, the attacker diagonalizes 7 of the 53 blocks, repeating
this step about 8366 times, contributing to the primal cost of the post-processing step.
The overall cost is roughly bounded by 246 bit operations. We also note here that the
choice of parameters may not be the optimal. We leave the problem of finding the optimal
parameters as future work.

In the practical scenario, the ideal oracle in our experiments can be replaced with
the Prime+Probe cache-timing attack in Subsection 5.2. According to the experimental
results, the Prime+Probe cache-timing attack may return “not confident” on the accesses
of up to three cache lines. Even with the noise, our attack can still work. Specifically, the
attacker can change line 5 in Algorithm 1 with the following two criteria:

1. The number of the undetermined cache lines is no more than 3.

2. vr1 = vr̄1 and ve = vē except for the “not confident” entries.

In this case, we analyse the accuracy of the PC oracle. The instance that the PC oracle
cannot distinguish is that the cache line indicators of r1 and e happen to be the same as
the cache line indicator of r̄1 and ē except for the undetermined entries. We denote the
number of undetermined entries as ud, which is set to 3. Then, the probability of this
event is P ′ = ( Tc+ud

`r1 +`e
)wr+we . In this case, the accuracy of the PC oracle is 1− P ′, which

is still close to 1 with the parameters we set. Thus, our key recovery attack will still work
in the practical scenario.

6 Conclusion
In this paper, we propose the first chosen-ciphertext cache-timing attacks on the reference
implementations of HQC and practically recover the secret key. Our new attack presents a
clear attack path. We also verify the attack via a proof-of-concept attack with the Flush+
Reload technique and a more realistic attack using Prime+Probe on an HQC execution on
Intel SGX. Our result includes a new efficient method for chosen-ciphertext attacks on
HQC with the PC oracles, which can be of independent interest.

Mitigation. Timing attacks can be mitigated by following the constant-time programming
paradigm, namely, no secret-dependent control flow, memory access, or variable-time
instruction. Accessing all array entries suffices to prevent our attack. The fourth round
submission of the HQC reference implementation has integrated this countermeasure by
accessing the whole index set instead of solely accessing indices with non-zero entries in a
confidential sparse vector, and thus is now secure against the cache-timing attack described
in our work. However, the proposed attacks still pose a threat to the PQClean library 6.

The concept of the cache line indicator we introduce may potentially be applicable
to other cache-timing attacks. The techniques developed in this work could also be
useful in developing new cache-timing attacks against other cryptographic primitives. Our
research highlights, once again, the criticality of constant-time implementation practices
for cryptographic libraries, particularly in eliminating secret-dependent memory access.

Implementing cryptographic software requires a particular care and an additional
consideration since the program performs a computation with sensitive information. There
exist tools such as Valgrind [Lana, Lanb] to check for constant-time behavior. There are
also programming frameworks, e.g., Jasmin [ABB+17, ABB+20] and FaCT [CSJ+19], that
enforce constant-time programming by default. Deploying these tools or frameworks to

6https://github.com/PQClean/PQClean/tree/master/crypto_kem/hqc-rmrs-128/clean (accessed in
2023-04-01).

https://github.com/PQClean/PQClean/tree/master/crypto_kem/hqc-rmrs-128/clean
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scrutinize timing vulnerabilities in their code before deployment would help prevent timing
side-channel attacks.
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A Recovering Inner Blocks of x

Constructing the basis ciphertext C0. Given the basis message m used in recovering
inner blocks of y, the attacker can build another basis ciphertext to recover inner blocks of
x. For this time, the attacker manually sets r1 = 0, r2 = 0 and e = 0. The basis ciphertext
C0 is in the following form: C1

0 = h,C2
0 = mG + s, where h and s are part of the public

key pk, i.e., pk = (h, s). Therefore, the code word to be decoded during the decapsulation
of C0 is v − u · y = mG + s − h · y = mG + x + h · y − h · y = mG + x. The error to
be corrected by the decoder is exactly x. Similarly as recovering inner blocks of y, the
attacker’s task is to find the error. Algorithm 8 shows the procedure of constructing C0.

Algorithm 8 Generating a basic ciphertext C0

1: procedure GenTextX(m, pk)
2: return C0 = (h,mG + s)

Recovering inner blocks of x of Hamming weight less than 1. The procedure of
recovering an inner block of x is presented in Algorithm 10. It can be seen that recovering xj

is slightly different from recovering yj in Algorithm 6. As shown in line 6 and line 17, the
attacker need to add the second half of the public key s before calling the decoder.

Algorithm 9 Recovering inner blocks of x of hamming weight less than 1
1: C0 =GenTextX(m, pk)
2: Ic = {0, 1, 2 · · · , 14}
3: for each integer i ∈ [15, 46) do
4: xi =KeyRecoverX(C0, Ec, m, j, L1, L2, T )
5: Ic = {15, 16, 17 · · · , 29}
6: for each integer i ∈ [0, 15) do
7: xi =KeyRecoverX(C0, E′c, m, i, L1, L2, T )

The procedure of recovering blocks of x, which is shown in Algorithm 9, is almost the
same as the procedure of recovering blocks of y. It should be noted that as the constant
errors can be reused in the attacker targeting at x, Ec and E′c are exactly the same constant
errors in Algorithm 7.
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Algorithm 10 Recovering xj

1: procedure GuessCase1(C1, vr1 , ve,s)
2: Initialize xj as 0.
3: for each i ∈ [0, 384) do
4: C2 = C1
5: Filp the i-th bit of the j-th inner block of C2

2 .
6: m′ = C.Decode(C2

2 + s).
7: θ = G(m′), sampleInit(θ), r̂1 =sample(R, ωr) and ê =sample(R, ωe).
8: Deduce the cache line indicators vr̂1 and vê from r̂1 and ê.
9: if vr̂1 = vr1 and vê = ve then
10: xj [i] = 1
11: return xj

12: procedure GuessCase2(C1, m, s)
13: Initialize xj as 0.
14: for each i ∈ [0, 384) do
15: C2 = C1
16: Filp the i-th bit of the j-th inner block of C2

2 .
17: m′ = C.Decode(C2

2 + s).
18: if m = m′ then
19: xj [i] = 1
20: return xj

21: procedure KeyRecoverX(C0, Ec, m, j, L1, L2, T )
22: Initialize xj as 0.
23: for each integer i ∈ [0, L2) do
24: (flag, C1, vr1 , ve)=BuildError(C0, m, Ec, j, L1, T )
25: if flag = 0 then
26: return xj = 0
27: else if flag = 1 then
28: xj = xj & GuessCase1(C1, vr1 , ve, s)
29: else if flag = 2 then
30: xj = xj & GuessCase2(C1, m, s)
31: if yj = 0 then
32: return wH (xj) > 1
33: else
34: return xj
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