
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2023, No. 2, pp. 568–586. DOI:10.46586/tches.v2023.i2.568-586

Improved Attacks on (EC)DSA with Nonce
Leakage by Lattice Sieving with Predicate
Luyao Xu1,2, Zhengyi Dai3, Baofeng Wu1,2(B) and Dongdai Lin1,2

1 State Key Laboratory of Information Security, Institute of Information Engineering, Chinese
Academy of Sciences, Beijing 100093, China

2 School of Cyber Security, University of Chinese Academy of Sciences, Beijing 100049, China
3 College of Computer, National University of Defense Technology, Changsha 410073, China

{xuluyao,wubaofeng,ddlin}@iie.ac.cn,daizhengyi@nudt.edu.cn

Abstract. Lattice reduction algorithms have been proved to be one of the most
powerful and versatile tools in public key cryptanalysis. In this work, we primarily
concentrate on lattice attacks against (EC)DSA with nonce leakage via some side-
channel analysis. Previous works relying on lattice reduction algorithms such as LLL
and BKZ will finally lead to the “lattice barrier”: lattice algorithms become infeasible
when only fewer nonce is known. Recently, Albrecht and Heninger introduced lattice
algorithms augmented with a predicate and broke the lattice barrier (Eurocrypt 2021).
We improve their work in several aspects.
We first propose a more efficient predicate algorithm which aims to search for the
target lattice vector in a large database. Then, we combine sieving with predicate
algorithm with the “dimensions for free” and “progressive sieving” techniques to
further improve the performance of our attacks. Furthermore, we give a theoretic
analysis on how to choose the optimal Kannan embedding factor.
As a result, our algorithm outperforms the state-of-the-art lattice attacks for existing
records such as 3-bit nonce leakage for a 256-bit curve and 2-bit nonce leakage for
a 160-bit curve in terms of running time, sample numbers and success probability.
We also break the lattice records on the 384-bit curve with 3-bit nonce leakage and
the 256-bit curve with 2-bit nonce leakage which are thought infeasible previously.
Finally, we give the first lattice attack against ECDSA with a single-bit nonce leakage,
which enables us to break a 112-bit curve with 1-bit nonce leakage in practical time.
Keywords: ECDSA · Lattice Sieving · Hidden Number Problem · Side-channel
Attack · Cryptanalysis

1 Introduction
The Hidden Number Problem (HNP) was first introduced by Boneh and Venkatesan [BV96]
in 1996, which was used to study the bit-security of the Diffie-Hellman key exchange scheme.
Subsequently, Nguyen and Shparlinski [NS02, NS03] extended Boneh and Venkatesan’s
results on HNP to analyse the security of the (EC)DSA with partially known nonce
leakage. When some information about the nonce (e.g., some of most significant bits or
least significant bits) used in each signature generation is known to the attacker due to a
weak random number generator or some side-channel attacks, the secret signing key can
be efficiently recovered by solving an HNP instance.

There are two main approaches for solving HNP. One is the statistical approach, dating
back to Bleichenbacher [Ble00], which is based on the discrete Fourier analysis techniques.
The other is to transform the HNP instance to a Bounded Distance Decoding (BDD)
instance which is a variant of the Closest Vector Problem (CVP) that asks to find the

Licensed under Creative Commons License CC-BY 4.0.
Received: 2022-10-15 Accepted: 2022-12-15 Published: 2023-03-06

https://doi.org/10.46586/tches.v2023.i2.568-586
mailto:xuluyao@iie.ac.cn,wubaofeng@iie.ac.cn,ddlin@iie.ac.cn,daizhengyi@nudt.edu.cn
http://creativecommons.org/licenses/by/4.0/


Luyao Xu, Zhengyi Dai, Baofeng Wu and Dongdai Lin 569

closest lattice vector to a given target point in an Euclidean space. The BDD instance
can the be solved by Babai’s nearest plane algorithm [Bab86] directly or transformed to a
unique-Shortest Vector Problem (uSVP) by Kannan’s embedding technique, which can be
solved using lattice reduction algorithms. Compared with the statistical approach, lattice
attacks require a much smaller number of samples and we only focus on lattice attacks in
this work.

Although lattice attacks have already been widely used in side-channel cryptanalysis
for two decades, they still remain infeasible when the number of nonce bits leaked becomes
small. In 2017, Tibouchi [Tib17] made a point that 3 bits bias for a 256-bit curve was not
easy and 2 bits bias was infeasible for lattice attacks on (EC)DSA. Furthermore, lattice
attacks have long been considered infeasible for breaking (EC)DSA when only one bit
nonce is known. Aranha et al. [AFG+14b] stressed that “due to the underlying structure
of the HNP lattice, it is impossible to attack (EC)DSA using a single-bit nonce leak with
lattice reduction”. How to solve HNP with 1 bits known (break (EC)DSA with 1 nonce
bias) by lattice attacks is a long standing open problem.

In 2021, Albrecht and Heninger [AH21] formalized two lattice problems with a predicate,
and gave algorithms for solving instances of these problems. They proposed techniques for
solving HNP with fewer samples, higher success probabilities and less running time. They
also presented experimental evidences of their techniques’ ability to solve instances given
fewer samples than required by the information theoretic limit for lattice approaches. The
main idea is to use the omitted information that the hidden number corresponds to the
discrete logarithm of a public value. This non-linear information can be utilized in lattice
attacks as a predicate on solving HNP to uniquely determine the target solution.

1.1 Our Contributions
In this paper, we follow the work of [AH21] and improve the lattice attacks on leaky
(EC)DSA in different aspects. The main contributions are as follows.

Firstly, we propose a more efficient predicate algorithm which aims to uniquely determine
the desired solution in lattice attacks. Albrecht and Heninger propose the sieving with
predicate algorithm, which first uses lattice sieving algorithms to produce a database
that contains plenty of short vectors in the HNP lattice, and then invokes the predicate
algorithm for each vector to check whether the target lattice vector is among the database.
In addition, it utilizes the information that the hidden number is the discrete logarithm
of a public value which can be used to distinguish the target vector. However, this
approach requires to compute a scalar multiplication over the elliptic curve for each short
vector. Since the number of short vectors in the database grows exponentially with the
lattice dimension, the check process will heavily increase the whole running time. To deal
with this problem, we propose a linear predicate algorithm that avoids the costly scalar
multiplication and only needs to do some vector multiplications.

Secondly, we combine the “sieving with predicate” algorithm and the “dimensions for
free” technique [Duc18] and the result can be improved by both techniques. As stressed in
[AH21], sieving with predicate algorithm conflicts with the dimensions for free technique,
and the authors left investigating an intermediate regime, i.e., fewer dimensions for free, as
a future work. We resolve this issue by progressively increasing the dimension of sieving
[LM18, ADH+19] over the projected sublattice, and invoke the predicate algorithm to
check short vectors in the output database after each subsieving. Thus we can expect an
early termination before the full dimension sieving. Thanks to our improvement of the
aforementioned predicate algorithm, checking the database after each subsieving will also
not cost too much time.

Thirdly, we give a theoretical analysis on how to choose the optimal embedding factor
arising in Kannan’s embedding technique for the HNP lattice. In [SETA22], Sun et al.
observed that lattice attacks on (EC)DSA were very sensitive to the embedding factor, and



570 Improved Attacks on (EC)DSA with Nonce Leakage by Lattice Sieving

Table 1: Comparison with the previous records of lattice attacks on (EC)DSA with nonce
leakage. Each column corresponds to the size of the curves and each row corresponds to
the number of nonce leakage per signatures.

4-bit 3-bit 2-bit 1-bit
112-bit - - - Ours
160-bit - [NS02] [LN13], [AH21], [SETA22] -
256-bit [Rya19], [WSBS20] [AH21], [SETA22] Ours -
384-bit [AH21], [SETA22] Ours - -

they performed some experiments to explain that the embedding factor could neither be
too small (equal to 1) nor too large (equal to the square of the modulus). In the previous
lattice attacks on HNP using Kannan’s embedding technique, the embedding factor is set
to be the upper bound of the target lattice vector’s coordinate [NS02, JSSS20]. We show
how to choose the optimal embedding factor in order to further increase the performance
of our lattice attacks.

At last, combining all the improvements above, we carry out experiments on lattice
attacks on (EC)DSA with nonce leakage. Our experimental results outperform previous
records as follows:

• We outperform existing best records for lattice attacks on (EC)DSA with nonce
leakage (2-bit leakage for 160-bit modulus, 3-bit leakage for 256-bit modulus, 4-bit
leakage for 384-bit modulus) in terms of running time, success probabilities, and
number of samples.

• We give the first implementation of lattice attacks on (EC)DSA for 2-bit leakage
for 256-bit modulus and 3-bit leakage for 384-bit modulus which are infeasible by
previous attacks.

• As for single bit nonce leakage, previous lattice attacks could not work since the
target lattice vector would not be the shortest or the closet vector anymore, while our
improved sieving with predicate algorithm can deal with this problem. We conduct
experiments on 112-bit secp112r1 curve with single bit nonce leakage and successfully
recover the whole secret key. This is also the first implementation of lattice attacks
against only 1-bit nonce leakage for ECDSA in the literature as far as we know.

1.2 Related Work
Attacks on (EC)DSA with nonce leakage has been separated in two routes: Bleichenbacher’s
attack and lattice attacks. After transforming the key recovery problem to an HNP
instance, the former method solves HNP using the fast Fourier transform method together
with plenty of signatures and can handle with errors as well as fewer nonce leakage
[Ble00, MHMP13, AFG+14b, TTA18, ANT+20].

Our work focus on lattice attacks and can be viewed as a follow-up of [AH21]. We mainly
use lattice sieving algorithm while other works mainly use lattice reduction algorithms
such as LLL and BKZ. We compare our results with previous lattice records in Table 1.

2 Preliminaries
All vectors are denoted by bold lower case letters and are read as row vectors. Matrices
are denoted by bold capital letters. We use 〈·, ·〉 to represent the Euclidean inner product
of two vectors.



Luyao Xu, Zhengyi Dai, Baofeng Wu and Dongdai Lin 571

2.1 Lattices
A lattice L is a discrete additive subgroup of Rd. Given a set of m independent vectors B =
(b0, b1, . . . , bm−1) ⊂ Rd, we denote the lattice spanned by B by L(B) = {

∑m−1
i=0 zi · bi |

zi ∈ Z}, and B is called a basis of L(B). We denote by B∗ = (b∗0, b∗1, . . . , b∗m−1) the Gram-
Schmidt orthogonalization (GSO) of the matrix B where b∗0 = b0 , b∗i = bi−

∑i−1
j=0 µi,j · b∗j

for i ∈ {0, . . . ,m− 1} and µi,j = 〈bi,b
∗
j 〉

〈b∗
j
,b∗

j
〉 .

We denote the orthogonal projections πi : Rd 7→ span(b0, b1, . . . , bi−1)⊥ for i ∈
{0, . . . ,m − 1}. In particular, π0(·) is the identity map and πi(bi) = b∗i . We denote by
B[i,j] the local projected block (πi(bi), . . . , πi(bj−1)) for 0 ≤ i < j ≤ m and when the
basis is clear from the context, L[i:j] denotes the lattice generated by B[i,j].

The Euclidean norm of a vector v is denoted by ||v||. We denote λ1(L) as the first
successive minimum of the lattice L which refers to the length of a shortest non-zero lattice
vector. The volume of a lattice L(B) is the absolute value of the determinant of any basis,
which is an invariant of the lattice and it holds that Vol(L(B)) =

∏m−1
i=0 ||b∗i ||.

The Gaussian heuristic predicts that the number of lattice points inside a measurable
body B ⊂ Rd, i.e., |L ∩ B|, is approximately equal to Vol(B)/Vol(L). And it leads to the
following prediction of λ1(L) (we denote by gh(L)) for a given lattice L :

gh(L) =
(

Vol(L)
Vol(Bd(1))

)1/d
=

Γ(1 + d
2 )1/d

√
π

·Vol(L)1/d ≈
√

d

2πe ·Vol(L)1/d,

where Vol(Bd(1)) denotes the volume of a d−dimensional Euclidean ball with radius 1.
The last step above uses Stirling’s formula to simplify the estimation which gives a

very intuitive asymptotic relationship between the shortest vector length and the lattice
dimension under the Gaussian heuristic. In the actual attack, we do not use this asymptotic
estimation but directly calculate the value of the gamma function instead.

2.2 Hard Problems
There are many computational hard problems related to lattices. The most famous one is
the Shortest Vector Problem (SVP) which asks to find the shortest non-zero vector in a
lattice. Another one is the Closest Vector Problem (CVP) which asks to find the lattice
vector nearest to a target point for a given lattice.

In [AH21], the authors formalized two lattice problems augmented with a predicate
which asks to find a lattice vector v not only to be short or close to some target point, but
also can satisfy a predicate f(·) which can help to distinguish the desired vector. They are
defined as follows:

Definition 1 (α-Bounded Distance Decoding with Predicate (BDDα,f(·))). Given a lattice
basis B, a vector t, a predicate f(·), and a parameter α > 0 such that the Euclidean
distance dist(t,B) < α · λ1(B), find the lattice vector v ∈ L(B) satisfying f(v − t) = 1
which is closest to t.

Definition 2 (unique Shortest Vector Problem with predicate (uSVPf(·))). Given a lattice
L and a predicate f(·), find the shortest non-zero lattice vector v ∈ L satisfying f(v) = 1.

Similar to the reduction from BDDα to uSVPγ [LM09], BDDα,f(·) can be solved by
using a uSVPf(·) oracle due to Kannan’s embedding technique [Kan87], i.e., by constructing
the lattice

C =
(
B 0
t τ

)
where τ is some embedding factor. If v ∈ L(B) is the closest vector to t then the lattice
L(B) contains the vector (t− v, τ), which is short.



572 Improved Attacks on (EC)DSA with Nonce Leakage by Lattice Sieving

2.3 Lattice Sieving
Sieving algorithms were first proposed by Ajtai et al. [AKS01] in 2001. They are the
asymptotically the fastest SVP solvers as known so far. The basic sieve algorithm first
builds a list L which contains exponentially-sized lattice vectors, then look for pairs of lattice
vectors (u,v) ∈ L2 whose integer combinations can form a shorter lattice vector. Once such
a pair is found, sieve algorithm replaces the original long lattice vector by the new shorter
one. After performing this process recursively, it will output a list with exponentially-
sized lattice vectors which are preferably short and we are expected to find the shortest
lattice vector finally by subtracting each other among these vectors. Heuristic variants
[NV08, MV10, WLTB11, ZPH13, Laa15, LdW15, BDGL16, BLS16, HK17, HKL18] were
proposed successively in order to reduce both time and space complexity.

Recently, new techniques have appeared and they further improve the practical per-
formance of the sieving algorithms. Dimensions for free (D4F) [Duc18] and progressive
sieving [LM18] are some rank reduction techniques which can solve the original SVP in
lower lattice dimension, i.e., with less running time and memory cost and they can be
applied to most variants of sieve algorithms by design. Based on these two strategies, G6K
[ADH+19] was proposed by Albrecht et al. which is an abstract stateful machine support-
ing a wide variety of lattice reduction strategies based on sieving algorithms. The highly
optimised and tweakable implementation of G6K outperforms enumeration algorithms
[Kan83, GNR10] in practice for solving exact-SVP for dimension as lower as 70. In 2021,
Ducas et al. [DSvW21] proposed a GPU implementation of G6K, which largely improve
the performance of sieving algorithms in practice.

2.4 ECDSA
Elliptic Curve Digital Signature Algorithm (ECDSA) is one of the most popular signature
schemes nowadays and can be described as in Algorithm 1.

Algorithm 1 ECDSA Signature Generation
Input: Message M ∈ {0, 1}∗, domain parameters D, signing key sk ∈ Zq
Output: A valid signature (r, s)

1: Generate a random integer nonce k ∈ Zq
2: Compute R = (rx, ry)← [k]G
3: Compute s = k−1 · (H(m) + rx · sk) mod q
4: return (rx, s)

Here the domain parameters are D := (E, p,G, q,H) where E is an elliptic curve over
Fp, G is a generator point on E of order q and H is a cryptographic hash function.

2.5 The Hidden Number Problem
Boneh [BV96] first formalised the Hidden Number Problem (HNP) and we denote HNP(n, l)
as follows: There is a n-bit sized public modulus q and a secret integer α ∈ Zq which we call
the hidden number; t0, t1, . . . , tm−1 are some integers chosen uniformly and independently
at random in Zq. For each ti, we are given ai such that |ti · α− ai|q < q/2l where |z|q is
defined as the unique integer 0 ≤ x < q such that x ≡ z mod q . When given m such
pairs, i.e., (ti, ai) for 0 ≤ i ≤ m− 1, the problem asks to recover the hidden number α.

2.6 Leaky ECDSA as an HNP instance
In [NS03], Nguyen first reduced the (EC)DSA with nonce leakage problem to the hidden
number problem. In a side-channel attack against ECDSA, the adversary may retrieve l



Luyao Xu, Zhengyi Dai, Baofeng Wu and Dongdai Lin 573

least significant bits of the signature nonce k. We write k = k0 · 2l + k1 where 0 ≤ k0 <
q/2l, 0 ≤ k1 < 2l and since we already know s = k−1 · (H(m) + rx · sk) mod q from the
signature generation phase, we can derive

k0 · 2l + k1 = s−1 ·H(m) + s−1 · rx · sk mod q.

Multiplying by the inverse of 2l and rearranging yield

2−l · s−1 · rx · sk = k0 + 2−l(k1 − s−1 ·H(m)) mod q.

This forms an HNP(n, l) instance with (ti, ai) = (2−l · s−1 · rx, 2−l(k1 − s−1 ·H(m)))
and the secret key sk is the hidden number we wish to find. Solving the HNP instance
can thus recover the secret key.

3 Solving HNP with Lattices
After transforming the key recovery attacks on leaky ECDSA into an HNP instance, the
remaining problem is to recover the hidden number for a given HNP instance. In this
section, we will first introduce the lattice attack model for solving HNP and some known
optimizations. Then we will give a comprehensive analysis on the success condition for
different lattice algorithms and estimate the least number of signature samples.

3.1 Lattice Attack Model and Kannan’s Embedding
In 1996, Boneh and Venkatesan [BV96] gave the following lattice construction to solve the
Hidden Number Problem:

L =


q 0 0 · · · 0 0
0 q 0 · · · 0 0
...

...
...

...
...

0 0 0 · · · q 0
t0 t1 t2 · · · tm−1 1/2l


From the hidden number problem, the equation ai + ui = ti · α mod q holds for

all 0 ≤ i ≤ m − 1 where α is the hidden number and 0 ≤ ui < q/2l. According to the
lattice basis, there exists a lattice vector

v = (t0 · α+ q · z0, . . . , tm−1 · α+ q · zm−1, α · 1/2l), zi ∈ Z, i ∈ {0, . . . ,m− 1}

which comes from multiplying the last row by α and adding the other rows multiply by
some integer zi.

This lattice vector is close to the target vector t = (a0, . . . , am−1, 0) and the distance
can be bounded by ‖v − t‖ = ‖(u0, u1, . . . , um−1, α · 1/2l)‖ ≤

√
m+ 1 · q/2l. When this

distance is small enough compared to other distances between the lattice vectors and the
target vector, the lattice vector v can be found by solving the BDD problem thus the
hidden number α can be recovered.

The BDD problem can be solved directly by the nearest plane algorithm [Bab86] or by
transforming it to the Unique-SVP using Kannan’s embedding [Kan83] technique. It is
concluded in [JSSS20, SETA22] that Kannan’s embedding approach always outperforms
nearest plane algorithm for solving HNP. We thus follow Kannan’s embedding route and



574 Improved Attacks on (EC)DSA with Nonce Leakage by Lattice Sieving

construct the following lattice basis:

q 0 0 · · · 0 0 0
0 q 0 · · · 0 0 0
...

...
...

...
... 0

0 0 0 · · · q 0 0
t0 t1 t2 · · · tm−1 1/2l 0
a0 a1 a2 · · · am−1 0 τ


(1)

The lattice dimension is d = m+ 2 where m is the equation number and the target
lattice vector becomes

v =± (t0 · α− a0 + q · z0, . . . , tm−1 · α− am−1 + q · zm−1, α · 1/2l,−τ)
=± (u0, u1, . . . , um−1, α · 1/2l,−τ)

(2)

where τ is the embedding factor which is set to be the upper bound of ui in the literature,
i.e., τ = q/2l. The norm of the target vector thus can be bounded by

√
m+ 2 · q/2l. When

the norm is shorter than others lattice vector, the target vector is expected to be founded
by the lattice reduction algorithm (LLL, BKZ..) or the SVP algorithm (Enumeration,
Sieving..). After running the lattice reduction algorithm or the SVP algorithm, we check
if any rows of the reduced lattice basis contains the target lattice vector, i.e., it may not
be the shortest lattice vector but still in the reduced lattice basis.

There are some known changes to the lattice basis that can be made to enhance the
lattice attack. In our attacks, we primarily apply the following two improvements:

3.1.1 Recentering

Recentering technique is widely used in the lattice attack on HNP [NS02, MSEH20, JSSS20,
AH21, SETA22]. As shown in (2), the target lattice vector we expect is (u0, u1, . . . , um−1, α·
1/2l,−τ) with 0 ≤ ui < q/2l. Adding w = bq/2l+1c to each ai, we will get a new target
vector which is much shorter than the original one:

(α · t0 − (a0 + w) + q · z0, . . . , α/2l,−τ)
=(u0 − w, u1 − w, . . . , um−1 − w,α/2l,−τ)

(3)

3.1.2 Eliminate α

In our lattice attack model, we expect our target vector shorter than all other vectors in the
lattice. However, there is a trivial short vector (0, 0, . . . , q/2l, 0) (always the shortest lattice
vector) which comes from multiplying the second-to-last basis vector with q and subtract
the (i+ 1)-th row vector multiplying with ti for all 0 ≤ i ≤ m− 1. [MSEH20, AH21] deal
with this issue by eliminating the variable α and constructing a new lattice basis, this
method is also mentioned in [SETA22] where they call it a projected lattice technique.
Details are as follows:

In the original hidden number problem, we have
a0 + u0 = t0 · α mod q

a1 + u1 = t1 · α mod q

· · ·
am−1 + um−1 = tm−1 · α mod q

(4)

Replace α = (a0 + u0) · t−1
0 mod q in (4) and rearrange we have



Luyao Xu, Zhengyi Dai, Baofeng Wu and Dongdai Lin 575


a1 − a0 · t−1

0 · t1 + u1 = t−1
0 · t1 · u0 mod q

a2 − a0 · t−1
0 · t2 + u2 = t−1

0 · t2 · u0 mod q

· · ·
am−1 − a0 · t−1

0 · tm−1 + um−1 = t−1
0 · tm−1 · u0 mod q

(5)

Thus we get a new HNP instance (a′i, t′i) = (ai − a0 · t−1
0 · ti, t

−1
0 · ti) for all 1 ≤ i ≤

m− 1. The hidden number becomes u0 in the new instance and the trivial short vector
(0, 0, . . . , q/2l, 0) will not exist in the new lattice anymore. In addition, the dimension of
the lattice basis can be also reduced by 1.

After the two improvements of the lattice basis, the final lattice basis is as follows:

B =



q 0 0 · · · 0 0 0
0 q 0 · · · 0 0 0
...

...
...

...
...

...
0 0 0 · · · q 0 0
t′1 t′2 t′3 · · · t′m−1 1 0
a′1 a′2 a′3 · · · a′m−1 0 τ


(6)

and the target vector is v = ±(u1 − w, u2 − w, . . . , um−1 − w, u0 − w,−τ) which can be
bounded by

√
m · w2 + τ2.

3.2 Analysis of The Lattice Attack Model
After transforming the HNP instance into a Unique-SVP instance, most work [NS02,
MSEH20, JSSS20, SETA22] then call the lattice reduction algorithms on the lattice basis
and check if the target vector is in the reduced basis. Moghimi et al. [MSEH20] elaborate
that “the inner workings of these lattice basis reduction algorithms are complex and we
use them as a black box.” In fact, treating the lattice algorithms as a black box will lead
to the “lattice barrier” [AFG+14b, ANT+20]: lattice attacks fail with high probability
when the nonce leakage is small (e.g., 1-bit nonce leakage). In this subsection, we give a
comprehensive analysis on the the success condition for solving HNP by different lattice
algorithms.

We first give some elementary analysis of the constructed Unique-SVP lattice, the
crucial thing is to estimate the ratio of the second-shortest lattice vector to the shortest
one (target lattice vector), i.e., λ2

λ1
.

Assuming heuristically that L(B) behaves like a random lattice, the length of shortest
vector under Gaussian heuristic in the constructed lattice basis (6) is expected to be

gh(L(B)) ≈ Γ(1 + (m+ 1)/2)1/(m+1)
√
π

·Vol(L(B))1/(m+1) (7)

The volume of the the lattice can be easily calculated by multiply the diagonal element
of the lattice basis, i.e., Vol(L(B)) = qm−1 · τ .

The target vector v has a upper bound
√
m · w2 + τ2. [AH21] observed that using the

expected norm of a uniformly distributed vector will result in more tractable instances
since heuristically the instances are randomly sampled. Following the analysis in [AH21],
the expected squared norm of the target vector v will be:

E[‖v‖2] = m

3 · w
2 +m/6 + τ2 (8)



576 Improved Attacks on (EC)DSA with Nonce Leakage by Lattice Sieving

3.2.1 BKZ

Following the idea of solving Unique-SVP using lattice reduction algorithms [GN08,
AFG14a, APS15], the lattice reduction algorithms (e.g., LLL,BKZ) is expected to be
successful in recovering v if

λ2(L(B))/λ1(L(B)) ≥ ω · δ0m+1

where λ1(L(B)) = ‖v‖ and λ2(L(B)) is assumed to correspond to gh(L(B)), ω is a
constant depending on the lattice family and the lattice reduction algorithm used, δ0 is the
root-Hermite factor of the lattice reduction algorithm. In [SETA22], the authors treated w
as a function on the lattice dimension m, they did some experiments and gave an estimate
that ω = 3.11

log(m) . In their experiments, they used BKZ-30 and set δ = 1.01 from their
experimental data.

However, it is hard to accurately estimate the minimal number of required samples
or how many block sizes for BKZ is enough for a given HNP instance. Therefore, most
works choose a small block size for BKZ (e.g., 25 or 30) and experimentally determine
the signature samples required for a considerable success probability. While it is feasible
when the bias nonce is large (e.g., l ≥ 5), things get tough for small biases. Tibouchi
[Tib17] made a point that 3 bits bias for a 256 bits curve is not easy and 2 bits bias is
infeasible, 5 or 4 bits bias for a 384 bits curve is not easy and 3 bits bias is infeasible.
Furthermore, [AFG+14b] stressed that “Due to the underlying structure of the HNP lattice,
it is impossible to attack (EC)DSA using a single-bit nonce leak with lattice reduction.”

3.2.2 SVP

Since we expect the target lattice vector to be the shortest lattice vector, a more intuitive
thought is to use exact-SVP algorithms such as lattice enumeration or sieving algorithms. In
this work, we focus only on lattice sieving algorithms since it has been already outperforming
lattice enumeration in practice ( [Duc18, ADH+19]) for solving SVP with relatively high
dimensions (e.g., >70). Unlike BKZ algorithm, the performance of sieving depends
greatly on the lattice dimensions, thus we have to accurately estimate the number of
samples needed which determines lattice sieving dimension and success probability. On
the one hand, the success probability gets higher for solving Unique-SVP when the gap
λ2(L(B))/λ1(L(B)) = gh(L(B))/‖v‖ increase. On the other hand, the gap increase
with the lattice dimension by simply using more samples, however it will also lead to a
exponentially grow in time and space complexity. So the question is: how many samples
do we need at least for solving different HNP instances and how difficult they are?

We predict the number of samples needed theoretically for solving HNP with a SVP
solver. For varies of HNP instances, we choose the least number of samples such that
‖v‖ ≤ gh(L(B)):

M = min
m
{‖v‖ ≤ gh(L(B))}

= min
m


√

m
3 · w2 +m/6 + τ2

Γ(1+(m+1)/2)1/(m+1)
√
π

· (qm−1 · τ)1/(m+1)
≤ 1

 (9)

M can be found easily according to the above inequality by increasingly enumerating
the integer m until the inequality is satisfied. Table 2 shows the number of signatures M
expected at least for solving different HNP instances with a SVP oracle and the dimension
of the corresponding lattice basis is d = M + 1. For example, for 256-bits curve with 3
bits leakage, 93 signature samples are needed with a cost of solving a 94-dimension SVP.

In 2018, Ducas [Duc18] proposed the dimensions for free (D4F) technique which greatly
improves the practical performance of sieving. In a nutshell, sieving algorithms are



Luyao Xu, Zhengyi Dai, Baofeng Wu and Dongdai Lin 577

Table 2: Number of signatures expected at least to solve HNP with SVP-oracle.

log(q) Bits known
8-bit 7-bit 6-bit 5-bit 4-bit 3-bit 2-bit 1-bit

160-bit 21 24 28 34 43 58 91 212
192-bit 25 29 34 41 51 70 109 254
256-bit 33 38 45 54 68 93 146 340
384-bit 50 57 67 81 102 140 219 511
521-bit 68 77 91 110 139 189 297 695

expected to find the shortest vector in a lower lattice dimension due to the fact that sieving
algorithms not only derive the shortest vector, but also output exponential lattice vectors
whose norm is shorter than

√
4/3 · gh(L(B)). According to D4F, solving a d-dimension

SVP only needs to sieve in a d′ = d−Θ(d/ log d) dimension sub-lattice where respectively
under the pessimistic and optimistic conditions [Duc18]:

d′ = d− d ln 4/3
ln(d/2π) (pessimistic) and d′ = d− d ln 4/3

ln(d/2πe) (optimistic) (10)

In practical sieving, dimensions for free technique can always be used together with pro-
gressive sieving technique [Duc18, LM18, ADH+19] which start at a low sieving dimension
and increase the sieving dimension progressively. Thus we do not need to determine d′ in
advance but increase the sieving dimension progressively until we find the target lattice
vector or reaching the max dimension.

According to (10), we are expected to solve HNP(160,2) with 91 samples with the
sieving dimension up to 80 approximately.

3.2.3 Sieving with Predicate

Inspired by the dimensions for free technique, Albrecht [AH21] proposed the sieving with
predicate algorithm (Algorithm 2) for solving uSVPf(·) and BDDα,f(·) which also utilize
the fact that sieving will output a database containing all lattice vectors that are shorter
than

√
4/3 · gh(L(B)) .

Algorithm 2 Sieving with Predicate ( [AH21])
Input: Lattice basis B, predicate f(·).
Output: v such that ‖v‖ ≤

√
4/3 · gh(Λ(B)) and f(v) = 1 or ⊥

1: r ← ⊥;
2: Run sieving algorithm on Λ(B) and denote output list as L;
3: for v ∈ L do
4: if f(v) = 1 and (r = ⊥ or ‖v‖ < r) then
5: r ← v
6: end if
7: end for
8: return r;

After getting the database L from the return of a full sieving on the lattice basis, a
following step is to check and recover the target vectors in the database and a predicate
function is introduced to complete this task. For every short lattice vector in the database,
[AH21] recover the candidate secret key sk and then compute the scalar multiplication
[sk]G over the elliptic curve to see if it equals to the given public key.



578 Improved Attacks on (EC)DSA with Nonce Leakage by Lattice Sieving

According to this approach, the target lattice vector does no need to be the shortest
lattice vector or to be in the reduced basis anymore. It can be found successfully if it is
shorter than

√
4/3 · gh(L(B)). Thus the signature samples needed and lattice dimension

can be reduced further:

M = min
m

{
‖v‖ ≤

√
4/3 · gh(L(B))

}
Table 3 shows the number of signatures M expected at least for solving different HNP
instances using sieving with predicate algorithm. Compared with Table 2, sieving with
predicate seems to improve more when nonce leakage is small.

Although sieving with predicate algorithm reduces the number of samples needed and
the dimension of the lattice basis, it has to do a full sieving which can not utilise the
strength of dimensions for free technique. In particular, sieving with D4F outperforms
sieving with predicate for most HNP instances since the former may use a less sieve
dimension in practice. Besides, sieving with predicate algorithm will invoke exponential
many times of predicate algorithm including the costly scalar multiplication operation
which will heavily increase the solving time.

Table 3: Number of signatures expected at least to solve HNP with by sieving with
predicate.

log(q) Bits known
8-bit 7-bit 6-bit 5-bit 4-bit 3-bit 2-bit 1-bit

160-bit 20 23 27 32 41 54 82 165
192-bit 24 28 32 39 49 65 98 199
256-bit 32 37 43 52 65 86 130 266
384-bit 49 55 65 78 97 130 196 400
521-bit 66 75 88 105 132 176 266 544

4 Improved Sieving with Predicate
4.1 Linear Predicate Algorithm
Unlike using the non-linear information to determine the unique target lattice vector, we
give a new predicate algorithm which is much faster than the one in [AH21]. Recall that
we have equations ai + ui = ti · α mod q for 0 ≤ i ≤ m− 1 where (ai, ti) are known and
the target vector is:

v = (u1 − w, u2 − w, . . . , um−1 − w, u0 − w,−τ)

We give the following linear predicate algorithm (Algorithm 3) to determine whether a
vector in database is our target lattice vector.

In our linear predicate algorithm, we first check whether the absolute value of the
last coordinate equals to the embedding factor τ , then we compute the candidate hidden
number α from the vector and check the candidate hidden number according to the modular
systems of linear equations (4).

Compared this with the predicate algorithm in [AH21] which computes a scalar mul-
tiplication each time. Our linear predicate algorithm only needs to do some modular
multiplications to check the target lattice vector. When enumerating a database of lattice
vectors following a 90 dimension lattice sieving, our linear predicate approach is more



Luyao Xu, Zhengyi Dai, Baofeng Wu and Dongdai Lin 579

than 100 times quicker than the non-linear predicate technique in [AH21] and the strength
becomes more for hard HNP instances with the dimension of the lattice basis more than
100. To further reduce the running time, we could also parallelize this algorithm because
each enumeration of vectors is independent.

Algorithm 3 Linear Predicate Algorithm
Input: A d-dimensional vector v, embedding factor τ , modulus bit-length n, number of

nonce leakage l. HNP samples (ai, ti)
Output: True or False

1: if |vd−1| 6= τ then
2: return False;
3: else if vd−1 = −τ then
4: Compute the candidate α = t−1

0 · (vd−2 + q/2l+1 + a0) mod q;
5: for i = 1; i < d; i+ + do
6: if ai + (vi−1 + q/2l+1) 6= ti · α mod q then
7: return False;
8: end if
9: end for

10: else if vd−1 = τ then
11: Compute the candidate α = t−1

0 · (q/2l+1 − vd−2 + a0) mod q;
12: for i = 1; i < d; i+ + do
13: if ai − (vi−1 − q/2l+1) 6= ti · α mod q then
14: return False;
15: end if
16: end for
17: end if
18: return True

4.2 Combined with D4F

In the original sieving with predicate algorithm proposed by Albrecht and Heninger [AH21],
they do a full sieving algorithm on the given lattice L(B) and then call the predicate
algorithm on the output list L (Algorithm 2). As mentioned in Subsection 3.2.3, it is
conflict with the dimensions for free technique which aims to find the target vector in
a lower dimension of sieving. We propose a improved sieving with predicate algorithm
(Algorithm 4) that can combine with dimensions for free technique as well as the progressive
lattice sieving technique [LM18].

Firstly, we start with a low dimension project lattice L[i,d](e.g. d-i=50) and run a
sieving algorithm on L[i,d] until we get many short lattice vectors in L[i,d] and call our
predicate algorithm. If the algorithm does not stop (i.e., does not find the target lattice
vector in predicate algorithm), we then increase the dimension of the project lattice by
reduce i and repeat this process until i = 0 (i.e., reaching the original lattice). Compared
to [AH21], we call the predicate algorithm each time after we do a subsieving and thus
increase the success probability of the attack since there are more chances to check the
target lattice vector. Thanks to our linear predicate algorithm introduced in the last
subsection, it is still efficient when calling the predicate algorithm multiple times . Besides,
we could benefit from both sieving with predicate and D4F technique that we could recover
target lattice vector even it is not the shortest one and wish for an early stop.



580 Improved Attacks on (EC)DSA with Nonce Leakage by Lattice Sieving

Algorithm 4 Improved Sieving with Predicate
Input: A d dimension lattice basis B, linear predicate f(·).
Output: v such that ‖v‖ ≤

√
4/3 · gh(Λ(B)) and f(v) = 1 or ⊥

1: for i = d− 50; i > 0; i−− do
2: Run a sieving algorithm S on L[i,d] and denote output list as L;
3: for v ∈ L do
4: if f(v) = 1 then
5: return v
6: end if
7: end for
8: end for
9: return ⊥;

4.3 Optimal Embedding Factor
In [SETA22], Sun et al. observed that lattice attacks on (EC)DSA are very sensitive
to the Kannan’s embedding factor, they gave a simple analysis for HNP lattice and an
explanation of why embedding factor cannot be too large (e.g., τ = q2) nor too small
(e.g., τ = 1). However, they only simply discussed these two extremely cases and did not
gave a explicit way on how to choose the optimal embedding factor. Previous works set
the embedding factor to be the upper bound of the target lattice vector’s coordinate by
default. We give a theoretical analysis on how to choose the optimal embedding factor for
HNP lattice.

Recall that in our HNP lattice, the target vector v = (v0, . . . , vm−1,−τ) and the ratio
r = ‖v‖/gh(L(B)) determine the samples we needed and success probability. For a given
instance with a fixed number of samples m, we wish to choose the embedding factor such
that the ratio r is as small as possible. Specifically, we have

r = ‖v‖/gh(L(B))

=

√∑m−1
i=0 v2

i + τ2

Γ(1+(m+1)/2)1/(m+1)
√
π

· (qm−1 · τ)1/(m+1)

= 1
Γ(1+(m+1)/2)1/(m+1)

√
π

· (qm−1)1/(m+1)
·

√∑m−1
i=0 v2

i + τ2

τ2/(m+1)

(11)

Differentiate r with respect to τ , and then set the resulting expression to be equal to 0, we

obtain that ratio r become lowest when τ =

√∑m−1
i=0

v2
i

m . As vi are heuristic independently
and identically distributed uniformly in [−w,w − 1], we choose the optimal embedding
factor to be the expected value E(τ) ≈ w/

√
3 = bq/2l+1c/

√
3.

For example, as for the HNP(160,2) with 91 samples, we randomly generate vi and
show the relationship between the ratio r = ‖v‖/gh(L(B)) and τ/w in Fig.1.

5 Experimental Results
We show the experimental results to further illustrate our improvements of sieving with
predicate algorithm for key recovery attack on (EC)DSA with nonce leakage. Table 4 shows
the details of the machines used for our experiments. We choose the machine depending
on the lattice sieving dimension d, when d < 100 we use M1 together with G6K library
[G6Ka] and when d ≥ 100 we use M2 together with G6K-Tensor library [G6Kb].



Luyao Xu, Zhengyi Dai, Baofeng Wu and Dongdai Lin 581

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0.98

1

1.02

1.04

1.06

τ/w

‖v‖/gh(L(B))

Figure 1: The relationship between ratio r and embedding factor.

Table 4: Details of the machines used for our experiments.

Machine CPU base freq. cores threads RAM GPU
M1 Intel Core i7-8700 3.2Ghz 6 12 16GB -
M2 AMD EPYC 7402 2.8Ghz 24 48 256GB GeForce RTX 3090

5.1 Compared with Existing Works
We first conduct experiments on the least number of signature samples needed for success-
fully recovering the secret key. Table 5 shows that our improved sieving with predicate
algorithm outperforms existing works on solving HNP instances for common ECDSA
parameters in terms of success probability, number of signature samples and running time.

For example, as for 2 bits nonce leakage on a 160-bit curve which is regarded as a
“borderline” case in [SETA22], the authors report applying BKZ-30 together with guessing
15 bits of secret key, they can tackle with 160-bit (EC)DSA with 2-bit nonce leakage for
6% success probability in 10200 seconds on a 32 cores machine. The success probability
can be increased if guessing more bits, but it also takes more time correspondingly. [LN13]

Table 5: Performance of the attacks using least samples for different instances

log(q) Leakage Samples Time s/r Previous records
160 3 bits 53 3s 54% m = 53, s/r = 44%, 3452s in [AH21]
160 2 bits 82 259s 66% m = 90, s/r = 6%, 10200s in [SETA22]
192 3 bits 65 14s 81% m = 63, s/r = 56%, 851s in [AH21]
256 4 bits 65 15s 72% m = 65, s/r = 66%, 76s in [AH21]
256 3 bits 86 924s 63% m = 87, s/r = 63%, 5400s in [AH21]
384 5 bits 78 103s 81% m = 78, s/r = 91%, 412s in [AH21]
384 4 bits 97 11153s 72% m = 97, s/r = 88%, 49200s in [AH21]

We compare our experimental results to the most recent records for different instances.
Our experiments are all conducted with a PC (e.g., Machine M1 in Table 4 ) using single
thread and each instance is taken over 32 experiments.



582 Improved Attacks on (EC)DSA with Nonce Leakage by Lattice Sieving

reports the running time of a few hours with 23% success probability by enumeration with
linear prune. Recently, [AH21] solved the same parameters with 63% probability using 87
samples in 4311 CPU-seconds by sieving with predicate. Our experiments show that we
can solve this instance in several minutes on a personal computer using a single core with
a 66% success probability for only 82 samples.

We can further improve the success probability by using more samples which can reduce
the ratio between the length of target vector and the Gaussian heuristic of the lattice basis.
Figure 2 shows how success probability varies with the number of signature samples for
different instances. The running time can also be reduced by parallelizing the algorithm
which can be simply done by adding more threads when using the implementation of G6K
library.

We remark that our techniques reduce the running time greatly upon on the imple-
mentation of sieving algorithms using G6K together with our linear predicate algorithm.
The success probability gains a lot using our improved sieving with predicate algorithm
since there are more chances to find and recover target lattice vector from the database
containing short lattice vectors after each subsieving. Choosing the optimal embedding
factor also does some help.

50 60 70 80

0

20

40

60

80

100

m

Su
cc
es
s
pr
ob

ab
ili
ty

HNP(160,3)
HNP(192,3)
HNP(256,4)
HNP(384,5)

80 85 90 95 100

20

40

60

80

100

m

Su
cc
es
s
pr
ob

ab
ili
ty

HNP(160,2)
HNP(256,3)
HNP(384,4)

Figure 2: Success rates for the generated HNP instances for common ECDSA parameters.



Luyao Xu, Zhengyi Dai, Baofeng Wu and Dongdai Lin 583

5.2 New Instances Record
We also give the first implementation of lattice attacks against ECDSA with 2 bits known
for a 256 bit modulus and 3 bits known for a 384 bit modulus which have been considered
infeasible in terms of lattice attacks for a long time. Our implementation is based on the
GPU version of G6K proposed in [DSvW21]. The details are presented in Table 6.

Table 6: Details of solving HNP(384,3) and HNP(256,2).

log(q) Leakage Samples MSD Walltime Mem GiB Machine
384 3 140 117 9371s 28G M2 with 1 RTX 3090
256 2 146 129 27976s 150G M2 with 4 RTX 3090

MSD = maximum sieving dimension in practice

5.3 Towards Single-bit Nonce Leakage
It has long been believed that lattice attacks against ECDSA with just a single bit of
nonce leak are impossible. The main reason is that the target lattice vector is no longer
the shortest or closest vector even if it is under the Gaussian heuristic. In such case, there
will be some trivial short lattice vectors (e.g., (q, 0, . . . , 0), . . . , (0, . . . , q, 0, 0)) which is
shorter than the target vector v as well as Gaussian heuristic gh(L(B)). Lattice reduction
algorithms will fail to recover the target lattice vector and always return a lattice basis
containing the trivial lattice vectors.

Our improved sieving with predicate algorithm can handle this issue by utilising the
fact that sieving algorithms not only return the shortest lattice vector, but also output a
database containing all lattice vectors shorter than

√
4/3 · gh(Λ). And when the target

lattice vector is in the database, our linear predicate algorithm can efficiently find it and
retrieve the entire secret key.

We conduct our experiments on secp112r1 with single-bit nonce leakage and successfully
recover the whole secret key, see Table 7 for more details. As for the 160-bit curve with
1-bit nonce leakage, we predict that the sieving dimension will be about 165 which is
beyond current computing capacity.

Table 7: Details of solving HNP(112,1).

log(q) Leakage Samples MSD Walltime Mem GiB Machine
112 1 115 116 15603s 24.4GB M2 with 1 RTX 3090

Acknowledgement
We are grateful for the helpful comments from the anonymous reviewers. This work
was supported by the National Key Research and Development Program of China (No.
2020YFB1805402) and the National Natural Science Foundation of China (Grants No.
61872359, No. 61972393, No. 61936008 and No. 62172427).

References
[ADH+19] Martin R. Albrecht, Léo Ducas, Gottfried Herold, Elena Kirshanova, Ea-

monn W. Postlethwaite, and Marc Stevens. The general sieve kernel and
new records in lattice reduction. In Yuval Ishai and Vincent Rijmen, editors,



584 Improved Attacks on (EC)DSA with Nonce Leakage by Lattice Sieving

EUROCRYPT 2019, Part II, volume 11477 of LNCS, pages 717–746. Springer,
Heidelberg, May 2019.

[AFG14a] Martin R. Albrecht, Robert Fitzpatrick, and Florian Göpfert. On the efficacy
of solving LWE by reduction to unique-svp. In Hyang-Sook Lee and Dong-Guk
Han, editors, ICISC 2013, volume 8565 of LNCS, pages 293–310. Springer,
Heidelberg, November 2014.

[AFG+14b] Diego F. Aranha, Pierre-Alain Fouque, Benoît Gérard, Jean-Gabriel Kam-
merer, Mehdi Tibouchi, and Jean-Christophe Zapalowicz. GLV/GLS decom-
position, power analysis, and attacks on ECDSA signatures with single-bit
nonce bias. In Palash Sarkar and Tetsu Iwata, editors, ASIACRYPT 2014,
Part I, volume 8873 of LNCS, pages 262–281. Springer, Heidelberg, December
2014.

[AH21] Martin R. Albrecht and Nadia Heninger. On bounded distance decoding with
predicate: Breaking the “lattice barrier” for the hidden number problem. In
Anne Canteaut and François-Xavier Standaert, editors, EUROCRYPT 2021,
Part I, volume 12696 of LNCS, pages 528–558. Springer, Heidelberg, October
2021.

[AKS01] Miklós Ajtai, Ravi Kumar, and D. Sivakumar. An overview of the sieve
algorithm for the shortest lattice vector problem. In Joseph H. Silverman,
editor, CaLC 2001,, volume 2146 of LNCS, pages 1–3. Springer, Heidelberg,
March 2001.

[ANT+20] Diego F. Aranha, Felipe Rodrigues Novaes, Akira Takahashi, Mehdi Tibouchi,
and Yuval Yarom. Ladderleak: Breaking ECDSA with less than one bit of
nonce leakage. In Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni
Vigna, editors, ACM CCS 2020, pages 225–242. ACM Press, November 2020.

[APS15] Martin R. Albrecht, Rachel Player, and Sam Scott. On the concrete hardness
of learning with errors. J. Math. Cryptol., 9(3):169–203, 2015.

[Bab86] László Babai. On Lovász’ lattice reduction and the nearest lattice point
problem. Comb., 6(1):1–13, 1986.

[BDGL16] Anja Becker, Léo Ducas, Nicolas Gama, and Thijs Laarhoven. New directions
in nearest neighbor searching with applications to lattice sieving. In Robert
Krauthgamer, editor, ACM-SIAM SODA 2016, pages 10–24. SIAM, January
2016.

[Ble00] Daniel Bleichenbacher. On the generation of one-time keys in DL signature
schemes. Presentation at IEEE P1363 Working Group meeting, 2000.

[BLS16] Shi Bai, Thijs Laarhoven, and Damien Stehlé. Tuple lattice sieving. IACR
Cryptol. ePrint Arch., page 713, 2016.

[BV96] Dan Boneh and Ramarathnam Venkatesan. Hardness of computing the most
significant bits of secret keys in Diffie-Hellman and related schemes. In
Neal Koblitz, editor, CRYPTO 1996, volume 1109 of LNCS, pages 129–142.
Springer, Heidelberg, August 1996.

[DSvW21] Léo Ducas, Marc Stevens, and Wessel P. J. van Woerden. Advanced lattice
sieving on GPUs, with tensor cores. In Anne Canteaut and François-Xavier
Standaert, editors, EUROCRYPT 2021, Part II, volume 12697 of LNCS, pages
249–279. Springer, Heidelberg, October 2021.



Luyao Xu, Zhengyi Dai, Baofeng Wu and Dongdai Lin 585

[Duc18] Léo Ducas. Shortest vector from lattice sieving: A few dimensions for free. In
Jesper Buus Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018, Part
I, volume 10820 of LNCS, pages 125–145. Springer, Heidelberg, April 2018.

[G6Ka] The g6k development team: G6k. Available at https://github.com/fplll/
g6k.

[G6Kb] The g6k-gpu-tensor development team: G6k-gpu-tensor. Available at https:
//github.com/WvanWoerden/G6K-GPU-Tensor.

[GN08] Nicolas Gama and Phong Q. Nguyen. Predicting lattice reduction. In Nigel P.
Smart, editor, EUROCRYPT 2008, volume 4965 of LNCS, pages 31–51.
Springer, Heidelberg, April 2008.

[GNR10] Nicolas Gama, Phong Q. Nguyen, and Oded Regev. Lattice enumeration using
extreme pruning. In Henri Gilbert, editor, EUROCRYPT 2010, volume 6110
of LNCS, pages 257–278. Springer, Heidelberg, June 2010.

[HK17] Gottfried Herold and Elena Kirshanova. Improved algorithms for the approx-
imate k-list problem in Euclidean Norm. In Serge Fehr, editor, PKC 2017,
Part I, volume 10174 of LNCS, pages 16–40. Springer, Heidelberg, March
2017.

[HKL18] Gottfried Herold, Elena Kirshanova, and Thijs Laarhoven. Speed-ups and
time-memory trade-offs for tuple lattice sieving. In Michel Abdalla and Ricardo
Dahab, editors, PKC 2018, Part I, volume 10769 of LNCS, pages 407–436.
Springer, Heidelberg, March 2018.

[JSSS20] Jan Jancar, Vladimir Sedlacek, Petr Svenda, and Marek Sýs. Minerva: The
curse of ECDSA nonces systematic analysis of lattice attacks on noisy leakage
of bit-length of ECDSA nonces. IACR TCHES, 2020(4):281–308, 2020.

[Kan83] Ravi Kannan. Improved algorithms for integer programming and related
lattice problems. In ACM STOC, pages 193–206. ACM, April 1983.

[Kan87] Ravi Kannan. Minkowski’s convex body theorem and integer programming.
Mathematics of operations research, 12(3):415–440, 1987.

[Laa15] Thijs Laarhoven. Sieving for shortest vectors in lattices using angular locality-
sensitive hashing. In Rosario Gennaro and Matthew Robshaw, editors,
CRYPTO 2015, Part I, volume 9215 of LNCS, pages 3–22. Springer, Heidel-
berg, August 2015.

[LdW15] Thijs Laarhoven and Benne de Weger. Faster sieving for shortest lattice
vectors using spherical locality-sensitive hashing. In Kristin E. Lauter and
Francisco Rodríguez-Henríquez, editors, LATINCRYPT 2015, volume 9230 of
LNCS, pages 101–118. Springer, Heidelberg, August 2015.

[LM09] Vadim Lyubashevsky and Daniele Micciancio. On bounded distance decoding,
unique shortest vectors, and the minimum distance problem. In Shai Halevi,
editor, CRYPTO 2009, volume 5677 of LNCS, pages 577–594. Springer,
Heidelberg, August 2009.

[LM18] Thijs Laarhoven and Artur Mariano. Progressive lattice sieving. In Tanja
Lange and Rainer Steinwandt, editors, PQCrypto 2018, volume 10786 of
LNCS, pages 292–311. Springer, Heidelberg, April 2018.

https://github.com/fplll/g6k
https://github.com/fplll/g6k
https://github.com/WvanWoerden/G6K-GPU-Tensor
https://github.com/WvanWoerden/G6K-GPU-Tensor


586 Improved Attacks on (EC)DSA with Nonce Leakage by Lattice Sieving

[LN13] Mingjie Liu and Phong Q. Nguyen. Solving BDD by enumeration: An update.
In Ed Dawson, editor, CT-RSA 2013, volume 7779 of LNCS, pages 293–309.
Springer, Heidelberg, February/March 2013.

[MHMP13] Elke De Mulder, Michael Hutter, Mark E. Marson, and Peter Pearson. Using
Bleichenbacher’s solution to the hidden number problem to attack nonce leaks
in 384-bit ECDSA. In Guido Bertoni and Jean-Sébastien Coron, editors,
CHES 2013, volume 8086 of LNCS, pages 435–452. Springer, Heidelberg,
August 2013.

[MSEH20] Daniel Moghimi, Berk Sunar, Thomas Eisenbarth, and Nadia Heninger. TPM-
FAIL: TPM meets timing and lattice attacks. In Srdjan Capkun and Franziska
Roesner, editors, USENIX Security 2020, pages 2057–2073. USENIX Associa-
tion, August 2020.

[MV10] Daniele Micciancio and Panagiotis Voulgaris. Faster exponential time algo-
rithms for the shortest vector problem. In Moses Charikar, editor, ACM-SIAM
SODA 2010, pages 1468–1480. SIAM, January 2010.

[NS02] Phong Q. Nguyen and Igor E. Shparlinski. The insecurity of the digital
signature algorithm with partially known nonces. J. Cryptol., 15(3):151–176,
2002.

[NS03] Phong Q. Nguyen and Igor E. Shparlinski. The insecurity of the elliptic curve
digital signature algorithm with partially known nonces. Des. Codes Cryptogr.,
30(2):201–217, 2003.

[NV08] Phong Q. Nguyen and Thomas Vidick. Sieve algorithms for the shortest vector
problem are practical. J. Math. Cryptol., 2(2):181–207, 2008.

[Rya19] Keegan Ryan. Return of the hidden number problem. A widespread and novel
key extraction attack on ECDSA and DSA. IACR TCHES, 2019(1):146–168,
2019.

[SETA22] Chao Sun, Thomas Espitau, Mehdi Tibouchi, and Masayuki Abe. Guessing
bits: Improved lattice attacks on (EC)DSA with nonce leakage. IACR TCHES,
2022(1):391–413, 2022.

[Tib17] Mehdi Tibouchi. Attacks on (ec)dsa with biased nonces. 2017.

[TTA18] Akira Takahashi, Mehdi Tibouchi, and Masayuki Abe. New Bleichenbacher
records: Fault attacks on qdsa signatures. IACR TCHES, 2018(3):331–371,
2018.

[WLTB11] Xiaoyun Wang, Mingjie Liu, Chengliang Tian, and Jingguo Bi. Improved
Nguyen-Vidick heuristic sieve algorithm for shortest vector problem. In Bruce
S. N. Cheung, Lucas Chi Kwong Hui, Ravi S. Sandhu, and Duncan S. Wong,
editors, ASIACCS 2011, pages 1–9. ACM, March 2011.

[WSBS20] Samuel Weiser, David Schrammel, Lukas Bodner, and Raphael Spreitzer. Big
numbers - big troubles: Systematically analyzing nonce leakage in (EC)DSA
implementations. In Srdjan Capkun and Franziska Roesner, editors, USENIX
Security 2020, pages 1767–1784. USENIX Association, August 2020.

[ZPH13] Feng Zhang, Yanbin Pan, and Gengran Hu. A three-level sieve algorithm for
the shortest vector problem. In Tanja Lange, Kristin E. Lauter, and Petr
Lisonek, editors, SAC 2013, volume 8282 of LNCS, pages 29–47. Springer,
Heidelberg, August 2013.


	Introduction
	Our Contributions
	Related Work

	Preliminaries
	Lattices
	Hard Problems
	Lattice Sieving 
	ECDSA 
	The Hidden Number Problem
	Leaky ECDSA as an HNP instance

	Solving HNP with Lattices
	Lattice Attack Model and Kannan's Embedding
	Analysis of The Lattice Attack Model 

	Improved Sieving with Predicate
	Linear Predicate Algorithm 
	Combined with D4F
	Optimal Embedding Factor

	Experimental Results
	Compared with Existing Works
	New Instances Record
	Towards Single-bit Nonce Leakage


