
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2023, No. 3, pp. 1–29. DOI:10.46586/tches.v2023.i3.1-29

Carry-based Differential Power Analysis (CDPA)
and its Application to Attacking HMAC-SHA-2

Yaacov Belenky, Ira Dushar, Valery Teper, Vadim Bugaenko, Oleg Karavaev,
Leonid Azriel and Yury Kreimer

FortifyIQ, Inc., 300 Washington Street, Suite 850, Newton, MA 02458 USA
{belenky,dushar,teper,bugaenko,karavaev,azriel,kreimer}@fortifyiq.com

https://www.fortifyiq.com/

Abstract. In this paper, we introduce Carry-based Differential Power Analysis
(CDPA), a novel methodology that allows for attacking schemes that use arithmetical
addition. We apply this methodology to attacking HMAC-SHA-2. We provide full
mathematical analysis of the method and show that under certain assumptions and
with a sufficient amount of traces any key can be revealed. In the experimental part
of the paper, we demonstrate successful application of the attack both in software
simulation and on an FPGA board using power consumption measurements. With as
few as 30K traces measured on the FPGA board, we recover the secrets that allow for
forging the HMAC-SHA-2 signature of any message in 3% of the cases — while with
275K traces the success rate reaches 100%. This means that any implementation of
HMAC-SHA-2, even in pure parallel hardware, is vulnerable to side-channel attacks,
unless it is adequately protected. To the best of our knowledge, this is the first
published full-fledged attack on pure hardware implementations of HMAC-SHA-2,
which does not require a profiling stage.
Keywords: Side-channel analysis · DPA · HMAC · SHA-2 · SHA-256

1 Introduction
The Keyed-Hash Message Authentication Code (HMAC) was standardized by NIST in
FIPS PUB 198-1 [Nat08], and since its standardization, it is widely used for symmetric
message authentication. HMAC is constructed using an approved hash function, namely
SHA-1 and several functions of the SHA-2 family [Nat12]. Recently, NIST standardized the
SHA-3 hash function family [Nat15]. Nevertheless, HMAC-SHA-2 still arguably remains
the most popular variant of HMAC.

This level of ubiquitousness inevitably attracts the interest of the research community in
the sense of applying various sorts of attacks to break the scheme. For example, side-channel
attacks, and power analysis attacks in particular [KJJ99, Koc96] are a very powerful tool
capable of uncovering secrets in virtually any insufficiently protected cryptographic scheme.
Numerous side-channel attacks on AES, RSA, ECC, Diffie-Hellman and other algorithms
have been published. Surprisingly, until recently, no successful attacks on HMAC-SHA-2
implemented in pure parallel hardware have been presented, which has resulted in little
attention to HMAC in the area of vulnerability analysis [BSI13].

Several publications on side-channel attacks on HMAC-SHA-1 and HMAC-SHA-2
either provided only partial analysis without showing the full path [MTMM07, RM13],
or were applicable only to software [FLRV09, BBD+15, KGB+18], or used an unrealistic
chosen input data assumption [GWM16], or attacked exotic usages or error-prone imple-
mentations [APSQ06, Osw16]. More detailed analysis of the prior work can be found

Licensed under Creative Commons License CC-BY 4.0.
Received: 2023-01-15 Accepted: 2023-03-15 Published: 2023-06-09

https://doi.org/10.46586/tches.v2023.i3.1-29
mailto:belenky@fortifyiq.com, dushar@fortifyiq.com, teper@fortifyiq.com, bugaenko@fortifyiq.com, karavaev@fortifyiq.com, azriel@fortifyiq.com, kreimer@fortifyiq.com
https://www.fortifyiq.com/
http://creativecommons.org/licenses/by/4.0/

2 CDPA and its Application to Attacking HMAC-SHA-2

in [BDT+21]. Some of the publications were missing experimental data, some have shown
only correlations in the experiments, but not an actual attack. None of the aforementioned
publications have shown a full path of the attack applied to a real hardware implementation.

We can name several reasons for the apparent resilience of HMAC against side-channel
attacks. The first reason lies in the HMAC design, which involves two invocations of its
underlying hash function on the secret key K (1), called “inner hash” and “outer hash”.
Even if the adversary has full control over the input data and manages to break the inner
hash, he can discover the input to the outer hash, albeit he still cannot choose it as he
wishes, which severely limits his possibilities. HMAC is defined as

HMAC(K,M) = H

outer hash︷ ︸︸ ︷((
K0 ⊕ opad

)
‖H

inner hash︷ ︸︸ ︷(
(K0 ⊕ ipad)‖M

))
(1)

where H is an approved hash function, K0 is a known function of the secret key K, M is
the input message, and ipad and opad are known constants.

The second reason stems from the construction of the SHA-1 and SHA-2 functions,
which involves arithmetic addition. Side-channel attacks benefit from substantial leakage
as a result of even small changes in input data. This allows for using a small hypothesis
space with good separation. Hence, functions that amplify small changes in the input
present an easy target for these attacks. S-boxes, heavily used in block ciphers, are a
perfect target in this sense, since a change of a single bit of the input to the S-box changes
many bits of its output. In contrast, the XOR function is a difficult target, since it provides
no amplification at all — a change in one bit of the input causes a change only in the
same bit of the output. Arithmetical addition is similar to XOR with only slightly better
average amplification — a one-bit change in the addend in average results in two or less
bit changes in the sum.

In general, it is more difficult to exploit the leakage of a function if it has low amplifica-
tion. However, limiting the analysis to one- or two-bit windows, while averaging away the
other bits, may provide the desired result. Belenky et al. [BDT+21] harnessed the narrow
bit window approach to mount a practical template attack on hardware implementations
of HMAC-SHA-2. The full attack path was validated on an FPGA board. The suggested
attack does not rely on an analytical model, but rather uses a brute-force approach to
build the template tables. Hence, a substantial amount of traces both in the profiling stage
and in the attack stage is required to extract the secret. In addition, there are typical
assumptions for the template attacks, such as access to an open device for the profiling
stage.

In this paper, we introduce Carry-based Differential Power Analysis (CDPA), a new
technique for differential power analysis on cryptographic schemes that use arithmetical
addition. 1

The attack works in the Hamming distance model, and the target of the attack is an
arithmetical addition of a secret addend to a known addend that replaces a secret previous
value in the target register. We recover the secret addend and the secret previous value
in the target register bit by bit, from the LSB to the MSB. The hypotheses are based on
the carry bit from the current bit position into the next bit. Namely, in step i, the i− 1
previous bits of the secret addend are already known from the previous steps, and the
goal is to find bit i. Using the knowledge of the secret addend bits, we split the set of
the possible values of the known addend into two pairs of subsets such that the average
difference of the Hamming distances between the two subsets in each pair depends only
on the carry into the target bit i. We estimate this average difference using the set of
Hamming distances corresponding to a sufficiently large set of randomly distributed values

1We use the term DPA in its broad sense, so it includes various acquisition techniques, such as measuring
the supply current or electromagnetic (EM) radiation.

Y.Belenky et al. 3

of the known addend, and find the border value at which the sign of the difference switches
due to the change in the carry to the target bit.

In the case of attacking HMAC-SHA-2, two such additions simultaneously, rather than
one, pose an additional challenge. In each bit position, we need to find two, rather than
one, border values, at which the two carry bits change. Whenever the two values coincide
or are close one to another, we split the set of traces in certain cases into more than four
equal subsets, and in other cases into 8 unequal subsets. Some or all of these subsets may
be too small, so that a larger amount of traces will be required for the attack. The number
of traces necessary to recover the secret values depends on the relationship between the
secret addends; generally, the longer the sequences of the matching bits, the higher the
number of the required traces. Nevertheless, any given secret can be eventually revealed,
using a sufficient amount of traces under the Hamming distance leakage model.

In the real world, side-channel leakage includes noise in addition to the part of the
leakage proportional to the Hamming distance. In particular, it includes noise from the
operations in the combinational logic, which involve the known addend, and therefore
this kind of noise is correlated with the Hamming distance on the registers. Although
theoretically, such noise may render the attack impossible, in our experiments based on
power consumption measurements with a randomly chosen key, the attack had significant
success rates, from 3% at 30K traces to 100% at 275K traces. We believe that these results
can be further improved by measuring EM radiation using a properly positioned probe.

To summarize, we make the following contributions in this paper:

1. We present Carry-based Differential Power Analysis (CDPA) — a new category of
differential power analysis intended for attacking algorithms involving arithmetical
addition in the Hamming distance leakage model.

2. We present an attack on HMAC-SHA-2 — an enhancement of the basic CDPA, which
covers two simultaneous addition operations. To the best of our knowledge, this is
the first practical full-fledged attack on a pure parallel hardware implementation of
HMAC-SHA-2 that does not require a profiling stage.

3. We show analytically that for both the basic CDPA and the attack on HMAC-SHA-2
any secret can be revealed given a sufficient amount of traces and assuming no
correlated noise.

4. We demonstrate the attack on an FPGA board, achieving success already with
as little as 30K traces (in 3% of the cases), which is less than the state of the
art [BDT+21] by about an order of magnitude and does not require a profiling stage.

The remainder of this article is organized as follows. Section 2 describes the basic
construction of CDPA. Section 3 describes the enhanced three-stage version of CDPA which
is able to attack HMAC-SHA-2. Section 4 discusses the real world setting with correlated
noise from combinational logic, and the fine-tuning of the attack on HMAC-SHA-2 for
this setting. Section 5 presents the experimental results, both in simulation and on an
FPGA board. Section 6 presents our conclusions.

2 Carry-based Differential Power Analysis
2.1 Notation
⊕ means XOR.
X[j] means the bit number j of an integer X, where index 0 corresponds to the least
significant bit.
X[j : k] means the binary number represented by the bits [j : k] of an integer X (from the
most significant to the least significant) if j ≥ k, and 0 if j < k.

4 CDPA and its Application to Attacking HMAC-SHA-2

(a) (b)

Figure 1

By definition,
HD(X,Y) =

∑
(X[i]⊕ Y [i]) (2)

(the Hamming distance between integers X and Y), and

HD[j:k](X,Y) =
j∑

i=k

(X[i]⊕ Y [i]) (3)

2.2 The Statement of the Problem
A device performs arithmetic addition X +W , where X is an N -bit secret value, and W
is a known N -bit input. The N least significant bits of the result overwrite a register,
containing another N -bit secret value, Y . Since all the arithmetic is N -bit, i.e., modulo
2N , we’ll identify the N -bit numbers with the elements of the cyclic additive group C2N ,
and the addition and subtraction below are in the sense of this group.

For any input value W , the attacker obtains the Hamming distance

LX,Y (W) = HD(X +W,Y) (4)

between the two states of the register as a side-channel leakage. The problem to be solved
is: Using multiple experiments with known values of the input word W whose bits are
distributed independently and uniformly, find the secret values X and Y . (In LX,Y (W)
we will drop the indices X,Y when they are implied.)

2.3 Solution
2.3.1 The Main Observation.

The solution is based on one simple observation. Let’s depict C2N as a circle. For any
W ∈ C2N let

W ∗ = W + 2N−1 (5)

be the opposite point on the circle (see Figure 1a).
Clearly, W and W ∗ differ only in the most significant bit, and so do X + W and

X +W ∗. Clearly, W ∗∗ = W .
We denote:

L∗(W) = L(W ∗) (6)

and
∂L(W) = L∗(W)− L(W) (7)

It is easy to see that:

1. ∂L(W ∗) = −∂L(W).

Y.Belenky et al. 5

2. ∂L(W) = ±1 — more specifically, ∂L(W) = 1 if the most significant bits of X +W
and Y coincide, otherwise ∂L(W) = −1.

3. There are exactly two points on the circle in which ∂L(W) switches its sign — when
W changes from −X − 1 to −X, and when W changes from −X∗ − 1 to −X∗
(see Figure 1b).

Denoting
∂2L(W) = ∂L(W)− ∂L(W − 1) (8)

we can equivalently say that the function ∂2L(W) is 0 everywhere except at the two points
−X and −X∗, where it assumes values ±2.

Assuming for a moment that the attacker is allowed to choose W as he wants, he can
evaluate ∂L(W) for all the values of W 2, find the pair of points at which ∂L(W) changes
its sign, and deduce the pair 〈X,X∗〉, or equivalently, deduce

T = X[N − 2 : 0] (9)

Moreover, it is easy to see that

∂L(0) = (1⊕X[N − 1]⊕ Y [N − 1])− (X[N − 1]⊕ Y [N − 1]) =

=
{

+1 if X[N − 1]⊕ Y [N − 1] = 0
−1 if X[N − 1]⊕ Y [N − 1] = 1

(10)

so it is possible to deduce X[N − 1]⊕ Y [N − 1] as well:

X[N − 1]⊕ Y [N − 1] =
{

0 if ∂L(0) = +1
1 if ∂L(0) = −1

(11)

or equivalently

X[N − 1]⊕ Y [N − 1] =
{

0 if ∂2L(T) = −2
1 if ∂2L(T) = +2

(12)

where T is defined by (9).

2.3.2 What is Still Missing?

The above method is a step towards the solution. However, several points are still missing.

1. We cannot find X[N − 1], but only X[N − 1]⊕ Y [N − 1]. This is in fact inevitable,
because a simultaneous flip of X[N − 1] and Y [N − 1] does not affect L(W).

2. We found no bits of Y . We’ll return to this later.

3. Most importantly, the problem as stated assumes known, rather than chosen, bit-wise
uniformly distributed values of W .

2It is possible to achieve the same goal by evaluating ∂L(W) at N points only. We will not explore
this direction, since in this section we describe only the basic observation, not the actual method that we
suggest to use for the attack.

6 CDPA and its Application to Attacking HMAC-SHA-2

2.3.3 How to Drop the Assumption of a Chosen W ?

In order to drop the assumption of a chosen W , we need several additional observations.
Before we list them, we introduce some useful definitions.

Definition 1. For natural numbers N and k, a function F : C2N → R is called a k-step
function if C2N , seen as a cyclic sequence, can be split into k intervals (not necessarily of
equal sizes) such that in each interval the function F is constant.

Definition 2. For natural numbers N and k, a function F : C2N → R is called a k-peak
function if it is different from 0 in at most k points.

Note that in both Definition 1 and Definition 2 we do not demand that k be the
minimal number with one of the above properties. Therefore if k < n then any k-step
(k-peak) function is also an n-step (n-peak) function.

Definition 3. For a natural number N , a function F : C2N → R is called odd if

∀(W ∈ C2N)
(
F (W) = −F (W ∗)

)
Definition 4. For F : C2N → R and M ⊂ C2N , F (M) is by definition the average value
of F over the subset M .

In these definitions, ∂L(W) is an odd 2-step function, and ∂2L(W) is an odd 2-peak
function.

Now, the additional observations.

1. If ∂L(W) is guaranteed to be constant in an interval M of C2N , then

∀(W ∈M)
(
∂L(W) = ∂L(M) = L∗(M)− L(M)

)
(13)

2. It is possible to analyze the addition, limited to the i least significant bits (i < N),
modulo 2i in the same way as we analyze the full N -bit addition modulo 2N .

3. If T = X[i− 2 : 0] is known (Figure 2a), then modulo 2i+1 there are four intervals
M0,M1,M2,M3 corresponding to different values of (T + W)[i : i − 1], at which
the 2-peak function ∂L(W) (modulo 2i+1) is guaranteed to be constant, with two
options for the pair of points where the sign of ∂L(W) actually changes, as shown
in Figure 2b and Figure 2c.

4. Since the definition of the sets Mk depends only on the bits (T +W)[i : i− 1], and
since the bits of W are by assumption distributed uniformly and independently, the
average value of (X + W)[k] ⊕ Y [k], where k 6= i, k 6= i − 1, in any one of these
subsets is close to 0.5, and its deviation from 0.5 decreases inversely proportionally
to the square root of the subset size. Additionally, in each pair of the opposite sets
(M0 and M2, M1 and M3) the bit (T + W)[i − 1] has identically the same value.
Therefore when estimating ∂L(Mk) based on the experimental data, all the terms
except for the one corresponding to the bit position i, cancel out asymptotically,
and the total deviation decreases inversely proportionally to the square root of the
subset size. Therefore for a sufficiently large set of values of W this total error is
small enough for the attacker to be able to find out whether the value is +1 or −1.

Y.Belenky et al. 7

(a) (b) (c)

Figure 2

2.3.4 Putting It All Together

Based on all the observations, the practical attack with known input W is performed in
steps numbered from 1 to N − 1, in ascending order, and works as follows.

The prerequisite for step i is the knowledge of T = X[i− 2 : 0]. (In particular, for i = 1
it means that there are no prerequisites.) The analysis is modulo 2i+1. We split the set
of the experiments into four subsets Mk (0 ≤ k < 4) as shown in Figure 2, and estimate
L(Mk) by averaging L(W) over a large uniformly distributed subset of Mk. Then from the
pair of points T ′, T ′∗ in which ∂L(Mk) changes its sign we deduce X[i− 1], thus ensuring
the prerequisite for step i+ 1. Additionally, from the direction of this change (in other
words, from the sign of ∂2L(T ′)) we deduce X[i]⊕ Y [i], according to (12).

After all these steps, we know X[N − 2 : 0] and X[i]⊕ Y [i] for 0 < i < N . From this
Y [N − 2 : 1] is easily calculated.

The only missing bit is now Y [0]. In order to find it, we perform an additional step
which we call step 0 — the analysis modulo 2, and deduce X[0] ⊕ Y [0] from the sign
of ∂L(M0) = L(M1) − L(M0), according to (11). Since X[0] is already known, we can
calculate Y [0] as well.

Step 0 is independent of all other steps and can be performed at any point of time.
After all the steps, we know X[N − 2 : 0], Y [N − 2 : 0] and X[N − 1]⊕ Y [N − 1], or

equivalently two hypotheses regarding 〈X,Y 〉, corresponding to the two possible values of
X[N − 1]. As already mentioned, it is impossible to find more than this in the Hamming
distance leakage model.

2.3.5 CDPA of Higher Orders

Table 1: The number of traces for success rate > 50%
32-bit words 64-bit words

Noise 1st order 2nd order 3rd order 1st order 2nd order 3rd order
0 29 215 > 220 210 217 > 220

4 210 217 211 218

8 212 220 213 220

16 214 214

32 216 216

64 218 218

128 220 220

The CDPA attack described in the previous sections assumes an unprotected implemen-
tation. In this section we will study the case of a protected implementation, in which each
word is represented as an XOR of several shares. Similarly to the previous sections, we will
assume that the side channel leakage is the Hamming distance between representations

8 CDPA and its Application to Attacking HMAC-SHA-2

of X +W and of Y in n shares both. If the number of shares is greater than 1, then the
average Hamming distance does not depend on the values of X,Y , and W , so CDPA as
described above does not work. However, it is possible to perform a similar attack based
on higher moments of the distributions of the Hamming distances in the same subsets Mi

instead of being based on their averages.
In order to find out whether the attack actually works in higher orders, we wrote

a Python script test_cdpa_attack.py which is publicly accessible at https://github.
com/fortify-iq/cdpa/tree/master/src/. The script randomly generates secret words
X and Y and a list of known words Wi. For each word Wi it randomly represents X +Wi

and Y in n shares each, and calculates the corresponding side channel leakage value as
the Hamming distance between the shares of X +Wi and of Y , optionally adding to it
normally distributed noise. The number of traces, the number of shares and the standard
deviation of the noise are command line parameters of the script. In order to attack an
implementation in n shares, the script uses the nth moments instead of the averages.

Using this script, we studied several success metrics as a function of:

• The word size (32 and 64 bits);

• The number of shares (1, 2 and 3);

• The amplitude of noise (0, 4, 8, 16, 32, 64, 128).

We used the following success metrics:

• The success rate of the attacks (M1);

• The percentage of the correctly found pairs of bits of X and Y , up to the least
significant incorrect bit in each attack attempt (M2);

• The percentage of all the correctly found bits (M3).

An Excel file that presents the full outcome of this study can be found at https:
//github.com/fortify-iq/cdpa/blob/master/docs/cdpa_stats.xlsx.

A short summary of the results is presented in Table 1. For every combination of the
word size, number of shares, and noise amplitude, it shows the minimal number of traces
which is a degree of 2 for which M1 > 50%.

The three metrics used proved to be highly correlated, so changing the condition
M1 > 50% to the condition M2 > 65% or M3 > 95% would produce exactly the same
table.

Our conclusions from this study:

1. First order CDPA is easy (starting from hundreds of traces) and not very sensitive
to noise.

2. Second order CDPA is more difficult than first order CDPA by about two orders of
magnitude (starting from tens of thousands of traces) and is more sensitive to noise
and to the word size. Still, it may be practical.

3. Third order CDPA theoretically works. With 1M traces and without noise it gives
about 90% correctly guessed bits and about 17% correctly guessed 32-bit words.
However the number of traces required for a non-negligible success ratio is larger than
500K even without any noise, so its applicability to real world devices is dubious.

https://github.com/fortify-iq/cdpa/tree/master/src/
https://github.com/fortify-iq/cdpa/tree/master/src/
https://github.com/fortify-iq/cdpa/blob/master/docs/cdpa_stats.xlsx
https://github.com/fortify-iq/cdpa/blob/master/docs/cdpa_stats.xlsx

Y.Belenky et al. 9

Figure 3: A toy example of successful 8-bit CDPA with 24 traces

10 CDPA and its Application to Attacking HMAC-SHA-2

2.3.6 A Toy Example

To illustrate the CDPA attack, we provide a toy example with N = 8 and with 24 traces
Figure 3). (The probability of successfully recovering the two 8-bit secret values using only
24 traces is about 22%; we chose a successful case for this toy example.) The example was
produced using the above mentioned Python script in verbose mode, using the following
command line:

python.exe ./test_cdpa_attack.py -b 8 -t 24 -r 55 -l
This toy example is small enough to allow performing all the calculations even manually.
We’ll briefly explain the printout in Figure 3. The first 24 rows, excluding the header,

correspond to the 24 traces used. In each one of these 24 rows the following data is listed:

• The first column: the pseudo-random value of W (the input data).

• The second column: the value of HD(H +W,Y) (the “trace”).

• The remaining columns: the subset Mi to which each trace belongs at each one of
steps 0-7

The expressions used for the calculation of the indices i of subsets Mi are written in the
header line of Figure 3.

The continuation of the printout is as follows:

• L(Mi) (see (4) and Definition 4) for every step.

• ∂L(Mi) (see (7)) for every step. Only the two rows for i ∈ {0, 1} are shown. The
rows for i ∈ {2, 3} are omitted since ∂L(M2) = −∂L(M0) and ∂L(M3) = −∂L(M1).
The sign of ∂L(M0) for step 0 defines the hypothesized value of X[0] ⊕ Y [0]. To
emphasize the sign, this value is printed on a yellow or blue background depending
on whether it is negative or positive.

• ∂2L(Mi)(see (8)) for every step. The rows for i ∈ {2, 3} are omitted for the same
reasons as for the case of ∂L(Mi). Which one of values ∂2L(M0) and ∂2L(M1) is
greater by absolute value, defines the hypothesized value of X[i− 1], and the sign
of this greater value defines the hypothesized value of X[i] ⊕ Y [i]. To emphasize
the sign, the greater value is printed on a yellow or blue background depending on
whether it is positive or negative.

• The values of X[i− 1] and X[i]⊕ Y [i] found at each step.

• The cumulative values of X[i− 1 : 0] and Y [i− 1 : 0] found up to each step.

Note that, as explained in the previous sections, the values of ∂L(Mi) approach ±1,
and the values of ∂2L(Mi) approach either 0 or ±2 as the number of traces grows. In this
toy example, with only 24 traces, the actual values are still very far from these limits,
which could easily cause a failure of the attack, but in this specific case the attack was
successful. Figure 4 demonstrates that with a large amount of traces (in this case, 100K)
the actual values of ∂L(Mi) and ∂2L(Mi) are indeed close to the expected limits. (Only
the 8 least significant bits out of 64 are shown.) This printout was produced by the same
script as above using the following command line:

python.exe ./test_cdpa_attack.py -b 64 -t 100000 -r 3 -v

Y.Belenky et al. 11

Figure 4: An example of successful 64-bit CDPA with 100K traces

3 The Attack on HMAC-SHA-2
3.1 Preliminaries
To describe the attack on HMAC-SHA-2, we start by defining SHA-2 [Nat12] and
HMAC [Nat08], using a notation which is more convenient in the context of this pa-
per.

3.1.1 SHA-2

The SHA-2 family of hash algorithms utilizes the Merkle-Dåmgard construction, in which
the input (properly padded) is represented as a sequence of blocks Bl0, Bl1, . . . , Bln−1,
and the hash function is iteratively calculated as Stj+1 = CF (Stj , Blj) for 0 ≤ j < n
where CF is the compression function, St0 is a predefined constant, and Stn is the final
output (hash value).

The compression function CF (Stj , Blj) is calculated in the following steps (see SHA-256
example in Figure 5):

1. The message schedule expands the input block Blj into a sequence of s × N -bit
words W0,W1, . . . ,Ws−1, where s = 64, N = 32 for SHA-224 and SHA-256, and
s = 80, N = 64 for SHA-512/224, SHA-512/256, SHA-384 and SHA-512. The details
of the expansion algorithm are omitted since they are irrelevant to our attack.

2. The round function RF is applied s times so that Rr+1 = RF (Rr,Wr,Kr) for
r ∈ [0, 1, . . . , s− 1], where Kr are predefined “round constants”, and R0 = Stj .

3. Finally, the output of the compression function CF is calculated as a word-wise sum
modulo 2N of R0 = Stj and Rs.

For the round function RF , the state Rr before round r is split into eight N -bit words.
While in [Nat12] these eight words are called A,B,C,D,E, F,G,H, we will denote them

12 CDPA and its Application to Attacking HMAC-SHA-2

differently — as
Ar−1, Ar−2, Ar−3, Ar−4, Er−1, Er−2, Er−3, Er−4

This notation features the fact that only two words — Ar and Er — are calculated at
round r, while the other words are shifted right in the array (see Figure 6).

Ar and Er are calculated as follows (where all the addition operations are modulo 2N):

εr = Er−4 + Σ1(Er−1) + Ch(Er−1, Er−2, Er−3) +Kr (14)

αr = Σ0(Ar−1) +Maj(Ar−1, Ar−2, Ar−3) (15)

∆Er = Ar−4 + εr (16)

∆Ar = εr + αr (17)

Er = ∆Er +Wr (18)

Ar = ∆Ar +Wr (19)

where Ch is the bit-wise choice function

Ch(x, y, z) = (x ∧ y)⊕ (¬x ∧ z) (20)

and Maj is the bit-wise majority function

Maj(x, y, z) = (x ∧ y)⊕ (x ∧ z)⊕ (y ∧ z) (21)

Note that ∆Ar and ∆Er depend on the previous state Rr but not on Wr. In particular,
∆A0 and ∆E0 depend only on the initial state R0.

This definition is consistent with the standard definition of the round function of any
hash function from the SHA-2 family. The difference between different functions in the
family is only in N , the constants Kr, and the definitions of the functions Σ0,Σ1 (which
do not matter for the purpose of our attack).

Ai-1 Ai-2 Ai-3 Ai-4 Ei-1 Ei-2 Ei-3 Ei-4

Ai Ai-1 Ai-2 Ai-3 Ei Ei-1 Ei-2 Ei-3

+

Ch

∑1

+

wi

Ki

Maj

∑0

+

Ai+1 Ai Ai-1 Ai-2 Ei+1 Ei Ei-1 Ei-2

+

Ch

∑1
+

wi+1

Ki+1

Maj

∑0

+

Pre-processing

Message

Message
Schedule

Compression
stage 0

512-bit chunk

32

Compression
stage 1

32

Compression
stage 63

32

Selector

IV

Hash

(a) SHA-256 Function (b) Compression Stages

from extension

constant

from extension

constant

+

Figure 5: SHA-256 algorithm block diagram. (a) SHA-256 execution flow, including the
preprocessing stage, message schedule, which outputs 64×32-bit words, and 64 compression
stages. (b) Detailed diagram of two 256-bit wide compression stages.

Y.Belenky et al. 13

Figure 6: Illustration of the notation used in the paper in the first three rounds. Arrows
show copy operations. All the tiles that have incoming edges, receive an exact copy of a
word in the previous round. The remaining tiles receive results of manipulated data from
the previous round.

3.1.2 HMAC

HMAC is a Message Authentication Code (MAC) algorithm based on a hash function,
see (1). The details of the derivation of K0 from the key K are irrelevant to our article, but
it is important to note that, regardless of the size of K, the size of K0 is equal to the block
size of the underlying hash function H. The two applications of the function H during the
HMAC calculation are called the “inner” application and the “outer” application.

If H is a function from the SHA-2 family, e.g. SHA-256, then for a fixed K the
first application of the SHA-256 compression function in the inner SHA-256 calculates
Stin = CF (St0,K0⊕ ipad), and the first application of the SHA-256 compression function
in the outer SHA-256 calculates Stout = CF (St0,K0 ⊕ opad). Note that both Stin and
Stout depend only on K. The goal of the attack is to find the secret initial states Stin and
Stout. Since it is difficult to invert the compression function, it is difficult to derive K or
K0 from Stin and Stout. However it is not necessary, since an attacker who knows Stin
and Stout can forge HMACSHA256(K,M) for any message M , which is the ultimate goal
of an attack on a MAC algorithm. See Figure 7 which shows HMAC data flow assuming a
one-block message including the padding (as there is no reason to use longer messages for
the attack).

In order to find Stin and Stout, both the inner and the outer SHA-256 must be attacked.
There is a subtle difference between the two attacks. While the attacker may choose the
message M as he wishes in order to attack the inner SHA-256, this is not the situation
with the outer SHA-256, because the variable part of its input is the output from the inner
SHA-256 — which may become known to the attacker after successfully attacking the
inner hash, but in any case cannot be chosen arbitrarily. This makes designing an attack
on the outer SHA-256 more difficult. The attack described below works for both, as it
does not require choosing the input.

3.2 The Statement of the Problem
We denote the Hamming distance between subsequent states as follows:

Sr = HD(Rr, Rr+1) (22)

for 0 ≤ r < n.
A device calculates the compression function of one of the functions of the SHA-2

family with a secret initial state, i.e., it iteratively invokes the round function with a

14 CDPA and its Application to Attacking HMAC-SHA-2

Figure 7

known sequence of input words, starting from the secret initial state R0. From every such
calculation the attacker obtains the sequence of Wr and the corresponding sequence of Sr.
The goal is to find R0.

3.3 Solution Overview
The solution consists of three stages.

At stage 1, all possible information is extracted from the samples corresponding to
round 0 (S0). The result is a list of hypotheses regarding two words of the secret initial
state and two words which are functions of the secret initial state.

At stage 2, all possible information is extracted from the samples corresponding to
round 1 (S1). The result is a list of hypotheses regarding the entire secret initial state.

At stage 3, all the incorrect hypotheses are rejected using the samples corresponding
to the later rounds, and only the correct hypothesis remains.

The same in more detail.

Stage 1. Analyze round 0. In this round

S0(W0) = L∆A0,A−1(W0) + L∆E0,E−1(W0) + const (23)

where const is the sum of six Hamming distances corresponding to the replacement
of the six constants

A−2, A−3, A−4, E−2, E−3, E−4

with the six constants

A−1, A−2, A−3, E−1, E−2, E−3

respectively.
We find ∆A0, A−1, ∆E0, E−1 by the analysis of

∂S0(W0) = ∂L∆A0,A−1(W0) + ∂L∆E0,E−1(W0) (24)

Y.Belenky et al. 15

which is a modification of the basic CDPA described in Section 2. Two additions
instead of one increase the complexity of the task, and the result of stage 1 is a
set of 2k hypotheses regarding ∆A0, A−1, ∆E0, E−1, where k ≥ 3.

Stage 2. Analyze round 1. For every hypothesis from stage 1, either reject it or find all
the still unknown words of the secret initial state — A−2, A−3, A−4, E−2, E−3,
E−4.

Stage 3. For every hypothesis regarding the full initial internal state it is possible to
calculate the Hamming distances at each round. Compare the calculated values
against the experimental ones. All the hypotheses except for the correct one will
be rejected.

The following sections describe stages 1 and 2.
The attack on SHA2, while it is based on CDPA, is significantly more complex than

CDPA. We encourage anyone who wants to understand the attack in detail to try out the
Python script at https://github.com/fortify-iq/sha2-attack/blob/master/src/
test_sha2_attack.py, in addition to reading the continuation of this paper.

3.4 Stage 1. Find ∆A0, A−1, ∆E0, E−1

Stage 1 consists of two substages. At substage 1a we find ∆A0, ∆E0, up to the permutation
between them, and excluding one most significant bit of each. At substage 1b we find a
set of hypotheses for ∆A0, A−1, ∆E0, E−1.

3.4.1 Substage 1a. Find ∆A0, ∆E0

Similarly to the basic CDPA, we analyze the two simultaneous additions (∆A0 +W0 and
∆E0 +W0) in a series of steps. In step i for 1 ≤ i < N the analysis is modulo 2i+1. Before
step i there are j known bits ∆A0[j − 1 : 0] and ∆E0[j − 1 : 0], where j < i. In particular,
before step 1, j = 0, and no bits are known. The value of j will be discussed below.

Before any step i, there are two cases which we describe separately. We will use the
following easy-to-prove propositions.

Proposition 1. The sum of two odd functions is odd.

Proposition 2. The sum of an n1-step function and an n2-step function is an (n1 + n2)-
step function.

Proposition 3. The sum of an n1-peak function and an n2-peak function is an (n1 +n2)-
peak function.

In particular, since ∂L∆A0,A−1(W0) and ∂L∆E0,E−1(W0) are odd 2-step functions, and
∂2L∆A0,A−1(W0) and ∂2L∆E0,E−1(W0) are odd 2-peak functions, from these propositions
follows that ∂S0(W0) is an odd 4-step function, and ∂2S0(W0) is an odd 4-peak function.

Case 1. ∆A0[j−1 : 0] = ∆E0[j−1 : 0]. Since the j least significant bits are known, modulo
2i+1 for both ∂L∆A0,A−1(W0) and ∂L∆E0,E−1(W0) there are 2i+1−j intervals at
which each function is guaranteed to be constant. Since i > j, the number of
intervals is at least 4. Since ∆A0[j − 1 : 0] = ∆E0[j − 1 : 0], these are the same
intervals for both functions. Just as in Section 2, we estimate ∂S0(Mk) for every
subset Mk, and find at most two pairs of opposite points at which the odd 4-peak
function ∂2S0(W0) is different from 0. There are three subcases.

Subcase 1a. No non-zero values of ∂2S0(W0) are found. This means that the
peaks of ∂2L∆A0,A−1(W0) and of ∂2L∆E0,E−1(W0) are at the same

https://github.com/fortify-iq/sha2-attack/blob/master/src/test_sha2_attack.py
https://github.com/fortify-iq/sha2-attack/blob/master/src/test_sha2_attack.py

16 CDPA and its Application to Attacking HMAC-SHA-2

(a) (b)

Figure 8

points, but they are opposite by their signs. In this case we gain no
information, and proceed to step i+ 1 without changing the number
j of the known bits.

Subcase 1b. Two non-zero values of ∂2S0(W0) are found. This means that the
peaks of ∂2L∆A0,A−1(W0) and of ∂2L∆E0,E−1(W0) are at the same
points, and the peaks have the same sign, so ∂2S0(M) = ±4. The
pair of points reveals the bits [i − 1 : j], in addition to the bits
[j − 1 : 0] which were already known — and these bit positions still
match in the words ∆A0 and ∆E0. In this subcase, j (the updated
number of known bits) assumes the value i.

Subcase 1c. Four non-zero values of ∂2S0(W0) are found. This means that the
peaks of ∂2L∆A0,A−1(W0) and of ∂2L∆E0,E−1(W0) are at different
points, i.e., ∆A0[i− 1 : 0] 6= ∆E0[i− 1 : 0]. In this case from these
points we deduce both ∆A0[i − 1 : 0] and ∆E0[i − 1 : 0] (up to a
permutation between them), so j = i bits are known towards the
next step i+ 1.

Note that if subcase 1a occurs for several consecutive bit positions, then the
number of subsets grows exponentially, and significantly more traces may be
necessary for the attack to succeed.

Case 2. ∆A0[j− 1 : 0] 6= ∆E0[j− 1 : 0]. This case occurs for the first time after subcase 1c
is encountered, and j = i− 1 when it happens. After it happens once, clearly this
will be the case for all the subsequent bit positions as well. Unlike case 1, in case 2
the number of the known bits before step i is always j = i−1, similarly to Section 2.
Let’s denote T = ∆A0[i− 2 : 0] and U = ∆E0[i− 2 : 0] (see Figure 8a). Taking
into account two options for each one of ∆A0[i− 1] and ∆E0[i− 1], modulo 2i+1

there are 8 intervals at which ∂S0(W0) is guaranteed to be constant as shown
in Figure 8b. We estimate the value of ∂S0(W0) at each interval, find the two
pairs of opposite points at which ∂2S0(W0) changes its sign, and deduce the bits
∆A0[i− 1] and ∆E0[i− 1].
Note that, unlike all the previous cases, the subsets may differ in size. The more
consecutive matching bits there are in ∆A0 and ∆E0, the more significant the
difference in their size is. If this happens, it may significantly increase the number
of traces necessary for the attack to succeed.

3.4.2 Substage 1b. Find A−1, E−1

This substage consists of a series of steps numbered from 1 to N − 1.

Y.Belenky et al. 17

In step 1 we are going to find A−1[1 : 0], E−1[1 : 0]. The analysis will be modulo 4.
We split the traces into four subsets Mk (0 ≤ k < 4), according to W0[1 : 0], estimate
S0(Mk), and calculate

∆S0(k) = S0(Mk+1)− S0(Mk) (25)

for 0 ≤ k < 3. On the other hand, for every one of the sixteen possible combinations of
bits A−1[1 : 0], E−1[1 : 0] we calculate the expected values of ∆S0(k) for 0 ≤ k < 3, using
the explicit expression of HD[1:0](∆A0 +W0, A−1) +HD[1:0](∆E0 +W0, E−1). As a result,
most of the combinations are rejected. The set of the remaining combinations is the set of
hypotheses for the next step.

As long as ∆A0[i− 2 : 0] = ∆E0[i− 2 : 0], step i for every hypothesis is similar to step
1, with the following differences:

1. The analysis is modulo 2i+1.

2. The bits A−1[i− 1 : 0] and E−1[i− 1 : 0] are known from the previous steps.

3. The target bits are A−1[i : i− 1], E−1[i : i− 1].

4. The splitting into four subsets is according to (∆A0[i− 2 : 0] +W)[i : i− 1].

5. In addition to rejecting the combinations of A−1[i : i − 1], E−1[i : i − 1] because
of the mismatch between the measured and expected values, they may be rejected
because of the mismatch with the already known values of bits A0[i−1] and E0[i−1].
(It still may happen that more than one combination will remain.)

As soon as ∆A0[i− 2 : 0] 6= ∆E0[i− 2 : 0], everything becomes simpler because it is
possible to separate between ∆A0 and ∆E0. The bits ∆A0[N − 2 : 0] and ∆E0[N − 2 : 0]
are known from substage 1, and the analysis is modulo 2i+1. We split C2i+1 into 8 subsets
in the same way as in Section 3.4.1, case 2 (see Figure 8b), and deduce the only possible
values of ∆A0[i]⊕A−1[i] and of ∆E0[i]⊕ E−1[i] from the sign of ∂S0(W0) in the points
∆A[i − 1 : 0] and ∆E[i − 1 : 0], according to (12). At all the steps except for the step
N − 1 (the last one), ∆A0[i] and ∆E0[i] are already known, so A−1[i] and E−1[i] are easily
found. At the last step i = N − 1, and we remain with ∆A0[N − 1] ⊕ A−1[N − 1] and
∆E0[N − 1]⊕ E−1[N − 1].

3.4.3 Wrapping Up Stage 1

After all the steps described above, we have a list of hypotheses regarding

〈A0[N − 2 : 0], ∆A0[N − 2 : 0], ∆A0[N − 1]⊕A−1[N − 1],
E0[N − 2 : 0], ∆E0[N − 2 : 0], ∆E0[N − 1]⊕ E−1[N − 1]〉

We convert each hypothesis into four hypotheses regarding

〈A0[N − 1 : 0], ∆A0[N − 1 : 0], E0[N − 1 : 0], ∆E0[N − 1 : 0]〉

by listing all the combinations of A−1[N − 1] and E−1[N − 1]. Note that there is a total
of at least eight hypotheses, because of the permutations between the pairs ∆A0, A−1 and
∆E0, E−1.

3.5 Stage 2. Find the Rest of the Secret Initial Stage
After stage 1 we have a set of hypotheses regarding

〈A0[N − 1 : 0], ∆A0[N − 1 : 0], E0[N − 1 : 0], ∆E0[N − 1 : 0]〉

18 CDPA and its Application to Attacking HMAC-SHA-2

At stage 2 we analyze each one of these hypotheses separately. As a result, each
hypothesis is either rejected or expanded into a hypothesis regarding the entire initial
internal state.

For the purpose of this stage, we’ll denote

AE−3 = A−3 + E−3 (26)

The analysis is performed in steps numbered from 0 to N − 1. In step i we find
A−2[i], AE−3[i], E−2[i], E−3[i]. If all the steps succeed, we wrap up by a simple calculation
of the remaining words — A−3, A−4, E−4.

The analysis is based on the following observations.

1. After stage 1, A−1 and E−1 are known.

2. After stage 1, A0, Σ0(A0), E0,Σ1(E0) are known for every W0.

3. If M0 and M1 are two subsets of the traces chosen according to criteria related to
the calculation of A1[i] (or E1[i]), then in the expression for S1(M0)−S1(M1) all the
terms except HD(A1[i], A0[i]) = A1[i]⊕A0[i] (or HD(E1[i], E0[i]) = E1[i]⊕ E0[i])
are distributed uniformly in both sets and therefore almost cancel out for sufficiently
large subsets M0 and M1.

4. If E−2[i−1 : 0] and AE−3[i−1 : 0] are known, then in the expression for E1[i]⊕E0[i]
the only unknown values are ch(E0[i], E−1[i], E−2[i]) and AE−3[i].

5. If E−2[i : 0], AE−3[i : 0], A−2[i − 1 : 0] and A−3[i − 1 : 0] are known, then in the
expression for A1[i]⊕A0[i] the only unknown values are maj(A0[i], A−1[i], A−2[i])
and E−3[i].

Taking these observations into account, step i is performed as follows.

1. Split the traces into two subsets M0 and M1 according to the bit E0[i].

2. Note that if E0[i] = 1, then according to (20)

ch(E0[i], E−1[i], E−2[i]) = E−1[i]

which is known, and the only remaining unknown term in the expression for E1[i]⊕
E0[i] is AE−3[i], i.e.,

E1[i]⊕ E0[i] = AE−3[i]⊕Q

where Q is known. Split M1 into two subsets M10 and M11 according to the value of
Q. From the sign of S1(M11)− S1(M10) ≈ ±1 deduce the value of AE−3[i].

3. Note that if E0[i] = 0, then according to (20)

ch(E0[i], E−1[i], E−2[i]) = E−2[i]

which is now the only remaining unknown term in the expression for E1[i]⊕E0[i],
i.e.,

E1[i]⊕ E0[i] = E−2[i]⊕Q

where Q is known. Split M0 into two subsets M00 and M01 according to the value of
Q. From the sign of S1(M01)− S1(M00) ≈ ±1 deduce the value of E−2[i].

4. Split the traces into two subsets M0 and M1 according to A0[i]⊕A−1[i].

Y.Belenky et al. 19

5. Note that if A0[i] = A−1[i] (i.e., A0[i]⊕A−1[i] = 0), then according to (21)

maj(A0[i], A−1[i], A−2[i]) = A−1[i]

which is known, and the only remaining unknown term in the expression for A1[i]⊕
A0[i] is E−3[i], i.e.,

A1[i]⊕A0[i] = E−3[i]⊕Q

where Q is known. Split M0 into two subsets M00 and M01 according to the value of
Q. From the sign of S1(M01)− S1(M00) ≈ ±1 deduce the value of E−3[i].

6. Note that if A0[i] 6= A−1[i] (i.e., A0[i]⊕A−1[i] = 1), then according to (21)

maj(A0[i], A−1[i], A−2[i]) = A−2[i]

which is now the only remaining unknown term in the expression for A1[i]⊕A0[i],
i.e.,

A1[i]⊕A0[i] = A−2[i]⊕Q

where Q is known. Split M1 into two subsets M10 and M11 according to the value of
Q. From the sign of S1(M11)− S1(M10) ≈ ±1 deduce the value of A−2[i].

If at any step, one of the values expected to be close to ±1 is close to 0 instead, the
hypothesis is rejected.

3.5.1 Wrapping Up Stage 2

Once all the steps are finished, we calculate

A−3 = AE−3 − E−3

and calculate A−4 and E−4 based on the already known values of

∆A0, A−1, A−2, A−3, ∆E0, E−1, E−2, E−3

3.6 The Case of Two Rounds per Clock Cycle Implementation
If two rounds are calculated in one clock cycle, the attack still works with minor changes.

In this case, at clock cycle 0 two rounds — round 0 and round 1 — are calculated, and
the Hamming distance obtained at this clock cycle is S∗0 = HD(R0, R2). It includes four
non-constant addends

HD(A0, A−2) +HD(E0, E−2) +HD(A1, A−1) +HD(E1, E−1) (27)

Performing stage 1 of the attack described in Section 3.4, with S∗0 instead of S0, produces
a set of hypotheses regarding ∆A0, A−2, ∆E0, E−2. (The addends corresponding to the
terms HD(A1, A−1) and HD(E1, E−1) almost cancel out, as the criteria of splitting into
subsets are irrelevant to them.)

For stage 2 we also use S∗0 (instead of S1). This time, the addends corresponding to
HD(A0, A−2) and HD(E0, E−2) almost cancel out for similar reasons. A−1 and E−1 are
not known yet — but on the other hand A−2 and E−2 are known. The order of performing
step i of stage 2 in this case is as follows.

1. Split the traces into two subsets M0 and M1 according to the bit E0[i].

20 CDPA and its Application to Attacking HMAC-SHA-2

2. Note that if E0[i] = 0, then according to (20)

ch(E0[i], E−1[i], E−2[i]) = E−2[i]

which is known, and the only remaining unknown term in the expression for E1[i]⊕
E−1[i] is AE−3[i], i.e.,

E1[i]⊕ E−1[i] = AE−3[i]⊕Q

where Q is known. Split M0 into two subsets M00 and M01 according to the value of
Q. From the sign of S∗0 (M01)− S∗0 (M00) ≈ ±1 deduce the value of AE−3[i].

3. Note that if E0[i] = 1, then according to (20)

ch(E0[i], E−1[i], E−2[i]) = E−1[i]

which is now the only remaining unknown term in the expression for E1[i]⊕ E−1[i],
i.e.,

E1[i]⊕ E−1[i] = E−1[i]⊕Q

where Q is known. Split M1 into two subsets M10 and M11 according to the value of
Q. From the sign of S∗0 (M11)− S∗0 (M10) ≈ ±1 deduce the value of E−1[i].

4. Split the traces into two subsets M0 and M1 according to A0[i]⊕A−2[i].

5. Note that if A0[i] = A−2[i] (i.e., A0[i]⊕A−2[i] = 0), then according to (21)

maj(A0[i], A−1[i], A−2[i]) = A−2[i]

which is known, and the only remaining unknown term in the expression for A1[i]⊕
A−1[i] is E−3[i], i.e.,

A1[i]⊕A−1[i] = E−3[i]⊕Q

where Q is known. Split M0 into two subsets M00 and M01 according to the value of
Q. From the sign of S∗0 (M01)− S∗0 (M00) ≈ ±1 deduce the value of E−3[i].

6. Note that if A0[i] 6= A−2[i] (i.e., A0[i]⊕A−2[i] = 1), then according to (21)

maj(A0[i], A−1[i], A−2[i]) = A−1[i]

which is now the only remaining unknown term in the expression for A1[i]⊕A−1[i],
i.e.,

A1[i]⊕A−1[i] = A−1[i]⊕Q

where Q is known. Split M1 into two subsets M10 and M11 according to the value of
Q. From the sign of S∗0 (M11)− S∗0 (M10) ≈ ±1 deduce the value of A−1[i].

4 The Real World Setting and the Heuristics Used in it
4.1 The Challenge of Applying CDPA to HMAC-SHA-2
The attack described in Section 3 is based on the assumption of the Hamming distance
leakage model. In this assumption, if (theoretically) all pairs 〈W0,W1〉 have been used
in the experiments, then the equality (13) and other similar equalities are exact, and the
attack definitely works. If only a subset of possible values of 〈W0,W1〉 is used (which in
practice is always the case), then the equalities are approximate — but they approach
the theoretical limit as the number of the experiments grows (assuming, of course, that
the bits of 〈W0,W1〉 are distributed independently and uniformly). In real world devices,

Y.Belenky et al. 21

however, inevitably there is noise added to the Hamming distance. This noise can be of
two kinds — uncorrelated and correlated.

The uncorrelated noise (e.g., the thermal noise, and power consumption of unrelated
parts of the device) raises the number of traces necessary for revealing the secret, but
eventually approaches zero and does not preclude the attack. However the correlated
noise may totally thwart the attack, since it may change not only the rate at which the
experimental results approach the theoretical limit, but also change the limit which they
approach and make it differ from the theoretical limit.

All the theoretical limits in the attack are integers, so sufficiently small deviations of
the actual limit from the theoretical one are tolerable. However, if the deviation is too
large, then the attack will not work, or will require some changes in order to work.

Indeed, when performing the attack on an FPGA board (see full details in Section 5),
we observed this deviation of the limit from the theoretical value.

We believe that measuring EM radiation in the vicinity of the registers, rather than
power consumption, would decrease correlated noise from the combinational logic and
thus improve the signal-to-noise ratio and diminish the observed deviation from the limit.
However we did not verify this assumption; this is a subject for future research.

4.2 The Heuristics Used for the Attack on an FPGA Board
In order to raise our chances of success, we enhanced the algorithm with several heuristics,
namely:

1. At stage 1, instead of using a single sample, we take into account several samples
(from the same clock cycle). Unlike the experiments in simulation, with just one
sample per round, in the experiments on an FPGA board we have several samples
per round (4 samples in our case), and we do not know in advance which of them
are best correlated with the Hamming distance.

2. Moreover, we take samples from several clock cycles, i.e., from several rounds. (Note
that HD(A0, A−1) is an addend in the expression for Sr for 0 ≤ r < 4. For this
reason, taking samples from up to 4 consecutive clock cycles may be advantageous.)

3. We normalize the samples used (where the normalization parameters are per sample).
(The values of ∂2S0(W0) in Section 3.4.1, of ∆S0(k) in Section 3.4.2, and of several
differences between averages in Section 3.5 are each expected to approach some
small integer as the number of traces approaches infinity, as explained in the above
mentioned sections. However this is true only on the assumption that the samples
used are equal to the Hamming distance between consecutive states, optionally with
some added noise. In the real world, the best we can hope for is a linear dependency
between the sample and the Hamming distance, with the coefficient not necessarily
1 and the free term not necessarily 0. In order to make the comparisons with the
expected small integers meaningful, we need to normalize the samples. For this
purpose, we perform measurements with a known initial internal state, and find the
coefficient (per sample), multiplication by which causes the above mentioned values
to be on average as close to the expected integers as possible. Unlike all our other
heuristic changes, this one would be necessary even if there were no noise.)

4. At every step, we perform the calculation (e.g., the values of ∂2S0(W0)) separately
for every sample, and then average over the samples.

5. In case 1 of stage 1 (where the least significant bits of ∆A0 and ∆E0 match), we
start from step 2 rather than 1. Moreover, each time when subcase 1b occurs, and
the number of known bits j assumes the value i (the step counter), we proceed
directly to step i+ 2 skipping step i+ 1, so that always j < i− 1 rather than j < i,

22 CDPA and its Application to Attacking HMAC-SHA-2

i.e., there are always at least 8 rather than at least 4 subsets. The goal is to make
the distinction clearer between subcases 1a and 1c (no non-zero values of ∂2S0(W0)
found vs. four non-zero values of ∂2S0(W0) found).

6. In general, at every step we find some bit, or bits, depending on the matching
between the experimental average values and one of the set of the possible theoretical
values. At stage 1, if at any step the differences between the experimental result
and all theoretical options are close enough to one of the theoretical values, i.e.,
the difference is less than a certain threshold, we regard it as a match. If all the
differences are greater than this threshold, we take all the options into account. If
after several steps the number of options exceeds (another) threshold, the options
with the highest score are dropped, where the score is calculated as a sum of the
deviations from the theoretical values at all the steps.

7. At stage 3, instead of simply comparing the measured leakage against the expected
Hamming distance (which would not work due to noise), we calculate the correlation
between the measured leakage and the expected Hamming distance at several first
rounds. While for the incorrect hypotheses the correlation rapidly decreases towards
the noise level, for the correct hypothesis the correlation remains significant.

5 Experimental Results
In order to assess the properties of the attack, we mounted it in two settings:

1. Software simulation in the Hamming distance model of leakage.

2. FPGA board. Here we added the “real world” heuristics described in Section 4.2.

In the next sections we describe the methodology and the results of both types of experi-
ments. The target hash function was SHA-256 in all the experiments.

5.1 Experiments in Simulation

Table 2: The number of traces for success probability > 50%
Noise SHA256 SHA512
0 216 218

4 217 219

8 218 220

16 220 > 220

32 > 220

We simulated in software the Hamming distance model without noise (neither correlated
nor uncorrelated). Using this software simulation to generate traces, we performed
experiments with different amounts of traces — from 10K to 50K with a 5K step, and from
50K to 1M with a 50K step. For each amount of traces, we performed 1000 experiments
with different randomly chosen secret initial states. For stage 1 (Section 3.4) we used
the entire amount of traces each time. Whenever the amount of traces was greater than
20K, for stage 2 (Section 3.5) we used only the first 20K traces, since even in this setting
attack failures at this stage were extremely rare. The results are shown in Figure 9. The
probability of success is 4.6% for 15K traces and rapidly grows, reaching 90% at 200K
traces and 99% at 1M traces.

In addition, we performed a similar analysis for a single key — the same key as was
used on the FPGA board. For this single key the success rate starts from 4.1% with 15K
traces, and reaches ≈ 100% with 130K (see Figure 10).

Y.Belenky et al. 23

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800 900 1000

Su
cc

es
s

ra
te

 (
in

 %
)

Number of simulated traces (multiple keys, in 1K)

Figure 9: The success rate in % as a function of the number of simulated traces with
multiple SHA256 initial states

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

Su
cc

es
s

ra
te

 (
in

 %
)

Number of simulated traces (fixed key, in 1K)

Figure 10: The success rate in % as a function of the number of simulated traces with a
fixed SHA256 initial state

24 CDPA and its Application to Attacking HMAC-SHA-2

In order to study how noise affects the results, and to make conclusions regarding high
order attacks on SHA2, we used a Python script publicly available at https://github.
com/fortify-iq/sha2-attack/blob/master/src/test_sha2_attack.py. This script
generates simulated traces of the two first rounds of the compression function of SHA256
or SHA512 with a secret initial state. Using this script, we collected statistical data for
success metrics, similarly to what we did for CDPA (Section 2.3.5), with the following
differences:

• We did not use the percentage of correctly found bits as a success metric, because
in the case of failure, our implementation of the attack on SHA2 typically raises an
exception and finishes prematurely — unlike CDPA which always finds all the bits,
either correctly or incorrectly.

• We performed only first order analysis, since even second order attacks on SHA2 are
very difficult and hardly practical, as explained below.

The full results of this study are presented in the Excel file https://github.com/
fortify-iq/sha2-attack/blob/master/docs/sha2_attack_stats.xlsx. A short sum-
mary of the results is presented in Table 2. Here also, similarly to CDPA, the metrics are
highly correlated, and in the same way as for CDPA, so taking the condition M2 > 65%
instead of M1 > 50% (in the notation of Section 2.3.5) would not change the table at all.

Comparing Table 1 and Table 2, as well as Figure 11 and Figure 12, we observe that
a (first order) attack on SHA256 requires about two orders of magnitude more traces
than a 32-bit CDPA. CDPA second order attacks require two orders of magnitude more
traces than first order attacks. Attacking SHA2 is much more complicated, and we
assume that the ratio between the second and first order attacks on SHA2 is at least
the same as for CDPA, i.e., two orders of magnitude. The minimal number of traces for
a non-negligible probability of a successful first order attack on SHA256 (32 bit) with
zero noise, is approximately 10K traces. By extrapolation, for a second order attack with
zero noise non-negligible probabilities start not before 1M traces, which means that the
attack, although theoretically possible, is very difficult, and third order attacks are totally
impractical. Note that, as was already mentioned (Section 3.4.1, notes to both cases 1
and 2), matching bit sequences in ∆A0 and ∆E0 significantly increase the number of
traces required for the success of the attack unlike CDPA, for which the complexity of the
attack does not depend on the secret values. This is the reason why the slopes in Figure 11
(attack on SHA256) are much less steep than in Figure 12 (32-bit first order CDPA), and
even 1M traces do not suffice in approximately 1% of the attacks on SHA256.

5.2 Experiments on an FPGA Board
5.2.1 Setup

To evaluate the proposed method we took a low-area SHA-256 realization from [Str]. We
synthesized the RTL for a CW305 Artix FPGA target board by NewAE Technology [OC14]
with the Keysight E36100B Series DC Power Supply for power stabilization. The traces
were collected using the NewAE Technology ChipWhisperer-Lite kit with four samples
per clock cycle. The power signal was obtained by measuring current via a shunt resistor
connected serially to the FPGA supply line.

5.2.2 Methodology

On the FPGA board we used the following methodology.

1. Generate 1M traces for a single secret initial state and bit-wise uniformly and
independently distributed input data.

https://github.com/fortify-iq/sha2-attack/blob/master/src/test_sha2_attack.py
https://github.com/fortify-iq/sha2-attack/blob/master/src/test_sha2_attack.py
https://github.com/fortify-iq/sha2-attack/blob/master/docs/sha2_attack_stats.xlsx
https://github.com/fortify-iq/sha2-attack/blob/master/docs/sha2_attack_stats.xlsx

Y.Belenky et al. 25

0

10

20

30

40

50

60

70

80

90

100

Su
cc

es
s

ra
te

 (
in

 %
)

of simulated SHA256 traces

Noise 0

Noise 4

Noise 8

Noise 16

Noise 32

Figure 11: The success rate in % as a function of the number of traces and the noise
amplitude for the attack on SHA256

0

10

20

30

40

50

60

70

80

90

100

Su
cc

es
s

ra
te

 (
in

 %
)

of simulated 32-bit CDPA traces

Noise 0

Noise 4

Noise 8

Noise 16

Noise 32

Figure 12: The success rate in % as a function of the number of traces and the noise
amplitude for the 32-bit first order CDPA

26 CDPA and its Application to Attacking HMAC-SHA-2

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300

Su
cc

es
s

ra
te

 (
in

 %
)

of FPGA SHA256 traces (fixed key, in 1K)

Figure 13: The success rate in % as a function of the number of traces measured on the
FPGA board with a fixed SHA256 initial state

2. Pick 100 random subsets of a fixed size.

3. Perform the attack based on each of the subsets.

4. Calculate the success rate.

5. Repeat steps 2–4 for subset sizes from 25K to 50K with a 5K step, and from 50K to
300K with a 25K step.

The results are shown in Figure 13. With 30K traces we already observed a 3% success rate,
which is significantly better than in the previous full-fledged attack on HMAC-SHA-2 in
pure parallel hardware[BDT+21], not to mention dropping the requirement of the profiling
stage. With 275K and 300K traces, 100 out of 100 attack attempts were successful.

5.2.3 Time and Disk Space.

The trace acquisition ran at the rate of 11.5K traces per minute, so in order to acquire
300K traces 26 min sufficed. The disk space necessary for 300K traces, with 288 four-byte
samples per trace (one application of the SHA-256 compression function), is about 350 MB.
For full HMAC-SHA-256 traces (two applications of the SHA-256 compression function in
the inner hash and two applications in the outer hash) 4 times more space will be required.
On the other hand, only a few rounds of two applications are used for the attack, so it is
easy to drop most of the data by preprocessing. Even without such preprocessing, these
requirements for the disk space are not burdensome.

Stage 1 took about 16 seconds, resulting (for the key we worked with) in 320 hypotheses
to be checked at stage 2. Handling the correct hypothesis at stage 2 took about 830 ms.
Incorrect hypotheses take less time, because they are eventually rejected before performing
all the steps, so the total time for stage 2 is less than 4 min.

Y.Belenky et al. 27

0

10

20

30

40

50

60

70

80

90

100

25 50 75 100 125 150 175 200 225 250 275 300

Su
cc

es
s

ra
te

 (
in

 %
)

of SHA256 traces (fixed key, in 1K)

FPGA

simulated, noise 0

simulated, noise 4

simulated, noise 5

simulated, noise 6

Figure 14: The success rate in % as a function of the number of traces for FPGA traces
and for simulated traces with added noise

Summarizing, for the key we worked with, the complete attack on 300K traces, including
trace acquisition and analysis, took about half an hour.

5.2.4 Estimation of the Noise in the FPGA Simulation

In order to estimate the level of noise in our FPGA measurements, we performed experi-
ments in simulation with the same key as in the experiments on the FPGA board, with a
varying number of traces, and with different levels of added noise. As shown in Figure 14,
the dependency of the success rate on the number of traces for the FPGA measurements
is approximately the same as such a dependency for simulated traces with added noise at
amplitude 5.

6 Conclusions
In this article, we presented a novel DPA attack methodology on arithmetic addition — the
Carry-based DPA (CDPA). We demonstrated a full-fledged attack on HMAC-SHA-2 in pure
parallel hardware, assuming the Hamming distance leakage model and the performance of
either one or two rounds per clock cycle. We validated the methodology both in software
simulation and on an FPGA board. The experimental data from the FPGA board showed
that there exist attack settings in which the secrets can be revealed, where as few as 30K
traces may be sufficient for a successful attack (in 3% of the cases). This is a significant
improvement over the best published full attack on HMAC-SHA-2 in hardware [BDT+21].
Moreover, our attack does not require profiling. It is true even for power consumption
measurements which we performed, and we expect that EM radiation measurements give
even better chances to the attacker. Therefore, implementations of HMAC-SHA-2 in pure

28 CDPA and its Application to Attacking HMAC-SHA-2

parallel hardware are vulnerable to side-channel attacks, unless they are properly defended.
Additionally, we demonstrated that CDPA can be applied to implementations which

represent data in shares (high order CDPA), but the complexity of the attack grows rapidly,
and the third order attack is already impractical. While the same technique of using higher
moments instead of averages, which we used in high order CDPA, can be applied to the
attack on HMAC-SHA-2 as well, we estimate that this attack is very difficult, if at all
practically possible, for the second order, and totally impractical for the third order.

Future research may concentrate on further improving the results of this work by
measuring EM radiation with a properly placed probe to reduce the impact of the correlated
noise, and on designing CDPA-based attacks on other algorithms which use arithmetical
addition, e.g., ARX ciphers.

References
[APSQ06] C. Archambeau, E. Peeters, F. X. Standaert, and J. J. Quisquater. Template

attacks in principal subspaces. In Lecture Notes in Computer Science (in-
cluding subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), volume 4249 LNCS, pages 1–14. Springer Verlag, 10 2006.

[BBD+15] Sonia Belaíd, Luk Bettale, Emmanuelle Dottax, Laurie Genelle, and Franck
Rondepierre. Differential power analysis of HMAC SHA-1 and HMAC SHA-
2 in the hamming weight model. In Communications in Computer and
Information Science, volume 554, pages 363–379. Springer Verlag, 2015.

[BDT+21] Yaacov Belenky, Ira Dushar, Valery Teper, Hennadii Chernyshchyk, Leonid
Azriel, and Yury Kreimer. First Full-Fledged Side Channel Attack on HMAC-
SHA-2, volume 12910 LNCS. Springer International Publishing, 2021.

[BSI13] BSI. Anwendungshinweise und Interpretationen zum Schema (AIS) 46. Tech-
nical report, BSI, 2013.

[FLRV09] Pierre-Alain Fouque, Gaëtan Leurent, Denis Réal, and Frédéric Valette. Prac-
tical Electromagnetic Template Attack on HMAC. In Lecture Notes in Com-
puter Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), volume 5747 LNCS, pages 66–80. Springer,
2009.

[GWM16] Catherine H. Gebotys, Brian A. White, and Edgar Mateos. Preaveraging and
carry propagate approaches to side-channel analysis of HMAC-SHA256. ACM
Transactions on Embedded Computing Systems, 15(1):1–19, 2 2016.

[KGB+18] Matthias J. Kannwischer, Aymeric Genêt, Denis Butin, Juliane Krämer, and
Johannes Buchmann. Differential power analysis of XMSS and SPHINCS.
Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), 10815 LNCS:168–
188, 2018.

[KJJ99] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential Power Analysis. In
Annual international cryptology conference, pages 388–397. Springer, Berlin,
Heidelberg, 1999.

[Koc96] Paul C. Kocher. Timing attacks on implementations of diffie-hellman, RSA,
DSS, and other systems. In Lecture Notes in Computer Science (includ-
ing subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), volume 1109, pages 104–113. Springer Verlag, 1996.

Y.Belenky et al. 29

[MTMM07] Robert McEvoy, Michael Tunstall, Colin C. Murphy, and William P. Marnane.
Differential power analysis of HMAC based on SHA-2, and countermeasures.
In Cryptographic Hardware and Embedded Systems – CHES 2007, volume
4867 LNCS, pages 317–332. Springer Verlag, 2007.

[Nat08] National Institute of Standards and Technology. FIPS 198-1: The Keyed-Hash
Message Authentication Code, 2008.

[Nat12] National Institute of Standards and Technology. FIPS 180-4: Secure Hash
Standard (SHS), 2012.

[Nat15] National Institute of Standards and Technology. FIPS 202: SHA-3 Standard
: Permutation-Based Hash and Extendable-Output Functions, 2015.

[OC14] Colin O’flynn and Zhizhang Chen. ChipWhisperer: An open-source platform
for hardware embedded security research. In Emmanuel Prouff, editor, Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), volume 8622 LNCS, pages
243–260, Cham, 2014. Springer International Publishing.

[Osw16] David Oswald. Side-channel attacks on SHA-1-based product authentication
ICs. In Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), volume 9514,
pages 3–14. Springer Verlag, 2016.

[RM13] Pankaj Rohatgi and Mark Marson. NSA Suite B Crypto, Keys, and Side
Channel Attacks, 2013.

[Str] Joachim Strömbergson. secworks/sha256: Hardware implementation of the
SHA-256 cryptographic hash function.

	Introduction
	Carry-based Differential Power Analysis
	Notation
	The Statement of the Problem
	Solution

	The Attack on HMAC-SHA-2
	Preliminaries
	The Statement of the Problem
	Solution Overview
	Stage 1. Find A0, A-1, E0, E-1
	Stage 2. Find the Rest of the Secret Initial Stage
	The Case of Two Rounds per Clock Cycle Implementation

	The Real World Setting and the Heuristics Used in it
	The Challenge of Applying CDPA to HMAC-SHA-2
	The Heuristics Used for the Attack on an FPGA Board

	Experimental Results
	Experiments in Simulation
	Experiments on an FPGA Board

	Conclusions

