
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2023, No. 2, pp. 286–309. DOI:10.46586/tches.v2023.i2.286-309

Efficient Private Circuits with Precomputation
Weijia Wang1,2,3, Fanjie Ji1, Juelin Zhang1 and Yu Yu4,5,6

1 School of Cyber Science and Technology, Shandong University, Qingdao, China
wjwang@sdu.edu.cn

2 Key Laboratory of Cryptologic Technology and Information Security, Ministry of Education,
Shandong University, Qingdao, China

3 Quan Cheng Shandong Laboratory, Jinan, China
4 Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai,

China yuyu@yuyu.hk
5 Shanghai Qi Zhi Institute, Shanghai, China

6 Shanghai Key Laboratory of Privacy-Preserving Computation, Shanghai, China

Abstract. At CHES 2022, Wang et al. described a new paradigm for masked
implementations using private circuits, where most intermediates can be precomputed
before the input shares are accessed, significantly accelerating the online execution
of masked functions. However, the masking scheme they proposed mainly featured
(and was designed for) the cost amortization, leaving its (limited) suitability in
the above precomputation-based paradigm just as a bonus. This paper aims to
provide an efficient, reliable, easy-to-use, and precomputation-compatible masking
scheme. We propose a new masked multiplication over the finite field Fq suitable
for the precomputation, and prove its security in the composable notion called
Probing-Isolating Non-Inference (PINI). Particularly, the operations (e.g., AND
and XOR) in the binary field can be achieved by assigning q = 2, allowing the
bitsliced implementation that has been shown to be quite efficient for the software
implementations. The new masking scheme is applied to leverage the masking of
AES and SKINNY block ciphers on ARM Cortex M architecture. The performance
results show that the new scheme contributes to a significant speed-up compared
with the state-of-the-art implementations. For SKINNY with block size 64, the speed
and RAM requirement can be significantly improved (saving around 45% cycles in
the online-computation and 60% RAM space for precomputed values) from AES-128,
thanks to its smaller number of AND gates. Besides the security proof by hand,
we provide formal verifications for the multiplication and T-test evaluations for the
masked implementations of AES and SKINNY. Because of the structure of the new
masked multiplication, our formal verification can be performed for security orders
up to 16.
Keywords: Side-Channel Attack · Masking · Precomputation · Bitsliced Imple-
mentation · Formal Verification

1 Introduction
Side-channel attacks are able to extract secrets from a cryptographic device using leakages
such as power consumption and electromagnetic radiation. A masking scheme, sometimes
called a private circuit compiler is a well-known countermeasure against side-channel
attacks. It can be regarded as a compiler to compile a cryptographic algorithm into the
masked implementation. Concretely, it randomly splits each secret-dependent variable into
d+ 1 shares and transforms every elementary operation into the masked correspondence
called gadgets. The basic requirement of the masked implementation, called d-private

Licensed under Creative Commons License CC-BY 4.0.
Received: 2022-10-15 Accepted: 2022-12-15 Published: 2023-03-06

https://doi.org/10.46586/tches.v2023.i2.286-309
mailto:wjwang@sdu.edu.cn
mailto:yuyu@yuyu.hk
http://creativecommons.org/licenses/by/4.0/

Weijia Wang, Fanjie Ji, Juelin Zhang and Yu Yu 287

security or d-probing security, is that the joint distribution of any d intermediate variables
is independent of the secret.

Though it can provide provable and configurable protection against the side-channel
attack, higher-order masking usually brings about a significant overhead. For example,
the computational complexity of the well-known scheme proposed by Ishai, Sahai, and
Wagner (a.k.a., the ISW scheme) [ISW03] and its numerous variants exhibit quadratic
growth in the security order d. It is still challenging to apply the masking scheme in
practice, especially in the resource-constraint environment.

In this paper, we investigate the masking scheme with precomputation (a.k.a, pre-
processing) that has been widely applied in the field of secure multi-party computation, for
example, [BDOZ11, DPSZ12]. The calculation is split into two phases: precomputation and
online-computation. The precomputation randomly computes some precomputed values
(required to be stored in the memory) independent of the input shares. We can regard the
precomputation as a one-time obfuscation that transforms the cryptographic algorithm
into a one-time program before each time of running. The online-computation takes the
input shares and precomputed values and calculates the output shares more efficiently
(e.g., exhibits a linear growth in the security order) than the case without precomputation.
Wang et al. [WGY+22] illustrated that the masking scheme with precomputation could
enjoy a vast range of applications. They also present a challenge-response authentication
protocol as a typical example, where Alice sends a random value to Bob as the challenge,
and Bob encrypts the random value and sends the ciphertext back to Alice. At last,
Alice checks if the decryption of the ciphertext produces the original random value. The
precomputation of masked encryption and decryption can be performed during the idle
time of Alice and Bob. Known schemes compatible with precomputation fall into two
categories that we recall as follows.

Table-Based Masking. It can generate all masked tables (e.g., S-boxes) in precompu-
tation. Its main merit is the ability to mask any look-up tables in cryptographic algorithms.
On the downside, this approach requires a large RAM space since one has to generate
different masked tables for different look-up tables. The table-based masking can be
traced back to the first-order scheme proposed by Chari et al. in [CJRR99]. Then, second-
order schemes were proposed by Schramm et al. in [SP06] and Rivain et al. in [RDP08].
Coron et al. proposed the first higher-order table-based masking [Cor14]. Their scheme
requires ≈ 2kk′(2d+ 1) bits of RAM for each (k, k′)-table, and thus a cipher with ` (k, k′)-
S-boxes requires ≈ 2kk′(2d+ 1)` bits of RAM 1. An improved scheme that can save the
RAM overhead by a factor of 2 is given in [CRZ18]. At CHES 2021, Valiveti et al. [VV21]
proposed a method that can reduce the RAM size to 2k+1k` + O

(
k′k(d + 1)2) bits by

applying the technique of masking with pseudorandom generators (PRGs) [CGZ20]. How-
ever, the complexity of online-computation of this method grows to Õ(`d2), due to the
running of PRGs.

Circuit-based Masking. Wang et al. [WGY+22] presented at CHES 2022 a circuit-
based approach that can be regarded as the other category. They provided new multiplica-
tion and addition gadgets that are compatible with the precomputation-based paradigm.
That is, the precomputation calculates many intermediate values (that can be designed
to be independent of the input shares) of the gadget, and the online-computation can
evaluate the gadgets more efficiently. However, the scheme was specifically designed for the
cost amortization across different gadgets, and its suitability for precomputed paradigm
was only regarded as a bonus. Concretely, the scheme can be adopted in a way that enjoys
cost amortization at the cost that all the operations are in the finite field, where a large
Maximum Distance Separable (MDS) matrix is required. Or, one can abandon the cost
amortization but requires many calls of refreshing and a large amount of randomness. In

1One can generate masked tables on-the-fly, and thus only 2k+1k′(2d + 1) bits are sufficient for a full
cipher. But this strategy is obviously not applicable to the precomputation-based paradigm.

288 Efficient Private Circuits with Precomputation

addition, the multiplication over the finite field is not directly supported in microprocessors
and is still time-consuming, even using look-up tables. At the same time, the bitsliced
implementation has been shown to be quite efficient for ciphers in software. For example,
Goudarzi et al. [GR17] compared the masked AES of bitsliced implementation with those
using field operations in software, showing that the former performs better than the latter.

1.1 Our Contributions
In this paper, we follow the line of work on the circuit-based masking with precomputation.
We propose a masked multiplication algorithm over Fq suitable to the precomputation-
based paradigm, where q = pm with any prime p and integer m. It requires (d + 1)d/2
random elements in Fq (whereas the masked multiplication in [WGY+22] requires 3d2

elements). Particularly, operations in the binary field can be achieved by assigning q = 2.
This allows the bitsliced implementation that has been shown to be quite efficient for
software implementations. Our new algorithm is secure in the composable security notion
called Probe-Isolating Non-Inference (PINI) that enables trivial composition with trivial
masked linear operations (e,g., addition). Then, we describe the precomputation and online-
computation of our scheme. Particularly, for a circuit consisting of `mul multiplications
and `add linear operations, the precomputation produces at most ≈ 3d`mul precomputed
elements with computational complexity O(d2`mul log2 q + d`add log q), and the online-
computation runs in O(d`mul log2 q + `add log q). We also make a comparison of operation
counts between the quasilinear-complexity masking scheme [GJR18] and ours .

We apply our countermeasure to the block ciphers AES-128 and SKINNY, and provide
masked implementations on the ARM Cortex M architecture. The performance results
show that the new masked implementation gains a significant speed-up beyond the state-
of-the-art ones. Moreover, compared to the AES and SKINNY variant with block size 128,
we exhibit that the smaller number of AND operations in SKINNY variant with block size
64 not only benefits the fast speed of the online-computation, but also significantly reduces
the size of RAM for precomputed values.

Thanks to its structure, the new masked multiplication has fewer variables (i.e.,
O(d)) to be checked in the formal verification. This significantly reduces its verification
time and provides the formal verification for security orders up to 16. While, to the
best of our knowledge, the known maximum security order that can be checked for a
multiplication gadget is 10 [BK21]. We also provide a verification using the existing tool
SILVER [KSM20]. At last, a T-test evaluation for our implementation is conducted to
validate the security order in practice. The source code in this paper is available on
https://github.com/wjwangcrypto/maskingwithprecomputation.

1.2 Organization
We first present notations and backgrounds in Section 2. We describe the new masking
scheme and provide security proof and formal verification in Section 3. Section 4 presents
the applications to AES and SKINNY, and shows their T-test evaluations. Finally, Section 5
concludes the paper.

2 Preliminaries
2.1 Notations
In this paper, we use Fq to denote a finite field with q = pm for any prime p and positive
integer m2. An element in Fq is denoted by a lowercase letter. We use ⊕ and 	 to denote

2Our scheme is applied for Fq , but in the applications, we are mainly interested in the binary numbers
(q = 2) for bitsliced implementations case as it is known to provide the best implementation performance.

https://github.com/wjwangcrypto/maskingwithprecomputation

Weijia Wang, Fanjie Ji, Juelin Zhang and Yu Yu 289

addition and subtraction over Fq respectively, and use � to denote the field multiplication.
Particularly, for any field with characteristic two (i.e., p = 2), ⊕ and 	 are identical. For
x, y ∈ Fq, we usually abbreviate x� y as xy. Let calligraphies (e.g., I) be sets, and |I|
denote the cardinality of the set I. For any integers i ≤ j, we denote [i : j] the set of
integers {i, . . . , j}, and for any xi, . . . , xj ∈ Fq, we denote xi:j

def= {xi, . . . , xj}, and denote⊕j
i′=i xi′

def= xi ⊕ . . .⊕ xj . A set of variables (say, X) in Fq are independently distributed
of the other set of variables (say, Y), if Pr(X = α,Y = β) = Pr(X = α) Pr(Y = β) for any
value α of X and any value β of Y.

2.2 Private Circuits
We typically represent a circuit manipulating sensitive variables in Fq as a sequence of
operations (i.e., additions, linear transformations, and multiplications). A randomized
circuit is a circuit involving random variables. Variables inside a circuit (including
inputs and outputs) are usually called intermediate variables. A probe to a circuit is an
intermediate variable assumed to be leaked. We denote Y = C(X) as the functionality of
circuit C taking a set X of variables as input and returning a set Y of variables. Similarly,
CP(X) returns the values of probes P with input X .

Definition 1 (Private circuit compiler [ISW03]). A private circuit compiler for a circuit
C with input in Fn

q and output in Fn′

q is defined by a triple (I,T,O) where

• I : Fq → Fd+1
q , is an encoder that randomly maps each input x ∈ Fq to a sharing

consisting of shares x1:d+1 such that
⊕d+1

i=1 xi = x. For a share xi, we call i the index
of xi.

• T is a circuit transformation whose input is circuit C, and output is a randomized
circuit C′ with n× (d+ 1) shares as the input, and n′ × (d+ 1) shares as the output.

• O : Fd+1
q → Fq, is a decoder that maps output shares z1:d+1 to the corresponding

output z ∈ Fq, i.e., z ←
⊕d+1

i=1 zi = z.

We say that (I,T,O) is a private circuit compiler and C′ is a d-private circuit (or d-probing
secure) if the following requirements hold:

• Correctness: for any input X ∈ Fn
q , O◦

(
C′(I◦(X))

)
= C

(
X
)
, where I◦ (resp., O◦) is

a canonical encoder (resp., decoder) that encodes (resp., decodes) each element of
input secrets X (resp., each set of d + 1 shares of n′ × (d + 1) output shares) by
repeatedly calling I (resp., O).

• Privacy: for any input X and any set of probes P such that |P| ≤ d and C′P
(
I(X)

)
are independent of the input X , where d is called the security order.

The circuit transformation T is realized by independently transforming every gate into
their masked correspondence called gadget (usually denoted as G). A gadget is defined
as a circuit whose inputs and outputs are sharings. Note that, the composed gadget is a
gadget, and thus a recursive composition of gadgets is also a gadget.

2.3 Composable Security Notions
The naive method of proving the probing security is to enumerate the probes within the
masked circuit, and check if the distribution of every tuple of probes is independent of the
secret input. It makes the complexity of the proof grow exponentially with the circuit size.
The natural (but flawed) solution is to prove the probing security of each small gadget,
and expect the composition of the gadgets to be still secure.

290 Efficient Private Circuits with Precomputation

However, the probing security of each small gadget does not imply the probing security
of the composition. Fortunately, it has been shown by Barthe et al. [BBD+16] that there
exist composable security notions supporting the deduction from the security of small
gadgets to the composed one. Then, Cassiers et al. [CS20] proposed a new composable
security notion called Probing-Isolating Non-Inference (PINI) that supports a more trivial
composition, which will be used in this paper.

We first describe the definition of simulatability introduced in [BBP+16].

Definition 2 (Simulatability [BBP+16]). Let P be a set of probes of a gadget G with
input shares X . Let S ⊆ X be a subset of input shares. A simulator is a randomized
function Sim: F|S|q → F|P|q . Probes P can be simulated with input shares S if and only if
there exists a simulator Sim such that for any input shares X , the distributions of GP(X)
and Sim(S) are identical.

Then, we give the definition of PINI as follows. The internal probes are probes excluding
output shares, and the output probes are probes of output shares.

Definition 3 (PINI [CS20]). Let G be a gadget over d+1 shares, and its input and output
sharings are x(1)

1:d+1, . . . , x
(n)
1:d+1 and z(1)

1:d+1, . . . , z
(n′)
1:d+1 respectively. Let Pint be a set of tint

internal probes to G and O ⊆ [1 : d+ 1] be a set of tout indices. G is PINI if and only if
for any Pint and O such that tint + tout ≤ d, there exists a set I ⊆ [1 : d+ 1] of at most
tint indices such that probes in z(1)

O ∪ . . . ∪ z
(n′)
O ∪ Pint can be simulated with shares in

x
(1)
I∪O ∪ . . . ∪ x

(n)
I∪O.

Lemma 1 bridges PINI to the probing security.

Lemma 1 (PINI implies probing security [CS20]). A PINI gadget is d-probing secure if
any d input shares are independently distributed of the secret input.

Lemma 2 describes the trivial composability of PINI.

Lemma 2 (Composability of PINI [CS20]). Any composition of PINI gadgets is PINI.

The above lemmas allow our work to investigate PINI gadgets (with precomputation)
for different operations and leave the rest to the trivial composition. Another famous
composable security notion supporting trivial composition is Strong Non-Inference (SNI)
proposed by Barthe et al. [BBD+16]. However, the masked linear operations (see the
definition in Section 2.4) are PINI but not SNI. This makes a PINI gadget to be more
useful for composition with trivial implementations. Besides, it is usually more difficult to
construct a PINI multiplication. For example, the ISW multiplication [ISW03] is SNI but
not PINI. Thus, we only consider the security in PINI.

2.4 Different Types of Gadgets
In this subsection, we discuss the types of gadgets that are necessary to protect a crypto-
graphic algorithm.

Gadget 1 presents the addition gadget that implements a linear function in the masked
domain. We denote such a gadget as the trivial masked addition, since it can be correctly
constructed by adopting additions on the shares with the same index independently.
Gadget 2 presents the gadget that implements the linear transformation in masked domain.
In this paper, we particularly consider the linear transformation L : Fq → Fq, such that for
any variables x and y, L(x⊕ y) = L(x)⊕ L(y). Similarly, it can be correctly constructed
by adopting linear transformation on the shares with the same index independently, and
thus we denote such a gadget as the trivial masked linear transformation.

As TrivAdd and TrivLinL manipulate the input shares with different indexes separately,
we can directly draw the conclusions that both of them are PINI, and any output share

Weijia Wang, Fanjie Ji, Juelin Zhang and Yu Yu 291

Gadget 1 TrivAdd
Input: shares x1:d+1 and y1:d+1
Output: shares z1:d+1 such that

⊕d+1
i=1 zi =

⊕d+1
i=1 xi ⊕

⊕d+1
i=1 yi.

1: zi ← xi ⊕ yi, for i ∈ [1 : d+ 1]

Gadget 2 TrivLinL

Input: shares x1:d+1
Output: shares z1:d+1 such that

⊕d+1
i=1 zi = L

(⊕d+1
i=1 xi

)
1: zi ← L(xi), for i ∈ [1 : d+ 1]

with index i is determined by input shares with the same index. The latter one naturally
allows the precomputation. In this paper, we call addition and linear transformation as
linear operations, and the corresponding trivial implementation in the masked domain as
the trivial masked linear operations.

Unlike the linear operations, the field multiplication in the masked domain cannot be
trivially implemented since the encoder is usually not a homomorphism over nonlinear
functions. The complexity of most multiplication gadgets in Fq is O(d2 log2 q) and requires
O(d2) random variables. Besides, a PINI multiplication gadget compatible with the
precomputed paradigm is challenging and will be mainly investigated in the rest of this
paper. The last type is the refreshing gadget that is also known as the refreshing. This
functionality is to re-randomize the input sharings. In some cases, refreshing gadget is
inserted between two gadgets that cannot be composed directly.

3 New Masking Scheme

3.1 Constructions of New Multiplication Gadgets

In this subsection, we present our new multiplication gadget suitable to the precomputation-
based paradigm. The main part Mulk with k ≤ d+ 1 takes a part of input shares x1:k and
y1:k, and returns a part of output shares z1:k such that

⊕k
i=1 zi =

⊕k
i=1 xi

⊕k
i=1 yi. The

gadget Mulk is a recursive one. That is, it first calls Mulk−1 to compute u1:k−1 by x1:k−1
and y1:k−1, and then generates random variables r1:k−1 which are used as a part of output
shares z1:k−1, and finally calculates the other part of output share zk by r1:k−1, u1:k−1,
x1:k and y1:k. We also illustrate the procedure of the gadget in Figure 1. The masked
multiplication Muld+1 (taking all input shares x1:d+1 and y1:d+1, and returning all output
shares z1:d+1) can be achieved by assigning k = d+ 1.

We give the correctness and security of Mulk in Theorem 1.

Theorem 1. For Mulk with k ≤ d+ 1, we have:

• Correctness.
⊕k

i=1 zi =
⊕k

i=1 xi

⊕k
i=1 yi.

• Security. Mulk is PINI.

Proof (Correctness). If k = 1, then obviously
⊕k

i=1 zi =
⊕k

i=1 xi

⊕k
i=1 yi. For k > 1, we

assume
⊕k−1

i=1 zi =
⊕k−1

i=1 xi

⊕k−1
i=1 yi, and attempt to prove that

⊕k
i=1 zi =

⊕k
i=1 xi

⊕k
i=1 yi.

292 Efficient Private Circuits with Precomputation

Gadget 3 Mulk
Input: Shares x1:k and y1:k.
Output: Shares z1:k such that

⊕k
i=1 zi =

⊕k
i=1 xi

⊕k
i=1 yi

1: if k = 1 then
2: z1 ← x1y1
3: Exit
4: end if
5: u1:k−1 ← Mulk−1(x1:k−1, y1:k−1) . We have

⊕k−1
i=1 ui =

⊕k−1
i=1 xi

⊕k−1
i=1 yi

6: Generate random variables r1, . . . , rk−1
7: for i := 1; i ≤ k − 1; i++ do
8: r̃i ← ui 	 ri . r̃i is determined by x1:i, y1:i and random variables
9: end for
10: for i := 1; i ≤ k − 1; i++ do
11: si ← (xi ⊕ r̃i)yk ⊕ (1	 yk)r̃i . We have si = xiyk ⊕ r̃i

12: ti ← (yi ⊕ si)xk ⊕ (1	 xk)si . We have ti = xiyk ⊕ xkyi ⊕ r̃i

13: end for
14: zk ← xkyk ⊕

⊕k−1
i=1 ti . We have zk = xkyk ⊕

⊕k−1
i=1 (xiyk ⊕ xkyi ⊕ ui 	 ri)

15: z1:k−1 ← r1:k−1

...

...

...
... ...

zk = xkyk ⊕ ⊕k−1
i=1 (xiyk ⊕ xkyi ⊕ ui ⊕ ri)

r1

rk−1

u1, x1, y1

uk−1, xk−1, yk−1

x1, y1

xk−1, yk−1

xk, yk

Mulk−1 Computation of zk

Mulk

......
z1

zk−1

Figure 1: Structure of Mulk:
⊕k

i=1 zi =
⊕k

i=1 xi

⊕k
i=1 yi and

⊕k−1
i=1 ui =⊕k−1

i=1 xi

⊕k−1
i=1 yi

By the instruction of Mulk, we have

k⊕
i=1

zi = zk ⊕
k−1⊕
i=1

zi = xkyk ⊕
k−1⊕
i=1

ti ⊕
k−1⊕
i=1

ri

= xkyk ⊕
k−1⊕
i=1

(xkyi ⊕ ykxi ⊕ r̃i)⊕
k−1⊕
i=1

ri

= xkyk ⊕
k−1⊕
i=1

(xkyi ⊕ ykxi ⊕ ui 	 ri)⊕
k−1⊕
i=1

ri

= xkyk ⊕
k−1⊕
i=1

(xkyi ⊕ ykxi)⊕
k−1⊕
i=1

ui

= xkyk ⊕
k−1⊕
i=1

(xkyi ⊕ ykxi)⊕
k−1⊕
i=1

xi

k−1⊕
i=1

yi =
k⊕

i=1
xi

k⊕
i=1

yi .

(1)

Weijia Wang, Fanjie Ji, Juelin Zhang and Yu Yu 293

Proof (Security). If k = 1, then obviously Mulk is PINI. For k > 1, assuming Mulk−1 is
PINI, we attempt to prove that Mulk is PINI as well. All the probes P are partitioned
into different subsets based on the types of variables:

• Internal and output probes of Mulk−1: PMulk−1 . As Mulk−1 is PINI, there exists a
set IMulk−1 of indices with |IMulk−1 | ≤ |PMulk−1 | such that the probes in PMulk−1 can
be simulated by xIMulk−1

and yIMulk−1
.

• Probes to random variables r1:k−1: PR. Note that, PR is also the set of the output
shares z1:k−1, and thus PR ⊆ zO. Let IR be the indices corresponding to PR, and
we have IR = O/{k} and |IR| ≤ |PR|.

• Probes to input shares: Pinput. Let Iinput be the indices corresponding to Pinput,
and we have |Iinput| ≤ |Pinput|.

• Probes to r̃1:k−1: Pr̃. Let Ir̃ be the indices corresponding to Pr̃, and we have
|Ir̃| ≤ |Pr̃|.

• Probes to the variables within the computation of si and ti for i ∈ [1 : k − 1]: Pst,
which is made up of (xi⊕ r̃i), (xi⊕ r̃i)yk, (1	 yk), (1	 yk)r̃i, (xi⊕ r̃i)yk⊕ (1	 yk)r̃i,
(xi⊕si), (yi⊕si)xk, (1	xk), (1	xk)si and (yi⊕si)xk⊕ (1	yk)si for i ∈ [1 : k−1].
Let Ist be the indices corresponding to Pr̃ excluding k, and we have |Ist| ≤ |Pst|.

• Probes to the variable within the computation of zk = xkyk ⊕
⊕k−1

i=1 ti: P⊕. Note
that the variable zk (as an output probe) is excluded.

• The probe to zk, Pz. If |Pz| = 1, then k ∈ O, otherwise, k /∈ O.

The internal probes are Pint = PMulk−1 ∪ Pinput ∪ Pr̃ ∪ Pst ∪ P⊕ and the output probes
are PO = PR ∪ Pz. We then analyze the simulation of the probes in the rest of the proof.

Some intuitions. The most challenging part of the simulation is on Pst, P⊕ and Pz,
since each of other probes only relates to at most one input share. For every probe in Pst,
as the variable ti = xiyk ⊕ xkyi ⊕ r̃i is masked by the random variable ri, two probes in
the computation of ti (e.g., ti and r̃i) can be simulated with input shares whose indices
are i and k (i.e., two indices); meanwhile, by the process of the calculation (lines 11 and
12), one probe can be simulated with input shares whose index is i or k (i.e., one index).
For every probe in P⊕ ∪Pz (say, p), if no previous variable relating to i is probed (say ri),
then p can be simulated without xi or yi.

Let I ′ def= IMulk−1 ∪ IR ∪ Iinput ∪ Ir̃ ∪ Ist and P ′ def= P \ (P⊕ ∪ Pz) = PMulk−1 ∪ PR ∪
Pinput ∪ Pr̃ ∪ Pst. We have |I ′| ≤ |P ′|. We separate the analysis into two cases as follows.

• Case 1: P⊕ ∪ Pz = ∅ and |P ′| = |I ′|. Case 1 conveys that |IMulk−1 | = |PMulk−1 |,
|IR| = |PR|, |Iinput| = |Pinput|, |Ir̃| = |Pr̃| and |Ist| = |Pst|. Intuitively, in this case,
each probe can be simulated with input shares relating to only one index. We build
an indices’ set I and run a simulator that proceeds by the following steps.

1. Initiate the set I to be empty.
2. The probes in PR can be simulated by sampling from uniform distributions.
3. For the probes in Pinput, put the corresponding indices Iinput into I, and the

probes can be simulated with xI and yI . Now, we have |I| = |Pinput|.
4. For the probes in PMulk−1 , put IMulk−1 into I, then PMulk−1 can be simulated

with xI and yI . Now, we have |I| = |Pinput|+ |PMulk−1 |.
5. For each probe in Pr̃ with index i, say p = ui 	 ri. As |P ′| = |I ′|, ri is not

simulated before. Also note that, the variable is added with ri and thus can be
simulated by sampling from uniform distributions.

294 Efficient Private Circuits with Precomputation

6. For each probe in Pst, put k into I. As |P ′| = |I ′|, this probe is the only one
related to index i. Then, our analysis is based on the type of the probe:
– xi ⊕ r̃i = xi ⊕ ui ⊕ ri: as ri is not simulated before, it can be simulated by

sampling from uniform distribution.
– (xi ⊕ r̃i)yk: it can be simulated by sampling (xi ⊕ r̃i) from uniform distri-

bution and yI
– (1	 yk)r̃i: it can be simulated by sampling r̃i from uniform distribution

and yI
– si = (xi ⊕ r̃i)yk ⊕ (1	 yk)r̃i = xiyk ⊕ r̃i: it can be simulated by sampling

from uniform distribution.
– yi ⊕ si: it can be simulated by sampling from uniform distribution.
– (yi ⊕ si)xk: it can be simulated by sampling (yi ⊕ si) from uniform distri-

bution and xI
– (1	 xk)si: it can be simulated by sampling si from uniform distribution

and xI
– ti = (yi ⊕ si)xk ⊕ (1 	 xk)si = xiyk ⊕ yixk ⊕ r̃i: it can be simulated by

sampling from uniform distribution.

Now, if |Pst| ≥ 1 we have |I| = |Pinput| + |PMulk−1 | + 1, otherwise we have |I| =
|Pinput|+ |PMulk−1 |, which conveys that |I| ≤ |Pinput|+ |PMulk−1 |+ |Pst|. Then, all
the probes are simulated with input shares xI∪O ∪ yI∪O such that |I| ≤ |Pint|.

• Case 2: |P⊕ ∪ Pz| > 0 or |P ′| > |I ′|. Case 2 conveys that |P| = |P ′ ∪ P⊕ ∪ Pz| ≥
|I ′ ∪ {k}|. By the instruction of Mulk, the probes in P ′ can be simulated by xI′∪{k},
yI′∪{k} and rI′ , and they have no relation with r[1:k−1]\I′ . Then, We build a set I
of indices and run a simulator that proceeds by the following steps.

– Put indices in I ′ \ O into I. If zk ∈ PO, then put k into I. Now, we have
|I| ≤ |P \ PO| = |Pint| and k ∈ I ∪ O.

– The probes in P ′ can be directly simulated by xI∪O, yI∪O.

– We then analyze the probes in P⊕ and Pz. Let Ī def= [1 : k − 1] \ (I ∪ O).
Each probe in P⊕ and Pz can be represented as p = g(xkyk, tI∪O, tĪ) with g a
function. We separate the analysis as follows.

∗ xkyk can be simulated by xI∪O and yI∪O, since k ∈ I ∪ O.
∗ tI∪O can be simulated by xI∪O and yI∪O, since for any i ∈ I ∪ O, ti =
xiyk ⊕ xkyi ⊕ ui 	 ri, k ∈ I ∪ O and ui can be simulated with xi and yi.

∗ For any i ∈ Ī, we have ti = xiyk ⊕ xkyi ⊕ ui 	 ri, which can be safely
replaced by ri, since ri has no relation with probes in P ′. Thus, we can
simulate tĪ by sampling from the uniform distributions.

Therefore, probes in P⊕ and Pz can be simulated by xI∪O and yI∪O.

Now, all the probes are simulated with input shares xI∪O ∪ yI∪O such that |I| ≤ |Pint|
with Pint internal probes, indicating that Mulk is PINI.

The main advantage of Muld+1 is its suitability to the precomputation-based paradigm.
That is, it can be divided into two parts: precomputation and online-computation. The
precomputation takes the input x1:d and y1:d and produces output shares z1:d and some
precomputed values. The precomputed values include r̃1:d, x1:d and y1:d. Note that, if
the gadget is an output one (of the composed gadget), we should additionally regard the
output shares with indices in [1 : d] (i.e., z1:d) as precomputed values, for the complete
output shares. Then, the online-computation takes the input xd+1, yd+1 and precomputed

Weijia Wang, Fanjie Ji, Juelin Zhang and Yu Yu 295

values to compute the output share zd+1. We present the procedure in Gadget 4. It should
be noted that the shares corresponding to the non-input sensitive variable should be the
output shares of the preceding gadget and can be precomputed. At the same time, the
shares (say x1:d+1) corresponding to the input secret should be firstly refreshed (using
Gadget 5 given in Section 3.3) to x′1:d+1 such that x′1:d is determined by the random
variable in the refreshing, making x′1:d able to be precomputed. More details can be found
in Section 3.3.

Gadget 4 Muld+1 with precomputation
Input: x1:d+1, y1:d+1
Output: z1:d+1 such that

⊕d+1
i=1 zi =

⊕d+1
i=1 xi

⊕d+1
i=1 yi

Precomputation
Input: x1:d, y1:d
Output: r̃1:d and z1:d
1: u1:d ← Muld(x1:d, y1:d)
2: Generate random variables r1, . . . , rd

3: z1:d ← r1:d
4: for i := 1; i ≤ d; i++ do
5: r̃i ← ui 	 ri

6: end for
Precomputed values for non-output gadget: r̃1:d, x1:d and y1:d.
Precomputed values for output gadget: z1:d, r̃1:d, x1:d and y1:d .

Online computation
Input: r̃1:d, x1:d+1 and y1:d+1
Output: zd+1
1: for i := 1; i ≤ d; i++ do
2: si ← (xi ⊕ r̃i)yd+1 ⊕ (1	 yd+1)r̃i

3: ti ← (yi ⊕ si)xd+1 ⊕ (1	 xd+1)si . We have ti = xd+1yi ⊕ yd+1xi ⊕ r̃i

4: end for
5: zd+1 ← xd+1yd+1 ⊕

⊕d
i=1 ti

3.2 Formal Verification of the New Multiplication Gadget
In general, checking that a gadget is secure in the probing model or the relevant composable
security model is an error-prone process. This motivates the need for formal verification
of higher-order masking, allowing the designers and engineers to analyze and verify the
designs. To approve the security proof in Section 3.1, we provide a formal verification of
the new multiplication gadget. The basic idea of the formal verification for masking is
to exhaustively enumerate all the tuples of probes attempting to find one that does not
satisfy the security notions (e.g., PINI). The space of enumeration rapidly increases with
the number of variables. Thus, a formal verification tool can only verify masking with
constraint security orders.

The recursive structure of our masked multiplication significantly benefits the fast
verification thereof, enabling larger security orders that can be verified. We assume that
Mulk−1 is PINI, and attempt to verify Mulk is PINI. This strategy features the fact that
the variables in Mulk−1 are not needed to be considered. Also note that, the intermediate
variables that are in Mulk but out of Mulk−1 are only a small subset of all the intermediate
variables in Mulk. That is, the multiplication gadget Muld+1 is made up of Muld that
contains O(d2) variables and the other part that contains O(d) variables. We only need to

296 Efficient Private Circuits with Precomputation

check the O(d) variables out of Muld.
Our verification method follows the language-based approach in [BBD+15, BBC+19],

and so provides further evidence of the benefits of language-based approaches. As described
in [BBD+15, BBC+19], the method follows a divide-and-conquer approach, embodied in
two algorithms. The first algorithm checks if leakages are independent of secrets for a
fixed admissible set of observations. The algorithm repeatedly applies semantic-preserving
simplifications to the symbolic representation of the leakages, until it does not depend on
secrets or fails. The second algorithm explores all admissible observation sets, calling the
first algorithm on each of them. We separate the verification into two cases as the security
proof, and verify them separately. This further accelerates the speed of verification.

Table 1 summarizes the verification outcomes of the new multiplication gadget. Our
verification tool is a single-threaded one written in Python. We use a 2.5 GHz Intel Core
i7-11700 with 16 GB of RAM running in Windows 10. The verification can be completed
until the security order d = 16. While, to the best of our knowledge, known formal
verification tools for masking can at best verify the multiplication gadget up to the order
d = 10 after a significant parallel computation effort [BK21].

Table 1: Verification outcomes of Muld+1 using our optimized tool.
d = 1 d = 2 . . . d = 14 d = 15 d = 16

Verification time < 1 second . . . ≈ 1 hour < 5 hours < 16 hours
Is PINI? X X X X X X

The basic probing model does not consider specific physical defaults, such as glitches,
transitions, or couplings, that may occur during the processing of sensitive information
on a physical device. Thus, extensions of the probing model considering specific physical
defaults and formal verification methods on those more established theories have gained
relevance over the last years [BGI+18, FGP+18, BBC+19, KSM20]. However, we do not
investigate them in this paper, and pose the security in the probing model as the first
necessary step to a provably side-channel secure implementation. Besides, we provide a
T-test evaluation for our implementations in Section 4.5, which validates the security order
in practice.

We emphasize that, the fast speed of verification is only because of the structure of
our multiplication gadget which allows the verification of a small subset of variables and
the separation of two cases. It is not related to the verification method. We developed
our own tool since it can be customized for the multiplication gadget. Last but not
least, to re-confirm the security, we provide verification of our multiplication (over the
field F2) using the existing and popular tool SILVER [KSM20]. The verification can be
completed until the security order d = 5, which is shown in Table 2. It is, to the best of our
knowledge, already the largest security order in PINI to be achieved for a multiplication
gadget using SILVER. However, it is still slower than the verification using our tool, due
to the following two reasons. Firstly, without deeply customizing the SILVER, some
optimizations (e.g., separating the verification process into two cases separately) that can
accelerate the verification cannot be adopted. Secondly, SILVER is much more powerful
than ours (supporting verification for the security in the extended probing model of both
software and hardware designs), making it less efficient for larger designs. For instance,
SILVER returns the results for both PINI and extended PINI, and the latter considers
much more internal tuples to be checked, significantly elongating its running time. In
contrast, our tool only focuses on security in PINI and does not check additional internal
tuples related to the extended PINI.

Weijia Wang, Fanjie Ji, Juelin Zhang and Yu Yu 297

Table 2: Verification outcomes of Muld+1 using SILVER.
d = 1 d = 2 d = 3 d = 4 d = 5

Verification time (in seconds) 0.005 0.037 3.29 597.5 170242
Is PINI? X X X X X

3.3 Precomputation-based Design Using Muld+1, TrivAdd and TrivLin
The precomputation-based design paradigm relies on the fact that the shares with indices
in [1 : d] can be precomputed without knowing the shares with index d + 1. Hence, we
provide a refreshing algorithm in Gadget 5 whose output shares with indices [1 : d] are
determined by the randomness. This algorithm can produce the shares (corresponding to
the secret input variables) for the precomputation.

Gadget 5 Refresh
Input: x1:d+1.
Output: z1:d+1 such that

⊕d+1
i=1 zi =

⊕d+1
i=1 xi

Precomputation
Input: Empty
Output: z1:d
1: Generate random elements r1:d
2: z1:d ← r1:d

Precomputed values: r1:d.

Online-computation
Input: x1:d+1 and r1:d.
Output: zd+1
1: zd+1 ← xd+1 ⊕

⊕d
i=1(xi 	 ri)

We give the correctness and security of Refresh in Theorem 2.

Theorem 2. For Refresh, we have:

• Correctness.
⊕d+1

i=1 zi =
⊕d+1

i=1 xi.

• Security. Refresh is PINI.

Proof (Correctness). By the instruction of Refresh, we have

d+1⊕
i=1

zi = zd+1 ⊕
d⊕

i=1
zi = xd+1 ⊕

d⊕
i=1

(xi 	 ri)⊕
d⊕

i=1
ri = xd+1 ⊕

d⊕
i=1

xi =
d+1⊕
i=1

xi

Proof (Security). We partition the probes into different subsets:

• Probes to input shares: Pinput.

• Probes to random elements r1:d: PR. They are the output with indices in [1 : d].

• Probes to the variable within the computation of zd+1 = xd+1 ⊕
⊕d

i=1(xi 	 ri): P⊕.
Note that the variable zd+1 (as an output probe) is excluded.

• The probe to zd+1, Pz. If |Pz| = 1, then d+ 1 ∈ O; otherwise, d+ 1 /∈ O. That is,
Pz ∪ PR = zO.

298 Efficient Private Circuits with Precomputation

In the rest of the proof, the most challenging part should be the probes in P⊕. Intuitively,
if ri or xi is probed, then we might use xi to simulate probes in P⊕; otherwise, the probes
can be simulated without xi. We build an indices’ set I and run a simulator that proceeds
by the following steps.

1. Initiate the set I to be empty.

2. For the probes in PR, they can be simulated by sampling from uniform distributions.

3. For the probes in Pinput, put the corresponding indices into I, and the probes can
be simulated with xI . Now, we have |I| ≤ |Pinput|.

4. We then consider probes in P⊕ and Pz. Let I ′
def= I∪O\{d+1}, and Ī ′ def= [1 : d]\I ′.

Each probe can be represented as p = g
(
xd+1, (xI′⊕rI′), (xĪ′	rĪ′)

)
with g a function.

If |P⊕| ≥ 1, we put d+ 1 into I, we separate our analysis into two cases:

• xd+1 can be simulated with xI∪O, since d+ 1 ∈ I ∪ O.
• xI′ ⊕ rI′ can be simulated with xI∪O, since I ′ ⊆ I ∪ O.
• rĪ′ is not simulated before and thus xĪ′ 	 rĪ′ can be simulated by sampling

from uniform distributions.

Now, we have |I| ≤ |Pinput|+ |P⊕|.

Now, all the probes are simulated with shares xI∪O such that |I| ≤ |Pint| with Pint

internal probes, indicating that Refresh is PINI.

We consider a circuit C with `in input variables and `out output variables, and C is
made up of `mul multiplications, `add operations (including addition and transformation).
Additionally, let the number of input variables for multiplications in C be `′, and we have
`′ ≤ 2`mul. We compile the circuit into a private circuit by encoding each input variable
into d + 1 shares and transforming every operation into Muld+1, TrivAdd, or TrivLinL.
Additionally, we refresh the `in × (d + 1) input shares using `in Refresh gadgets. In the
following, we discuss the precomputation and online-computation separately.

3.3.1 Precomputation

This phase calculates the precomputed values. For each gadget (say, G) excluding the
Refresh, we consider the case that the input shares with indices in [1 : d] can be precomputed
from the preceding gadgets. The precomputed values of G (including its output shares
with indices in [1 : d]) are calculated from the input shares with indices in [1 : d] and
all the random bits. The precomputed values will be used to compute the output shares
whose index is d + 1. Besides, for practicality, it is necessary to reduce the number of
precomputed values as much as possible to save the RAM overhead. We describe the
precomputation for the composition of multiple Muld+1, TrivAdd and TrivLinL as follows.

1. For the shares of each input variable, it runs the precomputation phase of a Refresh
and produces the shares with indices [1 : d]. Note that, as the output shares of
precomputation of Refresh are only determined by the random variables, currently
we do not need the shares of input secret.

2. It evaluates each gadget using input shares with indices in [1 : d], and produce
the output shares with indices in [1 : d] as well. This can be done since for each
gadget in Muld+1, TrivAdd or TrivLinL, the output shares with indices in [1 : d] can
be determined by input shares with indices in [1 : d].

Weijia Wang, Fanjie Ji, Juelin Zhang and Yu Yu 299

Muld+1

r̃1:d, x1:d, y1:d

Muld+1

r̃1:d, x1:d, y1:d

TrivAdd

Refresh

Refresh

r1:d

r1:d

a1, . . . , ad

b1, . . . , bd

ad+1

bd+1

cd+1

c1, . . . , cd

: precomputation

: online-computation

: precomputed values

Refresh Muld+1

TrivAddRefresh

Muld+1

: d shares in precomputation
: one share in online-computation
: precomputed values are used in online-computation

Figure 2: An example for ab(a⊕ b) using Muld+1, TrivAdd and Refresh.

• For precomputation of each gadget Muld+1, it returns the values r̃1:d, x1:d, y1:d
as the precomputed values. Note that, x1:d, y1:d can be used as the input of
other gadgets Muld+1.

• It return the output shares (of the composed gadget) with indices in [1 : d] as
the precomputed values.

The above process requires d`in + `muld(d+ 1)/2 random variables in Fq, and generates
d(`in + `out) + d`mul + d`′ ≤ d(`in + `out) + 3d`mul variables in Fq to be stored in the RAM.

3.3.2 Online-computation

The online-computation takes input shares with index d+ 1 and the precomputed values,
and returns the output shares with index d+ 1. The online-computation is much more
efficient than the precomputation.

1. For the shares of each input secret, it runs the online-computation of the Refresh
and produces the shares with index d+ 1.

2. It evaluates the online-computation of each gadget using input shares with index
d+ 1. If this gadget is Muld+1, the evaluation also requires the precomputed values
r̃1:d, x̃1:d and ỹ1:d. Then, it returns the output shares with index d+ 1 as well.

In summary, the precomputation produces d(`in + `out) + d`mul + d`′ precomputed
values with complexity O(d2`mul log2 q + d`add log q), and the online-computation runs in
O(d`mul log2 q + d`add log q). In Figure 2, we give an example of masked ab(a⊕ b), which
is a composition of two instances of Muld+1 and one TrivAdd, and the input shares of a
and b are refreshed at the very beginning.

3.4 Operation Counts and Comparison with the GJR+ Scheme
In this subsection, we compare our scheme with the quasilinear-complexity masking scheme
that was first proposed in [GJR18] and improved in [GPRV21] by Goudarzi et al. Our
comparison focuses on the multiplication gadget over fields with characteristic 2. Table 3
shows the operation counts of multiplications and additions/subtractions and required
random variables, in the function of number of shares k = d + 1. We also provide in
Figure 3 the trend of operation counts for different number of shares. We can see that, for

300 Efficient Private Circuits with Precomputation

k > 4, the GJR+ enjoys a smaller number of multiplications and additions/subtractions
than the precomputation of our scheme. While, our online computation is faster for any
number of shares.

Table 3: Operation counts for GJR+ and our scheme, where k = d+ 1.
Multiplication Addition/Subtraction Random

GJR+ [GPRV21] 7k log(k)/2 + 2k k log2(k)/2 + 4k log(2k) 2k log(k) + 2k
Ours, precomp. 2k2 − 5k + 3 3(k − 1)2 − 2 k(k − 1)/2
Ours, online 4k − 3 5(k − 1) + 2 0

(a) Multiplication counts (b) Addition/Subtraction counts (c) Random variables counts

Figure 3: Operations counts for k = {2, 4, 8, 16, 32}.

GJR+ and our scheme are also quite different in other aspects. In terms of the security,
GJR+ provided a stronger guarantee tolerating a leakage rate of O(1/ log k), which can be
obtained since its complexity is quasilinear and an input-output separation refresh gadget
is used for the region probing security. At the same time, when working on the field of
F2m , GJR+ requires that m ≥ 2, making the bitsliced implementation quite challenging.

4 Applications to AES and SKINNY

4.1 Descriptions of Ciphers and Their Bitslicing Approaches
The bitslice strategy allows for computing several instances of a cryptographic primitive
in parallel, or alternatively, all the s-boxes in parallel within an instance of the primitive.
Whilst our masking scheme is suitable to any bitsliced implementations of ciphers, in this
section, we only consider the former case for a single instance of a block cipher.

4.1.1 AES-128

The AES-128 block cipher is performed on 16 bytes called state. The round function
is made up of four types of transformations: AddRoundKey, SubBytes, ShiftRows and
MixColumns. In AddRoundKey, the state is added with the subkey (that is derived
from the key) using bitwise XOR. ShiftRows and MixColumns can be regarded as linear
operations over F28 , and thus they can be implemented by a number of XOR operations.
In the SubBytes transformation, a nonlinear function F28 → F28 called S-box is computed
over each of the 16 bytes of the state. More details can be found in, e.g., [DR02].

We consider 16 binary operations (i.e., with q = 2) in parallel, take the same approach
of bitsliced implementation as in [GR17]. That is, we use the bitslice at the S-box level
that packs the ith bits of 16 S-boxes’ inputs, and process 16 S-boxes in parallel. It conveys

Weijia Wang, Fanjie Ji, Juelin Zhang and Yu Yu 301

that we just use the 16 bits of one register. We use the compact representation proposed by
Boyar et al. in [BMP13] for the implementation of AES S-box. Their circuit is obtained by
applying logic minimization techniques to the tower-field representation of Canright [CB08].
It involves 115 logic gates, including 32 logical AND. The MixColumns and ShiftRows
can be evaluated using the strategy given in [GR17], which takes 43 and 144 one-cycle
instructions respectively.

4.1.2 SKINNY

SKINNY is a family of lightweight tweakable block ciphers [BJK+16]. In this paper, we
consider the variants with tweakey sizes 64 and 128 respectively, and consider the case that
tweakey size equals the block size. That is, we consider SKINNY-64-64 and SKINNY-128-128.
And, in the rest of this paper, we abbreviate SKINNY-64-64 and SKINNY-128-128 as SKINNY-
64 and SKINNY-128 respectively. The internal state of SKINNY-128 (resp., SKINNY-64) can
be viewed as a 4× 4 matrix of bytes (resp., nibbles). The ciphering process simply consists
of several applications of the round function. The round function is composed of five layers:
SubCells, AddConstants, AddRoundTweakey, ShiftRows and MixColumns. SubCells uses
an 8-bit (resp., 4-bit) S-box and other layers consist of linear operations.

We consider 16 binary operations (i.e., with q = 2) in parallel, and take the same
approach as in AES which uses the bitslice at the S-box level. As instructed in [BJK+16],
the 8-bit S-box consists of 8 XOR and 8 NOR, and the 4-bit S-box consists of 4 XOR and
4 NOR. As the linear layer of SKINNY is quite similar to that of AES, we can apply the
strategy of AES. It results in a bitsliced implementation with ≈ 60 operations. Unlike
AES, the tweakey schedule in SKINNY is linear, and thus can be implemented efficiently.
As we consider the case that tweakey size equals the block size, the tweakey schedule
is a permutation PT applied on the cells (i.e., bytes/nibbles) positions of all tweakey
arrays: PT = [9, 15, 8, 13, 10, 14, 12, 11, 0, 1, 2, 3, 4, 5, 6, 7]. We use the bitslice at the cell
level. Hence, the lower 8 output bytes/nibbles can be achieved by right shifting, and the
higher 8 output bytes/nibbles can be achieved by left shifting and look-up tables.

Remarks. The bitsliced implementations shown above can be significantly improved by,
e.g., using the more advanced fixslicing method [AP21]. But, to the best of our knowledge,
state-of-the-art higher-order masked implementations of AES are based on the above
strategies, and thus we choose them as well for fair comparisons. We aim to show that the
improvements (in online-computation) come from our new design of masked multiplication
rather than from the better implementation of linear layers.

4.2 Masked Implementations
After bitslicing the ciphers, we adopt the strategy presented in Section 3.3 to obtain the
masked implementations for AES and SKINNY. That is, we refresh the shared subkeys
and transform bitwise multiplication into Muld+1, bitwise XOR into TrivAdd and shifts
into TrivLinL. The precomputation takes the random bits and produces the precomputed
values, and the online-computation takes the precomputed values and the input shares to
calculate the results.

The AES-128 contains `mul = 32 × 10 bitwise multiplications with `′ = 33 × 10
different 16-bit inputs. We consider the round keys as the secret input, and thus we
have `in = 11 × 128 = 88 × 16. As the block size is 128 bits, then `out = 128 = 8 × 16.
Hence, the number of precomputed 16-bit variables is d(`in + `out) + d`mul + d`′ =
d(88 + 8) + d × 10 × (33 + 32) = 746d. It conveys that our implementation requires
746d × 2/1024 = 1.457d Kbytes of RAM to store the precomputed intermediates. And,
the precomputation requires d`in + `muld(d+ 1)/2 = 88d+ 160d(d+ 1) = 160d2 + 248d
16-bit random variables, which is 0.3125d2 + 0.4844d Kbytes.

302 Efficient Private Circuits with Precomputation

The SKINNY-128 contains `mul = 8 × 40 bitwise multiplications with `′ = 11 × 40
different 16-bit inputs. We consider the tweakey input as secret input, and thus have
`in = 128 = 8×16. As the block size is 128 bits, then `out = 128 = 8×16. Hence, the number
of precomputed 16-bit variables is d(`in+`out)+d`mul+d`′ = d(8+8)+d×40×(11+8) = 776d,
requiring 776d × 2/1024 = 1.5156d Kbytes of RAM. And, the precomputation requires
d`in + `muld(d+ 1)/2 = 8d+ 160d(d+ 1) = 160d2 + 168d 16-bit random variables, which is
0.3125d2 + 0.3281d Kbytes.

The SKINNY-64 contains `mul = 4× 32 = 128 bitwise multiplications with `′ = 5× 32 =
160 different 16-bit inputs. We consider the tweakey input as secret input, and thus have
`in = 64 = 4×16. As the block size is 64 bits, then `out = 64 = 4×16. Hence, the number of
precomputed 16-bit variables is d(`in +`out)+d`mul +d`′ = d(4+4)+d×(160+128) = 296d,
requiring 296d × 2/1024 = 0.5781d Kbytes of RAM. And, the precomputation requires
d`in + `muld(d+ 1)/2 = 4d+ 64d(d+ 1) = 64d2 + 68d 16-bit random variables, which is
0.125d2 + 0.1328d Kbytes.

4.3 Some Details to Prevent Transitional Leakage
A precaution of the masked implementation in practice is that, the implementation should
be done carefully to avoid known implementation issues [BDF+17, DFS15, CPR07] that can
make it do not align with the assumptions (typically, the independent leakage assumption)
for masking proofs. To prevent the issue caused by the nonlinear leakage of bits stored
within a register reported in [GMPO20], our implementation always load at most one
share to a register.

In Algorithm 1, we describe the code snippet of the online-computation of Muld+1 in
ARM Cortex architecture. The input values of the code snippet are in 8 registers and the
result will be in register Rzd+1 . The address of vectors r̃1:d, x1:d and y1:d are in registers
R&r̃, R&x and R&y respectively. The values of xd+1 are yd+1 in registers Rxd+1 and Ryd+1 .
The registers Rtmp1 and Rtmp2 are used for some temporary values. In the code snippet,
to prevent the transitional leakage, we always clear the registers Rtmp1 and Rtmp2 by
assigning zero value whenever necessary. Besides, this code snippet is also the main part
used in the precomputation.

4.4 Implementation Results
We showcase the advantage of our scheme in the precomputation-based design paradigm.
We consider implementations on the ARM Cortex M architecture. For the comparison
with the state-of-the-art implementations of AES, we first consider the results reported
in [WGY+22] as the benchmark. The work in [WGY+22] implements inner product
masking that cannot be directly applied to the bitsliced implementation, and should be
obviously slower than Boolean masking in software without the support of dedicated
instructions. Thus, for a more fair comparison, we implement the scheme using Boolean
masking and bit-slicing technology. Concretely, we set all the parameters α to be ones, and
thus the gadgets can be implemented only with XOR and AND operations. This inevitably
deprives the scheme of the cost amortization for d > 1. We implement bitwise XOR
and AND using the trivial masked addition and the Gadget 5 in [WGY+22], respectively,
which further optimizes the original scheme for the Boolean case. As shown in Section
5.3 of [WGY+22], the case with parameters α=1s may suffer from transitional leakage.
Thus, we carefully insert some instructions to clear registers to prevent transitional leakage,
similarly to the strategy given in Algorithm 1.

Another benchmark we consider is the bit-sliced implementation given in [GR17]. To
comply with the precomputation-based paradigm and accelerate the online-computation,
the masking approaches in [GR17] can at best generate all the random bits and store them
in RAM, resulting in a large RAM requirement. Then, the online-computation carries out

Weijia Wang, Fanjie Ji, Juelin Zhang and Yu Yu 303

Algorithm 1 Online-computation of Muld+1 in ARM Cortex M architecture
Input: Registers R&r̃, R&x, R&y, Rxd+1 , Ryd+1 , Rtmp1 , Rtmp2

Output: Register Rzd+1

1: MOV Rzd+1 , #0 . Prevent transitional leakage
2: AND Rzd+1 , xd+1, yd+1 . Rzd+1 ← xd+1yd+1
3: for i := 1; i ≤ d; i++ do . Loop using assembler directive
4: MOV Rtmp1 , #0 . Prevent transitional leakage
5: MOV Rtmp2 , #0 . Prevent transitional leakage
6: LDRH Rtmp1 , [R&x, #i]
7: LDRH Rtmp2 , [R&r̃, #i]
8: EOR Rtmp1 , Rtmp2 . Rtmp1 ← xi ⊕ r̃i

9: AND Rtmp1 , Ryd+1 . Rtmp1 ← (xi ⊕ r̃i)yd+1
10: NVM Ryd+1 , Ryd+1 . Ryd+1 ← (1	 yd+1)
11: AND Rtmp2 , Ryd+1 . Rtmp2 ← (1	 yd+1)r̃i

12: EOR Rtmp2 , Rtmp1 . Rtmp2 ← si = (xi ⊕ r̃i)yd+1 ⊕ (1	 yd+1)r̃i

13: MVN Ryd+1 , Ryd+1 . Ryd+1 ← yd+1
14: MOV Rtmp1 , #0 . Prevent transitional leakage
15: LDRH Rtmp1 , [R&y, #i]
16: EOR Rtmp1 , Rtmp2 . Rtmp1 ← yi ⊕ si

17: AND Rtmp1 , Rxd+1 . Rtmp1 ← (yi ⊕ si)xd+1
18: NVM Rxd+1 , Rxd+1 . Rxd+1 ← (1	 yd+1)
19: AND Rtmp2 , Rxd+1 . Rtmp2 ← (1	 xd+1)si

20: EOR Rtmp2 , Rtmp1 . Rtmp2 ← ti = (yi ⊕ si)xd+1 ⊕ (1	 xd+1)si

21: MVN Rxd+1 , Rxd+1 . Rxd+1 ← yd+1
22: EOR Rzd+1 , Rtmp2

23: end for

the masked operations with the pre-generated random bits. Indeed, an implementation
can generate the random bits on-the-fly, but it will largely decelerate online computation.

The last very important line of work that should be considered for comparison is
table-based masking. Our comparison considers the schemes with higher-order security,
which narrows down schemes to the ones given in [Cor14, CRZ18, VV21]. Among them,
we consider the one proposed by Valiveti et al. [VV21]. It is because that, in this scheme,
the amount of RAM requirement is reduced to be feasible on resource-constrained devices.

We cannot give a fair benchmark for SKINNY, since, to our knowledge, our implementa-
tion should be the first higher-order masked implementation of SKINNY block cipher in
software. A possible exception might be the masked implementations in [BDM+20] for
SKINNY AEAD, which considers the running of multiple parallel instances. Nevertheless,
it is different from our case that computes all the S-boxes in parallel within an instance.
Moreover, as the scheme in [WGY+22] requires a large MDS matrix over the field that
the cipher relies on, the scheme in [WGY+22] is difficult to be employed for SKINNY.

The performance results for d = 2, 8 are summarized in Table 4, where timings are
given in kilos of clock cycles (Kcycles). To show the performance trend for d = [1 : 16],
we depict in Figure 4(a) the Kcycles of precomputed and online phases, in Figure 4(b)
the RAM size for precomputed values, and in Figure 4(c) the random bits requirements.
Compared with [WGY+22], our implementation of AES gains a significant speed-up
in both precomputation and online-computation, and the requirement of RAM size for
precomputed values is smaller when d < 8, making the scheme more practical in many
embedded platforms. For instance, compared with the original scheme in [WGY+22], it
saves clock cycles of the precomputation and online-computation by 8 and 1.5 times when
d = 8. Although the scheme in [WGY+22] with the Boolean case gains a speed-up in both

304 Efficient Private Circuits with Precomputation

precomputation and online-computation beyond its version over finite field F28 , it is still
inferior to our scheme, and requires much more random bits.

Besides, we can see that our implementation of AES is much faster than the table-
based masking in [VV21]. We attribute the speed-up to three reasons. First, the scheme
in [VV21] applies the technique of masking with PRGs, making the complexity of its online
phase to be quadratic in the security order, while ours is linear. Secondly, the scheme
in [VV21] includes many field multiplications over F216 , which is costly in the software
implementation. Finally, we found that the work of [VV21] considers implementations in
the C language, while ours are in the assembly language.

The SKINNY-64 is much faster in both precomputation and online-computation and
uses less RAM space for precomputed values than ciphers (AES and SKINNY) with a block
size of 128. It is thanks to its lower number of AND operations. Notably, for d = 8, the
RAM for precomputed values for SKINNY-64 is smaller than that of AES by a factor of 2.5.

Table 4: Summary of masked implementations.

d Kcycles for
precomp.

Random
bits

RAM for
precomp.

Kcycles for
online.

AES

[WGY+22] 2 705 96 B 5.63 KB 60
[WGY+22]
Boolean 2 130 7.86 KB 5.12 KB 72

[GR17] 2 − 3.75 KB 3.75 KB 83.9
[VV21] 2 72 590 0.011 KB 40.1 KB 423
Our Work 2 67.98 2.22 KB 2.91 KB 50.03
[WGY+22] 8 3 662 1.5 KB 11 KB 137
[WGY+22]
Boolean 8 1 038 122.88 KB 16.6 KB 113

[GR17] 8 − 45 KB 45 KB 404.5
[VV21] 8 3 265 303 0.56 KB 40.8 KB 2 873
Our Work 8 446.34 23.88 KB 11.66 KB 92.27

SKINNY
-128

Our Work 2 159.28 1.91 KB 3.03 KB 75.48
Our Work 8 749.2 22.62 KB 12.12 KB 117.72

SKINNY
-64

Our Work 2 68.61 0.77 KB 1.16 KB 33.79
Our Work 8 312.06 9.06 KB 4.62 KB 50.69

(a) Timings (b) Precomputed values (c) Random bits

Figure 4: Performance trend for d = [1 : 16].

Weijia Wang, Fanjie Ji, Juelin Zhang and Yu Yu 305

4.5 Practical Evaluations

Our implementation is ran on a ChipWhisperer STM32F303 UFO target board. The power
traces of the AES round function were collected using Picoscope 5244D at sampling rate
of 128 MS/s. To validate the security order in practice, we perform a fixed vs. random
Welch’s T-test with 50 000 fixed and random inputs respectively.

Figure 5(a) depicts the T-test results for AES-128 round function. We mark the phase
of precomputation and online-computation in the figures. For comparison, we also provide
in Figures 5(b) the result for the implementation when the randomness source is turned
off. In Figures 5(c) and 5(d), we provide the T-test results for SKINNY. In summary, our
implementations with d = 1 do not have any first-order leakage. Another interesting point
is that, even if the randomness source is off, the precomputations have no leakage. It is
because that the variables in the precomputation are all independent of the secure input,
and thus are impossible to leak any information about secret.

(a) AES, RNG is on (b) AES, RNG is off

(c) SKINNY-128, RNG is on (d) SKINNY-64, RNG is on

Figure 5: T-test results

5 Conclusion

In this paper, we continue the long line of works seeking to reduce the overhead of masking.
We follow the line of work on the precomputation-based paradigm but focus on the bitsliced
implementation that has been shown to be quite efficient for the software implementations.
First, we propose a new masked multiplication over the field Fq for the precomputation-
based paradigm, and prove its PINI security. Then, we apply the new masking scheme
to AES and SKINNY block ciphers on ARM Cortex M architecture. For SKINNY-64, the
speed and RAM requirement can be significantly improved thanks to its smaller block
size. The security of our scheme is proved by hand, verified by formal verification tools,
and validated by performing T-test evaluation for the masked implementation of AES
and SKINNY. We believe a promising future work is to investigate application the masking
schemes with precomputation to other crypto-systems such as post-quantum cryptography.

306 Efficient Private Circuits with Precomputation

Acknowledgments
The authors would like to thank the reviewers for their helpful comments and suggestions.
This work was supported by the National Key Research and Development Program of
China (No. 2021YFA1000600), the National Natural Science Foundation of China (Grant
Nos. 62002204, 62125204, 92270201 and 61872236), and the Program of Qilu Young
Scholars (Grant No 61580082063088) of Shandong University. Yu Yu also acknowledges
the support from the XPLORER PRIZE.

References
[AP21] Alexandre Adomnicai and Thomas Peyrin. Fixslicing AES-like ciphers new

bitsliced AES speed records on arm-cortex M and RISC-V. IACR Trans.
Cryptogr. Hardw. Embed. Syst., 2021(1):402–425, 2021.

[BBC+19] Gilles Barthe, Sonia Belaïd, Gaëtan Cassiers, Pierre-Alain Fouque, Benjamin
Grégoire, and François-Xavier Standaert. maskverif: Automated verification of
higher-order masking in presence of physical defaults. In Kazue Sako, Steve A.
Schneider, and Peter Y. A. Ryan, editors, Computer Security - ESORICS 2019
- 24th European Symposium on Research in Computer Security, Luxembourg,
September 23-27, 2019, Proceedings, Part I, volume 11735 of Lecture Notes in
Computer Science, pages 300–318. Springer, 2019.

[BBD+15] Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Ben-
jamin Grégoire, and Pierre-Yves Strub. Verified proofs of higher-order masking.
In Advances in Cryptology - EUROCRYPT 2015 - 34th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Sofia,
Bulgaria, April 26-30, 2015, Proceedings, Part I, pages 457–485, 2015.

[BBD+16] Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Ben-
jamin Grégoire, Pierre-Yves Strub, and Rébecca Zucchini. Strong non-
interference and type-directed higher-order masking. In ACM CCS ’16, pages
116–129, 2016.

[BBP+16] Sonia Belaïd, Fabrice Benhamouda, Alain Passelègue, Emmanuel Prouff,
Adrian Thillard, and Damien Vergnaud. Randomness complexity of private
circuits for multiplication. In Advances in Cryptology - EUROCRYPT 2016
- 35th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Vienna, Austria, May 8-12, 2016, Proceedings, Part
II, pages 616–648, 2016.

[BDF+17] Gilles Barthe, François Dupressoir, Sebastian Faust, Benjamin Grégoire,
François-Xavier Standaert, and Pierre-Yves Strub. Parallel implementations of
masking schemes and the bounded moment leakage model. In EUROCRYPT
2017 (1), pages 535–566, 2017.

[BDM+20] Sonia Belaïd, Pierre-Évariste Dagand, Darius Mercadier, Matthieu Rivain,
and Raphaël Wintersdorff. Tornado: Automatic generation of probing-secure
masked bitsliced implementations. In Anne Canteaut and Yuval Ishai, editors,
Advances in Cryptology - EUROCRYPT 2020 - 39th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Za-
greb, Croatia, May 10-14, 2020, Proceedings, Part III, volume 12107 of Lecture
Notes in Computer Science, pages 311–341. Springer, 2020.

Weijia Wang, Fanjie Ji, Juelin Zhang and Yu Yu 307

[BDOZ11] Rikke Bendlin, Ivan Damgård, Claudio Orlandi, and Sarah Zakarias. Semi-
homomorphic encryption and multiparty computation. In Kenneth G. Paterson,
editor, Advances in Cryptology - EUROCRYPT 2011 - 30th Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques,
Tallinn, Estonia, May 15-19, 2011. Proceedings, volume 6632 of Lecture Notes
in Computer Science, pages 169–188. Springer, 2011.

[BGI+18] Roderick Bloem, Hannes Groß, Rinat Iusupov, Bettina Könighofer, Stefan
Mangard, and Johannes Winter. Formal verification of masked hardware
implementations in the presence of glitches. In Jesper Buus Nielsen and
Vincent Rijmen, editors, Advances in Cryptology - EUROCRYPT 2018 -
37th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Tel Aviv, Israel, April 29 - May 3, 2018 Proceedings,
Part II, volume 10821 of Lecture Notes in Computer Science, pages 321–353.
Springer, 2018.

[BJK+16] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The SKINNY
family of block ciphers and its low-latency variant MANTIS. In Matthew
Robshaw and Jonathan Katz, editors, Advances in Cryptology - CRYPTO
2016 - 36th Annual International Cryptology Conference, Santa Barbara, CA,
USA, August 14-18, 2016, Proceedings, Part II, volume 9815 of Lecture Notes
in Computer Science, pages 123–153. Springer, 2016.

[BK21] Nicolas Bordes and Pierre Karpman. Fast verification of masking schemes in
characteristic two. In Anne Canteaut and François-Xavier Standaert, editors,
Advances in Cryptology - EUROCRYPT 2021 - 40th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Za-
greb, Croatia, October 17-21, 2021, Proceedings, Part II, volume 12697 of
Lecture Notes in Computer Science, pages 283–312. Springer, 2021.

[BMP13] Joan Boyar, Philip Matthews, and René Peralta. Logic minimization techniques
with applications to cryptology. J. Cryptol., 26(2):280–312, 2013.

[CB08] D. Canright and Lejla Batina. A very compact "perfectly masked" s-box for
AES. In Steven M. Bellovin, Rosario Gennaro, Angelos D. Keromytis, and Moti
Yung, editors, Applied Cryptography and Network Security, 6th International
Conference, ACNS 2008, New York, NY, USA, June 3-6, 2008. Proceedings,
volume 5037 of Lecture Notes in Computer Science, pages 446–459, 2008.

[CGZ20] Jean-Sébastien Coron, Aurélien Greuet, and Rina Zeitoun. Side-channel mask-
ing with pseudo-random generator. In Anne Canteaut and Yuval Ishai, editors,
Advances in Cryptology - EUROCRYPT 2020 - 39th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Za-
greb, Croatia, May 10-14, 2020, Proceedings, Part III, volume 12107 of Lecture
Notes in Computer Science, pages 342–375. Springer, 2020.

[CJRR99] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi. Towards
sound approaches to counteract power-analysis attacks. In Michael J. Wiener,
editor, Advances in Cryptology - CRYPTO ’99, 19th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 15-19, 1999,
Proceedings, volume 1666 of Lecture Notes in Computer Science, pages 398–412.
Springer, 1999.

308 Efficient Private Circuits with Precomputation

[Cor14] Jean-Sébastien Coron. Higher order masking of look-up tables. In Phong Q.
Nguyen and Elisabeth Oswald, editors, Advances in Cryptology - EURO-
CRYPT 2014 - 33rd Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Copenhagen, Denmark, May 11-15,
2014. Proceedings, volume 8441 of Lecture Notes in Computer Science, pages
441–458. Springer, 2014.

[CPR07] Jean-Sébastien Coron, Emmanuel Prouff, and Matthieu Rivain. Side channel
cryptanalysis of a higher order masking scheme. In Pascal Paillier and Ingrid
Verbauwhede, editors, Cryptographic Hardware and Embedded Systems - CHES
2007, 9th International Workshop, Vienna, Austria, September 10-13, 2007,
Proceedings, volume 4727 of Lecture Notes in Computer Science, pages 28–44.
Springer, 2007.

[CRZ18] Jean-Sébastien Coron, Franck Rondepierre, and Rina Zeitoun. High order
masking of look-up tables with common shares. IACR Trans. Cryptogr. Hardw.
Embed. Syst., 2018(1):40–72, 2018.

[CS20] Gaëtan Cassiers and François-Xavier Standaert. Trivially and efficiently
composing masked gadgets with probe isolating non-interference. IEEE Trans.
Inf. Forensics Secur., 15:2542–2555, 2020.

[DFS15] Alexandre Duc, Sebastian Faust, and François-Xavier Standaert. Making
masking security proofs concrete - or how to evaluate the security of any
leaking device. In Advances in Cryptology - EUROCRYPT 2015 - 34th Annual
International Conference on the Theory and Applications of Cryptographic
Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part I, pages
401–429, 2015.

[DPSZ12] Ivan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty
computation from somewhat homomorphic encryption. In Reihaneh Safavi-
Naini and Ran Canetti, editors, Advances in Cryptology - CRYPTO 2012 -
32nd Annual Cryptology Conference, Santa Barbara, CA, USA, August 19-23,
2012. Proceedings, volume 7417 of Lecture Notes in Computer Science, pages
643–662. Springer, 2012.

[DR02] Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The Ad-
vanced Encryption Standard. Information Security and Cryptography. Springer,
2002.

[FGP+18] Sebastian Faust, Vincent Grosso, Santos Merino Del Pozo, Clara Paglialonga,
and François-Xavier Standaert. Composable masking schemes in the presence
of physical defaults & the robust probing model. IACR Trans. Cryptogr.
Hardw. Embed. Syst., 2018(3):89–120, 2018.

[GJR18] Dahmun Goudarzi, Antoine Joux, and Matthieu Rivain. How to securely
compute with noisy leakage in quasilinear complexity. In Thomas Peyrin and
Steven D. Galbraith, editors, Advances in Cryptology - ASIACRYPT 2018 -
24th International Conference on the Theory and Application of Cryptology
and Information Security, Brisbane, QLD, Australia, December 2-6, 2018,
Proceedings, Part II, volume 11273 of Lecture Notes in Computer Science,
pages 547–574. Springer, 2018.

[GMPO20] Si Gao, Ben Marshall, Dan Page, and Elisabeth Oswald. Share-slicing: Friend
or foe? IACR Trans. Cryptogr. Hardw. Embed. Syst., 2020(1):152–174, 2020.

Weijia Wang, Fanjie Ji, Juelin Zhang and Yu Yu 309

[GPRV21] Dahmun Goudarzi, Thomas Prest, Matthieu Rivain, and Damien Vergnaud.
Probing security through input-output separation and revisited quasilinear
masking. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2021(3):599–640, 2021.

[GR17] Dahmun Goudarzi and Matthieu Rivain. How fast can higher-order masking
be in software? In EUROCRYPT 2017(1), pages 567–597, 2017.

[ISW03] Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing
hardware against probing attacks. In CRYPTO 2003, pages 463–481, 2003.

[KSM20] David Knichel, Pascal Sasdrich, and Amir Moradi. SILVER - statistical
independence and leakage verification. In Shiho Moriai and Huaxiong Wang,
editors, Advances in Cryptology - ASIACRYPT 2020 - 26th International
Conference on the Theory and Application of Cryptology and Information
Security, Daejeon, South Korea, December 7-11, 2020, Proceedings, Part I,
volume 12491 of Lecture Notes in Computer Science, pages 787–816. Springer,
2020.

[RDP08] Matthieu Rivain, Emmanuelle Dottax, and Emmanuel Prouff. Block ciphers
implementations provably secure against second order side channel analysis. In
Kaisa Nyberg, editor, Fast Software Encryption, 15th International Workshop,
FSE 2008, Lausanne, Switzerland, February 10-13, 2008, Revised Selected
Papers, volume 5086 of Lecture Notes in Computer Science, pages 127–143.
Springer, 2008.

[SP06] Kai Schramm and Christof Paar. Higher order masking of the AES. In David
Pointcheval, editor, Topics in Cryptology - CT-RSA 2006, The Cryptographers’
Track at the RSA Conference 2006, San Jose, CA, USA, February 13-17, 2006,
Proceedings, volume 3860 of Lecture Notes in Computer Science, pages 208–225.
Springer, 2006.

[VV21] Annapurna Valiveti and Srinivas Vivek. Higher-order lookup table masking
in essentially constant memory. IACR Trans. Cryptogr. Hardw. Embed. Syst.,
2021(4):546–586, 2021.

[WGY+22] Weijia Wang, Chun Guo, Yu Yu, Fanjie Ji, and Yang Su. Side-channel
masking with common shares. IACR Trans. Cryptogr. Hardw. Embed. Syst.,
2022(3):290–329, 2022.

	Introduction
	Our Contributions
	Organization

	Preliminaries
	Notations
	Private Circuits
	Composable Security Notions
	Different Types of Gadgets

	New Masking Scheme
	Constructions of New Multiplication Gadgets
	Formal Verification of the New Multiplication Gadget
	Precomputation-based Design Using Muld+1, TrivAdd and TrivLin
	Operation Counts and Comparison with the GJR+ Scheme

	Applications to AES and SKINNY
	Descriptions of Ciphers and Their Bitslicing Approaches
	Masked Implementations
	Some Details to Prevent Transitional Leakage
	Implementation Results
	Practical Evaluations

	Conclusion

