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Abstract. The main protection against side-channel attacks consists in computing
every function with multiple shares via the masking countermeasure. While the
masking countermeasure was originally developed for securing block-ciphers such as
AES, the protection of lattice-based cryptosystems is often more challenging, because
of the diversity of the underlying algorithms. In this paper, we introduce new gadgets
for the high-order masking of the NTRU cryptosystem, with security proofs in the
classical ISW probing model. We then describe the first fully masked implementation
of the NTRU Key Encapsulation Mechanism submitted to NIST, including the key
generation. To assess the practicality of our countermeasures, we provide a concrete
implementation on ARM Cortex-M3 architecture, and eventually a t-test leakage
evaluation.
Keywords: High-order masking · lattice-based cryptography · NTRU

1 Introduction
Post-quantum cryptography. The RSA and ECC cryptosystems rely on the hardness of
the integer factorization and the discrete logarithm problems respectively. These problems,
which we can assume to be hard on a classical computer, are however vulnerable to a
quantum one. Peter Shor in 1995 has indeed designed an algorithm running on a quantum
computer that ensures a polynomial-time solution. In light of these new threats, the
National Institute of Standards and Technology (NIST) initiated in 2016 a standardization
process for post-quantum cryptography that has reached its last round.

The NTRU cryptosystem. The NTRU cryptosystem was introduced in 1996 by Hoffstein,
Pipher and Silverman [HPS98] covering both encryption and signature. Its security relies
on the problem of finding small solutions to a system of linear equations over polynomial
rings, which is assumed to remain hard even in the presence of a quantum computer.
Therefore, it is closely related to the Shortest and Closest Vector Problems (SVP/CVP) in
lattices. Despite not being equivalent neither to SVP nor CVP, the NTRU cryptosystem
nonetheless resisted more than two decades of cryptanalysis. Moreover variants of NTRU
were proven to be secure in the (Quantum) Random Oracle Model under the Ring Learning
With Error (R-LWE) hardness assumption [SS13]. In terms of performance, NTRU is known
to be currently one of the fastest public key cryptosystem altogether with moderate key-size,
making it a reasonable choice for embedded cryptography. Its performance granted it
several standards, e.g., IEEE Std 1363.1, X9.98 and PQCRYPTO. Recently NTRU was one
of the finalists of the NIST post-quantum cryptography standardization effort; the Kyber
algorithm has finally been selected for standardization.
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Side-channel attacks and the masking countermeasure. As for any other cryptosystem,
an NTRU implementation on embedded device is vulnerable to side-channel attacks. These
attacks exploit physical leakages happening during the execution of the algorithm to
recover the key. We refer to [PPM17, HCY20, XPRO20, EMVW22] for examples of such
attacks. Side-channel attacks can be prevented by using the masking countermeasure. It
consists in splitting each secret variable into shares, for x = x1 ⊕ · · · ⊕ xn with Boolean
masking. Then by processing each share independently, any leakage on at most n−1 shares
xi will not reveal information about the secret x. Formally, in this paper we consider the
classical probing model introduced in [ISW03], with an attacker being able to probe any
set of at most t variables in the circuit. The authors showed that using at least n = 2t+ 1
shares, one can transform any Boolean circuit C into a circuit C ′ of size O(|C| · t2), such
that an adversary with t probes on C ′ is no more powerful that an adversary with no
probe at all. Later, finer notions of security were formalized by Barthe et al. in [BBD+16],
who introduced the notions of (Strong) Non-Interference NI/SNI. This enables to reach
t-probing security with n = t+ 1 shares only, via a composition theorem.

While any encryption scheme can be written as a Boolean circuit and then protected
using the above transform, in practice that would be quite inefficient. Indeed, lattice-based
cryptography usually requires to perform both Boolean and arithmetic operations, and
moreover, the NTRU cryptosystem combines arithmetic operations modulo q = 2k and
modulo 3. It is therefore more efficient to mask some intermediate variables with arithmetic
masking modulo q or modulo 3, instead of with Boolean masks only. One must therefore
repeatedly convert between these masked representations.

The first conversions between Boolean and arithmetic masking were described in
[Gou01] for first-order security. It was then generalized to higher order in [CGV14], with
complexity O(n2 ·k) for n shares and k-bit words. Recently, a generic conversion algorithm
was described in [CGMZ22], based on table-recomputation. It allows to high-order compute
any function f : G→ H between two groups G and H, with complexity O(|G| · n2). For
example, by taking G = Z3 and H = Zq, one can efficiently convert from arithmetic
masking modulo 3 to arithmetic masking modulo q, which will be useful in the context of
NTRU.

Masking lattice-based public-key encryption. We review the existing masked imple-
mentations of lattice-based public-key encryption, including the NIST finalists Kyber,
Saber and NTRU. To achieve IND-CCA security, the Kyber and Saber schemes use the
Fujisaki-Okamoto transformation [FO99], based on the recomputation and comparison
of the ciphertext during decryption. The first completely masked implementation of
Kyber secure against high-order attacks was described in [BGR+21]. For the ciphertext
comparison, the masked recomputed ciphertext remains in uncompressed form, so that the
compression function from Kyber need not be high-order masked. Alternative techniques
for performing the ciphertext comparison have also been recently described in [CGMZ21],
for both Kyber and Saber.

However, the CCA security of NTRU in the NIST submission [CDH+19] does not rely on
the FO transform, but rather on the membership of the message to a specific space set.
This is to ensure the well-formedness of the ciphertext, based on the correctness of the
underlying deterministic PKE scheme [BP18]. Formally, the CCA security follows from the
property that for (r,m) ∈ Lr × Lm, where Lr and Lm represent the plaintext space sets:

NTRU.Enc((r,m), pk) = c⇔ NTRU.Dec(c, sk) = (r,m)

Therefore, the well-formedness of c is ensured by membership the test (r,m)
?
∈ Lr × Lm.

So far in the literature the only masked implementation of NTRU is provided by [SMS19],
for security against CPA and first-order attacks only. The authors focus on protecting
the polynomial product c · f mod q, for the ciphertext c and the private-key f . Recently,
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[REB+21] introduced a generic side-channel CCA against NTRU exploiting the leakage during
the membership test (r,m) ∈ Lr × Lm. This demonstrates that a masked implementation
must include the masking of this membership test.

More recently, in a concurrent work [KLRBG22], the authors described a high-order
masked algorithm to perform the polynomial inversion in the key generation of NTRU,
based on a conversion from additive to multiplicative masking. The authors claimed that
their high-order conversion algorithm can achieve arbitrary-order security, but without a
security proof. As a security evaluation, the authors used a common fixed vs. random
univariate first-order Test Vector Leakage Assessment (TVLA) evaluation procedure, with
100 000 power traces. However, we show in this paper that their algorithm is actually
insecure: we exhibit a 3-rd order attack for any number of shares n in the countermeasure
(see Section 5.1). We then describe a repaired algorithm with a proof of security in the
ISW probing model.

Our contributions. In this paper we provide the first high-order masking of the NTRU
KEM finalist. More precisely, we provide a full high-order masking of both the Decapsulate
algorithm (for IND-CCA decryption), and the key generation algorithm. We consider the
two HPS and HRSS variants of the NTRU submission [CDH+19]. Our countermeasures are
proven secure in the classical ISW probing model, using the NI/SNI methodology.

We argue that key generation must also be protected against side-channel attacks,
because in practice, the key generation procedure can be performed directly in the embedded
platform, and template attacks can be quite effective against key generation. To prove
the side-channel resistance of KeyGen, we use the same ISW probing model as for other
operations. That is, when using n = t+ 1 shares, the KeyGen algorithm should be resistant
against an adversary performing a t-th order probing attack.

Our techniques are as follows. For decryption, the main challenge is to compute the
reduction modulo 3 of a polynomial a which is initially masked modulo q = 2k. For this we
proceed coefficient-wise by first converting the arithmetic sharing modulo q into Boolean
shares, and then converting back to arithmetic modulo 3. We also describe the high-order
masking of the membership tests r ∈ Lr and m ∈ Lm. For the later, in the HPS version,
one needs to check that the polynomial m has exactly d/2 coefficients equal to 1, and d/2
coefficients equal to −1, for d = q/8− 2. For this, we high-order compute the sum of the
coefficients and check that it is equal to 0 modulo q, and we check that the sum of the
squares of the coefficients is equal to d modulo q.

For masking the key generation, we show how to mask the sampling of the private
key, which includes the sampling of an arithmetically masked polynomial with exactly
d/2 coefficients equal to 1 and exactly d/2 equal to −1. To do so, we start with a fixed
polynomial gI with the first d/2 coefficients equal to 1, the next d/2 coefficients equal to
−1, and the remaining coefficients equal to 0. We then compute an arithmetic sharing
g1, . . . , gn of gI . We then repeat n times the following procedure: we generate a random
permutation π of the coefficients and apply π to each share gi, and then linearly refresh the
shares gi. Eventually, we return the shared polynomial g1, . . . , gn. We show that we indeed
obtain an n-sharing of a random polynomial g with the right distribution, and moreover
an adversary with at most n− 1 probes learns nothing about the secret polynomial g.

For the key generation, we also show how to high-order compute the inverse of polyno-
mials in Zq[X]/(Φ`) and Z3[X]/(Φ`). In the NIST submission, these inverses are computed
using the almost inverse algorithm. However, such method would be quite challenging to
mask, therefore we use exponentiation algorithms instead. More precisely, we compute
the inverse of an element x in Z2[X]/Φ` by using the relation x−1 = x2`−1−2. Thanks to
the linearity of the square in characteristic 2, such exponentiation only requires O(log `)
multiplications, instead of O(`). One can then lift the inverse from modulo 2 to modulo 2k.
Both operations are easy to high-order mask with n shares, and as previously, we prove
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that an adversary with at most n− 1 probes learns nothing about the secret-key. We then
provide a comparison with our repaired algorithm from [KLRBG22].

Finally, using the above gadgets, we describe a full high-order masking of both the
Decapsulate algorithm (for IND-CCA decryption), and of the key generation algorithm. For
Decapsulate, this includes the masking of the PackS3 algorithm for converting ternary
polynomials into a sequence of bytes. Namely, the PackS3 algorithm is used for computing
the hash k1 = H1(r,m) when recovering the session key k1, which must be output in
masked Boolean form.

Implementation. In order to assess the practicality of our countermeasures, we have
performed a proof of concept implementation in C of the fully masked Decapsulate and
KeyGen. We have run our implementation on a laptop equipped with an Intel CPU, and
also on a Cortex-M3 core mounted on an Arduino Due board. We provide the performance
analysis in Section 8. The source code can be found at

https://github.com/fragerar/Masked_NTRU

Finally, we have performed a leakage evaluation with a fixed vs random t-test over 10 000
traces for one of the main gadgets, namely the reduction modulo 3 used in Decapsulate. For
this, we have used the ChipWhisperer Lite board embedding a Cortex-M4 microcontroller
(STM32F303) and a light oscilloscope; we provide the results in Section 8.

2 Notations and security definitions
2.1 Notations
Integer ring. Let q be an integer, Zq will denote the ring of integers modulo q. Depending
on the context we will need to switch between two equivalent representations of the
ring Zq: positive representation Zq ' {0, 1, . . . , q − 1}, and centered representation,
Zq ' {−q/2 + 1, . . . , 0, . . . , q/2} for even q, and Zq ' {−(q − 1)/2, . . . , 0, . . . , (q − 1)/2}
for odd q.

For any integer x, x mod q will denote the positive representative of x, and x mod± q
the centered one. We denote by x� k (resp. x� k) the right (resp. left) shifting of an
integer x by k positions, equivalently x� k = bx/2kc (resp. x� k = x · 2k).

Polynomial ring. Let q be an integer, we denote by Zq[X] the ring of polynomials with
coefficient in Zq. For a prime `, we let Φ1 and Φ` be the first and the `-th cyclotomic
polynomials X − 1 and 1 +X + · · ·+X`−1 respectively.

We recall the notations from [CDH+19]. We denote by S/q the quotient ring Zq[X]/Φ`.
A polynomial in Z[X] is said to be ternary if its coefficients are in {−1, 0, 1}. We denote by
T the set of non-zero ternary polynomials of degree at most `− 2. Equivalently, T can be
seen as the set of representatives of non-zero polynomials from the quotient Z3[X]/Φ`. For
an even positive integer d, we also denote by T (d) the subset of T consisting of polynomials
that have exactly d/2 coefficients equal to +1 and d/2 coefficients equal to −1. Finally, let
T+ denote the set of positively correlated ternary polynomials, i.e polynomials v ∈ T such
that

∑
i vi · vi+1 ≥ 0.

2.2 Definitions
We recall the definitions of (strong) non-interference security (SNI/NI) introduced in
[BBD+16]. Thanks to these definitions, a proof of security against an attacker with at
most t probes can proceed in two steps: firstly one proves that every gadget satisfies the
SNI definition, secondly one applies a composition theorem. The SNI definition is stronger

https://github.com/fragerar/Masked_NTRU
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than NI in that the number of input shares needed for the simulation only depends on
the number of internal probes and not on the number of output variables to be simulated.
Fortunately, the NI definition is not restrictive since composing a NI gadget with an SNI
one achieves SNI security. Hence, any NI gadget can be enhanced to SNI by applying an
SNI mask refreshing to its output. In this paper, we will prove that all our gadgets achieve
at least NI security.

Definition 1 (t-NI security). Let G be a gadget taking as input (xi)1≤i≤n and outputting
the vector (yi)1≤i≤n. The gadget G is said t-NI secure if for any set of t1 ≤ t intermediate
variables, there exists a subset I of input indexes with |I| ≤ t1, such that the t1 intermediate
variables can be perfectly simulated from x|I .

Definition 2 (t-SNI security). Let G be a gadget taking as input n shares (xi)1≤i≤n, and
outputting n shares (zi)1≤i≤n. The gadget G is said to be t-SNI secure if for any set of t1
probed intermediate variables and any subset O of output indexes, such that t1 + |O| ≤ t,
there exists a subset I of input indexes that satisfies |I| ≤ t1, such that the t1 intermediate
variables and the output variables z|O can be perfectly simulated from x|I .

3 The NTRU cryptosystem
In this section, we recall the second round NTRU submission from [CDH+19]. It is based
on a deterministic public-key encryption scheme (DPKE) described in algorithms 1, 2 and
3. The Key Encapsulation Mechanism (KEM) is depicted in algorithms 4, 5 and 6. For
the two submitted versions of NTRU, namely NTRU-HPS and NTRU-HRSS, we recall in Table
1 the definition of the sets of integer polynomials Lf , Lg, Lr, Lm, and the embedding Lift.
For simplicity, the algorithms are described according to the NTRU-HPS version, for which
Lift(m) = m. We also recall in Table 2 the values of the parameter ` and modulus q for
the four versions of NTRU.

Alg. 1 KeyGen(seed)
1: f ← Lf , g ← Lg

2: fq ← (1/f) mod (q,Φ`)
3: h← (3 · g · fq) mod (q,Φ1Φ`)
4: hq ← (1/h) mod (q,Φ`)
5: fp ← (1/f) mod (3,Φ`)
6: return ((f, fp, hq), h)

Alg. 2 Encrypt(h, (r,m))
1: c← r · h+m mod (q,Φ1Φ`)
2: return c

Alg. 3 Decrypt((f, fp, hq), c)
1: if c 6= 0 mod (q,Φ1) return (0, 0, 1)
2: a← (c · f) mod (q,Φ1Φ`)
3: m← (a · fp) mod (3,Φ`)
4: r ← ((c−m) · hq) mod (q,Φ`)
5: if (r,m) ∈ (Lr,Lm) return (r,m, 0)
6: else return (0, 0, 1)

Alg. 4 KeyGen′(seed)
1: ((f, fp, hq), h)← KeyGen(seed)
2: s← {0, 1}256

3: return ((f, fp, hq, s), h)

Alg. 5 Encapsulate(h)
1: coins← {0, 1}256

2: (r,m)← Samplerm(coins)
3: c← Encrypt(h, (r,m))
4: k ← H1(r,m)
5: return (c, k)

Alg. 6 Decapsulate((f, fp, hq, s), c)
1: (r,m, fail)← Decrypt((f, fp, hq), c)
2: k1 ← H1(r,m)
3: k2 ← H2(s, c)
4: if fail = 0 return k1
5: else return k2
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Table 1: Definitions of polynomial sets and lifting application for NTRU-HPS and NTRU-HRSS.
Lf Lg Lr Lm Lift

HPS T T (q/8− 2) T T (q/8− 2) m 7→ m

HRSS T+ Φ1 · T+ T T m 7→ Φ1 · (m/Φ1 mod± (3,Φ`))

Table 2: Values of ` and q for the four versions of NTRU.
ntruhps2048509 ntruhps2048677 ntruhps4096821 ntruhrss701

` 509 677 821 701
q 2048 2048 4096 8192

The NTRU DPKE scheme. We briefly explain why the DPKE scheme works (alg. 1, 2, 3).
Since ` is a prime, and 2 is of order `− 1 in Z∗` , we get that Φ` is an irreducible polynomial
modulo 2. We deduce that the set of polynomials modulo 2 and Φ` is a field, and therefore
f ∈ Lf is invertible modulo 2 and Φ`. One can then lift the inverse from modulo 2 to
modulo q and Φ`. The same holds for the inverse of f modulo 3. Note that from g ∈ Lg,
we have g = 0 (mod q,Φ1), and therefore h = 0 (mod q,Φ1).

The encryption of m is given by:

c = r · h+m (mod (q,Φ1Φ`))

From Line 2 of Algorithm 3, we have:

a = c · f = (r · h+m) · f (mod (q,Φ1Φ`))

By definition we have h · f = 3 · g (mod q,Φ`). This gives a = 3 · g · r +m · f (mod q,Φ`).
Moreover, from m = 0 (mod Φ1), we have c = 0 (mod q,Φ1), and therefore a = 0
(mod q,Φ1). Besides we have g = m = 0 (mod q,Φ1), therefore we deduce:

a = 3 · g · r +m · f (mod q,Φ1Φ`) (1)

One can show that the equation also holds over Z, not only modulo q. Namely, the
polynomials g, r, m and f have small coefficients, therefore the equality holds over Z when
we represent the polynomials modulo q with coefficients between −q/2 and q/2. This gives:

a = 3 · g · r +m · f (mod Φ1Φ`) (2)

We deduce that a = m · f (mod 3,Φ1Φ`), and therefore m ≡ a · fp (mod 3,Φ`). Since
degm ≤ ` − 2 and m is ternary, we must have m = a · fp (mod 3,Φ`), as computed in
Line 3 of Algorithm 3. Finally, we have:

(c−m) · hq ≡ (r · h) · hq ≡ r (mod (q,Φ`))

and since deg(r) ≤ `− 2, we can recover r at Line 4 with r = (c−m) · hq mod (q,Φ`).

CCA security of NTRU. The CCA security of NTRU is a consequence of its rigidity. The
rigidity expresses as follow, for (r,m) ∈ Lr × Lm:

Encrypt(h, (r,m)) = c⇔ Decrypt((f, fp, hq), c) = (r,m)

Therefore, the FO transformation can be avoided by using the membership check (r,m) ∈
Lr × Lm since it ensures a correct ciphertext recomputation. Eventually, the rigidity is
ensured by the choice of parameters in Table 1, see [BP18, HRSS17].
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The NTRU KEM. The KEM version of NTRU proceeds similarly to the NTRU DPKE scheme
(alg. 4, 5, 6). It adds a seed s to the secret key. This seed is used for implicit rejection
during the decapsulation in order to preserve CCA security [BP18]. The Encapsulate
algorithm samples r and m according to their space set and encrypts them into c. Then it
hashes (r,m) into the session key k. Eventually, the Decapsulate algorithm decrypts the
ciphertext c into (r′,m′, fail). When no decryption failure occurs, the rigidity of the NTRU
DPKE schemes ensures that r′ and m′ match the original r and m from encryption, which
enables to recover the session key k.

4 New gadgets for high-order masking NTRU

In this section, we describe the high-order masking of the main components of the NTRU
cryptosystem. We recall in Appendix A the main masking tools, such as arithmetic vs
Boolean conversions, and zero-testing with Boolean or arithmetic shares.

4.1 Decryption: masking the reduction modulo 3
The polynomial a at Step 2 of Decrypt (Algorithm 3) is arithmetically masked modulo q,
because the secret-key f is arithmetically masked modulo q. Namely, given as input the
ciphertext c and the masked secret-key f = f1 + · · ·+ fn (mod q), we obtain:

a = c · f = (c · f1) + · · ·+ (c · fn) (mod q,Φ1Φ`),

and letting ai = c · fi mod (q,Φ1Φ`), we obtain a = a1 + · · ·+ an (mod q) as required.
The main difficulty is then to compute the polynomial a modulo (3,Φ`), which corre-

sponds to Step 3 of Decrypt. Namely the polynomial a satisfies

a = 3 · g · r +m · f (mod q,Φ1Φ`)

where the polynomials g, r, m and f have small coefficients, and therefore the equality

a = 3 · g · r +m · f (mod Φ1Φ`)

holds over the integers (not only modulo q). This enables to get rid of the 3 · g · r part
by reduction modulo 3. One must therefore perform this operation while the polynomial
a is arithmetically masked modulo q. Note that we cannot directly reduce each share ai

modulo 3 when a is arithmetically masked modulo q, as the reduction modulo 3 is not
linear over the ring Zq.1 This implies that a more complex technique is required.

For this, the idea is to first convert each coefficient of a from arithmetic masking
modulo q into Boolean masking, and then perform a conversion from Boolean masking to
arithmetic masking modulo 3. More precisely, we write q = 2k and we consider a coefficient
−2k−1 ≤ x < 2k−1. We write x = 3 · u+ v with 0 ≤ v < 3. Given as input an arithmetic
sharing of x modulo 2k, we must output an arithmetic sharing of v modulo 3. We write
x(j) the j-th bit of x mod 2k, so we can write:

x = −2k−1x(k−1) +
k−2∑
j=0

2j · x(j) = 3 · u+ v

and therefore we obtain the value of v = x mod 3 as a function of the bits x(j) of x:

v = (−2k−1 mod 3) · x(k−1) +
k−2∑
j=0

(2j mod 3) · x(j) (mod 3) (3)

1Consider for example a masking with two shares x1 and x2 with q = 256, and let x = x1 + x2 mod 256,
with x1 = 222 and x2 = 57, which gives x = 23. If we reduce x1 and x2 directly modulo 3, we obtain (222
mod 3) + (57 mod 3) = 0 (mod 3), but on the other hand we have x mod 3 = 2. So reducing the shares
modulo 3 directly would give an incorrect result.
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We now explain how to high-order compute v modulo 3 from an arithmetic masking
of x modulo q = 2k. Taking x = x1 + · · · + xn (mod q) as input, we first perform an
arithmetic to Boolean masking conversion, so we obtain x = y1⊕ · · ·⊕ yn with yi ∈ {0, 1}k

for all 1 ≤ i ≤ n. Letting y(j)
i be the j-th bit of yi, we have x(j) = y

(j)
1 ⊕ · · · ⊕ y(j)

n for all
0 ≤ j < k. Therefore we perform a Boolean to arithmetic modulo 3 conversion of each
x(j), which gives for all 0 ≤ j < k:

x(j) = y
(j)
1 ⊕ · · · ⊕ y(j)

n = z
(j)
1 + · · ·+ z(j)

n (mod 3) (4)

Eventually, we obtain by combining (3) and (4):

v = (−2k−1 mod 3) ·
n∑

i=1
z

(k−1)
i +

k−2∑
j=0

(2j mod 3)
n∑

i=1
z

(j)
i (mod 3)

=
n∑

i=1

k−2∑
j=0

(2j mod 3)z(j)
i − (2k−1 mod 3)z(k−1)

i

 (mod 3)

which gives an n-sharing of v modulo 3, as required. We provide the corresponding
algorithm below. We refer to Appendix A.1 for an overview of the conversion algorithms
AtoB2k and BtoA3, which are assumed to satisfy the SNI property. Note that our algorithm
can work for any modulus q, not only 2k, by using an algorithm for converting from
arithmetic modulo q to Boolean masking at Line 1.

Algorithm 7 Mod3Red(v1, . . . , vn)

Input: An arithmetic sharing modulo 2k (x1, . . . , xn) of x ∈ [−2k−1, 2k−1 − 1]
Output: An arithmetic sharing modulo 3 (w1, . . . , wn) of (x mod 3).
1: y1, . . . , yn ← AtoB2k (x1, . . . , xn)
2: for j = 0 to k − 1 do
3: Let y(j)

i be the j-th bit of yi for 1 ≤ i ≤ n
4: z

(j)
1 , . . . , z

(j)
n ← BtoA3(y(j)

1 , . . . , y
(j)
n )

5: end for
6: for i = 1 to n do
7: wi ←

∑k−2
j=0 2jz

(j)
i − 2k−1z

(k−1)
i mod 3

8: end for
9: return w1, . . . , wn

Security. The following theorem shows that the Mod3Red algorithm achieves the t− SNI
security notion.

Theorem 1 (t−SNI security of Mod3Red). For any subset O ⊂ [1, n] and any t1 interme-
diate variables with |O|+ t1 ≤ t, the output variables w|O and the t1 intermediate variables
can be perfectly simulated from the input variables x|I , with |I| ≤ t1.

Proof. The t− SNI property of the part from lines 2 to 9 follows from the t− SNI of each
of the k independent BtoA3 conversions. Namely the corresponding output shares z(j)

i are
combined independently for each share index 1 ≤ i ≤ n. Therefore we can use the same
output subset O for each intermediate output shares (z(j)

i )1≤i≤n for 0 ≤ j < k. The t−SNI
property of the complete algorithm follows from composition of two SNI gadgets.



188 High-order masking of NTRU

Complexity. We assume that a group operation as well as randomness generation takes
unit time. The complexity of Algorithm 7 is therefore:

TMod3Red(k, n) = TAtoB(k, n) + k · TBtoA3(n) + 2 · k · n+ 1
= O(k · n2)

4.2 Key generation: masked generation of g ← Lg

In this section, we explain how to generate an arithmetically masked g ← Lg, which
corresponds to Line 1 of the KeyGen algorithm (Alg. 1). We consider only the HPS version,
for which Lg = T (q/8− 2), see Table 1. We will consider the HRSS version in Section 7.2.
Obviously, we cannot simply generate an unmasked g ← Lg and later arithmetically mask
it with n shares, as the attacker could directly probe the unmasked g. Therefore, the key
generation algorithm must be masked with n shares from the beginning.

Recall that T (q/8−2) is the set of ternary polynomials of degree at most `−2 containing
exactly q/16− 1 coefficients equal to 1, and q/16− 1 coefficients equal to −1. In the NIST
submission [CDH+19], the authors apply a random permutation to the coefficients of an
initially fixed polynomial gI with its first q/16 − 1 coefficients equal to 1, its q/16 − 1
following coefficients equal to −1, and its remaining coefficients equal to 0. Actually, the
applied permutation is not perfectly random. Namely, in the corresponding FixedType
algorithm from [CDH+19], given a 30(` − 1)-bit seed, the permutation is obtained by
concatenating to each coefficient a 30-bit prefix, then sorting the list of 32-bit entries, and
eventually discarding the 30-bit prefix to keep the permuted coefficients. Obviously, such
procedure would be quite challenging to mask directly.

Alternatively, we use the following simple approach, which also provides a perfectly
random permutation. We start with the initial polynomial g = gI as previously, and we
encode g over n = t+ 1 shares with arithmetic masking modulo q, for security against t
probes. We then repeat the following procedure n = t+ 1 times: we randomly permute
the `− 1 coefficients of g by generating an independent random permutation π; for this,
we actually apply π on each share of g; we then perform a linear mask refreshing modulo
q of each coefficients of g. Eventually, we output the arithmetically masked polynomial g
modulo q. We describe the algorithm below. We denote by P`−1 the set of permutation of
{0, . . . , `− 2}. We assume that we have an efficient algorithm for generating a permutation
π ← P`−1 uniformly at random. We recall the LinearRefresh algorithm in Appendix A.5,
applied on the quotient ring S/q = Zq[X]/Φ`.

Algorithm 8 SecSampleT(d)
Output: (g1, . . . , gn), an arithmetic sharing modulo q of g ∈ T (d)
1: g1, . . . , gn ← ((1 + · · ·+Xd/2−1 −Xd/2 − · · · −Xd−1), 0 . . . , 0)
2: for j = 1 to n do
3: π ← P`−1
4: for i = 1 to n do gi ← π(gi)
5: g1, . . . , gn ← LinearRefreshS/q(g1, . . . , gn)
6: end for
7: return (g1, . . . , gn)

Security. The above algorithm is secure against an adversary with at most t = n − 1
probes, because by definition, at least one of the n permutations and subsequent linear
mask refreshing has not been probed, after which the adversary’s probes can be perfectly
simulated without knowing the secret key. This is the same security argument as for proving
the security of the table recomputation countermeasure [Cor14]. Formally, the following
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theorem proves the security of the above algorithm. For a key generation algorithm, there
are no inputs, so we need to prove that for any generated secret-key g, any t < n probe
can be perfectly simulated without knowing g.

Theorem 2 (t-probing security of SecSampleT(d)). For any fixed secret-key g = g1+· · ·+gn

(mod q) output by SecSampleT(d), any set of t1 < n intermediate variables can be perfectly
simulated without knowing g.

Proof. We consider any fixed secret g ∈ T (d), and we consider a secret π ← P`−1 such
that g = π(gI), where gI = 1 + · · ·+Xd/2−1 −Xd/2 − · · · −Xd−1 is the initial polynomial.

We denote by Partj for 1 ≤ j ≤ n the execution steps of the algorithm during the for
loop from Line 2 to Line 6. Since there are t1 < n probed variables, at least one execution
of the for loop has not been probed. Let j? be the corresponding index, such that Partj?

has not been probed.
We split the probed variables into 2 sets: S<j? and S>j? , which correspond to the

variables probed during execution of Partj for j < j? and j > j? respectively. The variables
from Sj<j? can be perfectly simulated without the knowledge of g. Indeed, for each index
j < j?, it suffices to draw πj ← P`−1 uniformly at random, and simulate all variables from
the initial sharing of gI at Step 1 and πj .

In order to simulate the variables from S>j? , we define a set of indexes I such that
i ∈ I iff a variable gi has been probed. By construction we have |I| ≤ t1 < n. Since Partj?

has not been probed, the corresponding LinearRefresh gadget has not been probed, hence
any subset of at most n − 1 output shares is uniformly and independently distributed;
hence the corresponding outputs g|I can be perfectly simulated. One can then propagate
the simulation for the Partj processes for j > j?, and simulate any variable from the set
S>j? from such g|I ; as previously we generate the permutations πj for j > j? uniformly at
random in P`−1.

Finally, for consistency we must have π = πn ◦ · · · ◦ πj? ◦ · · · ◦ π1, which is possible by
fixing the permutation πj? satisfying this equation. The knowledge of πj? is not required
for the simulation, since by assumption Partj? has not been probed. Hence the simulation
can be performed without the knowledge of π and the output secret-key g.

Complexity. The time complexity of the algorithm is

TSecSampleT(`, n) = n · (`− 1 + n · `+ TLinearRefresh(n))
= O(n2 · `)

Remark 1. Note that our security model assumes that the adversary can only probe at
most n− 1 of the n permutations, so in the security proof at least one permutation can be
treated as a black-box. However, for security against real side-channel leakages, it may be
difficult to implement a permutation so that this assumption is satisfied in practice. More
precisely, it may be possible to perform a template attack against the permutations, so
that using a single trace, the adversary could recover all n permutations and eventually
the secret-key. We refer to [KAA21] for an example of such attack.

4.3 Key generation: high-order computation of 1/f modulo q

In this section, we show how to high-order compute the secret fq = (1/f) mod (q,Φ`) at
Step 2 of KeyGen (Alg. 1). We have that f is invertible in Z[X]/(q,Φ`) iff f is invertible
in Z[X]/(2,Φ`). Therefore, we first recall how to compute inverses in S/2 = Z2[X]/Φ`.

Computing inverse over S/2. Since Φ`(x) is irreducible modulo 2, the multiplicative
group S/2 = Z[X]/(2,Φ`) has order 2`−1−1. Therefore, we can first compute the inversion
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of f in Z[X]/(2,Φ`), using a sequence of squares and multiplies as in [IT88], and then lift
the result modulo q. Namely, such exponentiation approach is much easier to mask than
the extended-gcd approach. More precisely, we must compute:

f−1 = f2`−1−2 = f2·(2`−2−1) mod (2,Φ`) (5)

To compute this exponentiation, we use the identity 2a+b − 1 = 2a · (2b − 1) + (2a − 1),
which gives:

f2a+b−1 =
(
f2b−1

)2a

· f2a−1 mod (2,Φ`) (6)

where the exponentiation by 2a is a linear operation. In particular, we obtain:

f22b−1 =
(
f2b−1

)2b

· f2b−1 mod (2,Φ`), f2b+1−1 =
(
f2b−1

)2
· f mod (2,Φ`)

which implies that we can perform the equivalent of a square-and-multiply. We provide
the corresponding FastExpo algorithm below, with the proof of correctness (Theorem 3) in
Appendix B.1.

Algorithm 9 FastExpo(x,m)
Input: An integer m = (mk−1, . . . ,m0)2 and an element x ∈ Z2[X]/Φ`

Output: x2m−1 in Z2[X]/Φ`

1: y ← 1
2: for i = k − 1 to 0 do
3: m′ ← m� (i+ 1)
4: y ← y × y2m′

5: if mi = 1 then y ← y2 × x
6: end for
7: return y

Theorem 3 (Correctness). Given as input x ∈ Z2[X]/Φ`, Algorithm 9 outputs x2m−1

in blog2 mc + Hw(m) − 1 ≤ 2blog2(m)c non-linear multiplications, where Hw(m) is the
Hamming weight of m.

Computing inverse over S/q = Zq[X]/Φ`. We now recall how to compute inverses over
S/q = Zq[X]/Φ`. For this we recall the unmasked SqInverse algorithm from [CDH+19],
which lifts the inverse modulo 2 into an inverse modulo 22i at each step i of the while loop,
until 22i ≥ q. We provide the proof of correctness in Appendix B.2.

Algorithm 10 SqInverse(a)
Input: An invertible polynomial a ∈ S/q
Output: A polynomial v such that a · v = 1 mod (q,Φ`)
1: v ← FastExpo(a mod 2, `− 2)
2: v ← v 2

3: t← 1
4: while t < log2 q do
5: v ← v(2− a · v) mod (q,Φ`)
6: t← 2t
7: end while
8: return v

Theorem 4 (Correctness). Algorithm SqInverse is correct.
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High-order masking. The two previous algorithms are easy to mask. Namely, for the
FastExpo algorithm, it suffices to high-order mask the polynomial multiplications at lines
4 and 5. This can be done via a SecMult algorithm, as a straightforward extension of
the And gadget from [ISW03]. We provide in Appendix B.3 the high-order masking
of the FastExpo algorithm, called SecFastExpo. Similarly, we provide in Appendix B.4
an algorithmic description of the high-order masked version of Algorithm 10 above,
called SecSqInverse. Note that after Line 2 of Algorithm 10, the polynomial v must be
considered modulo q instead of modulo 2, so we consider each share of v as a share modulo
q. The final complexity of our polynomial inversion algorithm in S/q = Zq[X]/Φ` is
O(n2 · (log `+ log log q)) operations in S/q. We provide the proof of the following theorem
in Appendix B.4.

Theorem 5 (t − SNI security of SecSqInverse). For any subset O ⊂ [1, n] and any t1
intermediate variables with |O|+ t1 ≤ t, the output variables v|O and the t1 intermediate
variables can be perfectly simulated from the input variables a|I , with |I| ≤ t1.

Addition chains. More generally, to compute the exponentiation given by (5), from (6)
it suffices to provide an addition chain for the integer ` − 2. The number of additions
in the chain gives the number of multiplications in Z[X]/(2,Φ`). From the square-and-
multiply algorithm above, there always exists an addition chain for m = ` − 2 with
blog2 mc+ Hw(m)− 1 ≤ 2blog2(m)c additions. However, one can often find better addition
chains. For example, in [HRSS17], the authors compute the inversion in F2700 with 12
multiplications only (instead of 15 with the square-and-multiply). We refer to Appendix
B.6 for more details.

5 The polynomial inversion algorithm from [KLRBG22]
Recently, the authors of [KLRBG22] described a high-order masked algorithm to perform
the polynomial inversion in the key generation of NTRU, based on a conversion from
arithmetic to multiplicative masking. The authors claimed that their high-order conversion
algorithm can achieve arbitrary-order security, but without a security proof. Below, we
show that their algorithm is actually insecure: we exhibit a 3-rd order attack for any
number of shares n in the countermeasure. We then describe a simple reparation with a
proof of security, and we eventually provide a comparison between our high-order inversion
algorithm from Section 4.3 and the repaired algorithm.

5.1 Our third-order attack
Let R be a ring. The technique used in [KLRBG22] to high-order compute the inverse of
an element a ∈ R? is to use a multiplicative masking a =

∏n
i=1 mi with invertible elements

mi ∈ R?, so that the inversion in R? becomes a linear operation in the number n of masks
(instead of quadratic for additive masking):

a−1 =
n∏

i=1
m−1

i

We recall in Algorithm 11 below the arithmetic to multiplicative masking conversion
algorithm from [KLRBG22, Alg. 4].

Our attack. We describe a 3-rd order attack that works for any number of shares n. We
probe the initial value a1, the value a′1 of the variable a1 for the last index i = 2 after Line
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Algorithm 11 Additive to multiplicative conversion (A2M)
Input: An arithmetic masking a = a1 + · · ·+ an ∈ R
Output: A multiplicative masking a =

∏n
i=1 mi ∈ R

1: for i = n downto 2 do
2: ri ← R?

3: for j = 1 to i do
4: aj ← ri · aj

5: end for
6: mi ← r−1

i . a =
(∑i

j=1 aj

)∏n
j=i mj

7: ai−1 ← ai−1 + ai

8: end for
9: m1 ← a1
10: return m1, . . . ,mn

5, and the output variable m1. Since for each n ≥ i ≥ 2 the random ri is multiplicatively
accumulated on the variable a1, we obtain:

a′1 = a1 ·
n∏

i=2
ri = a1 ·

n∏
i=2

m−1
i

which gives:

a =
n∏

i=1
mi = m1 ·

n∏
i=2

mi = m1 · a1 · (a′1)−1

which shows that the secret value a can always be recovered from the 3 probes a1, a′1 and
m1. This shows that for any number of shares n, the countermeasure can provide at most
second-order security.

In [KLRBG22, Alg. 6] the authors also described an optimization of their algorithm,
which consists in converting the additive shares a = a1 + · · ·+ an into multiplicative shares
of the inverse of a, namely a−1 = m1 × · · · ×mn, using a single inversion instead of n− 1.
Our 3-rd order attack also applies against this variant. In the following, we focus on this
variant since it is more efficient (as it requires a single inversion in R? instead of n − 1
inversions). More precisely, we provide a reparation of this later algorithm, with a proof of
security in the ISW probing model.

5.2 Repaired polynomial inversion algorithm
Additive to multiplicative conversion. In this section, we describe the repaired high-order
polynomial inversion algorithm, starting from the additive to multiplicative conversion
algorithm in [KLRBG22, Alg. 6], which requires a single polynomial inversion only. In
order to repair such algorithm, it suffices to add a mask refreshing at each iteration of the
for loop, and to delay the shares recombination to the end of algorithm. We provide the
pseudo-code of the A2MINV algorithm below; we refer to Appendix A.5 for the LinearRefresh
algorithm. Such corrected version is actually similar to the zero-test algorithm in [CGMZ21,
Algorithm 3], which is also based on an additive to multiplicative masking conversion. The
time complexity of the modified algorithm is

TA2M(n) = n · (1 + n+ 3n− 3) + n+ Tinv(R?) ∼ 4n2

Theorem 6 (t−SNI security of A2MINV conversion). For any subset O ⊂ [1, n] and any t1
intermediate variables with t1 + |O| ≤ t, the output variables m|O and the t1 intermediate
variables can be perfectly simulated from input variables a|I , with |I| ≤ t1
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Algorithm 12 Additive to multiplicative conversion (A2MINV)
Input: a = a1 + · · ·+ an

Output: a−1 = m1 · · · · ·mn

1: for i = 1 to n do
2: ri ← R?

3: for j = 1 to n do aj ← ri · aj

4: a1, . . . , an ← LinearRefreshR(a1, . . . , an)
5: mi ← ri . a =

(∑n
j=1 aj

)∏i
j=1 m

−1
j

6: end for
7: m1 ← m1 · (

∑n
j=1 aj)−1 . a−1 = m1 ·m2 · · · · ·mn

8: return m1, . . . ,mn

Proof. We denote by Parti for 1 ≤ i ≤ n the steps of the algorithm from Line 1 to Line 6
in the For loop with index i, and by a(i)

j the value of the share aj at the end of Parti. Let
P = {i | Parti has been probed or i ∈ O}. From t1 + |O| < n we deduce P ( [1, n] and
therefore there exists i? such that Parti? has not been probed and i? /∈ O. We construct
a subset I ⊂ [1, n] of input indexes for the simulation. We start with an empty I and for
each probed variable aj we add j to the set. By construction we must have |I| ≤ t1.

Every probed variable in Parti for i < i? can be perfectly simulated from a|I . It
remains to simulate the variables probed at Parti for i > i?. Since by assumption mi? and
ri? have not been probed and i? /∈ O, the random ri? acts as a one-time pad for the value
a(i?) = a

(i?)
1 + · · ·+ a

(i?)
n . Moreover we note that a(i?) = a ·m1 · · · · ·mi? is invertible as

the product of invertible elements. Therefore, a(i?) is uniformly distributed in R?. Since
Parti? has not been probed, the corresponding LinearRefresh instance has not been probed.
We can therefore perfectly simulate all shares a(i?)

j at the end of Parti? with fresh random
values whose sum is invertible. Such simulation can subsequently be propagated to all
aj variables until the end of the algorithm. We therefore conclude that Algorithm 12 is
(n− 1)− SNI.

Multiplicative to additive masking conversion. In [KLRBG22], the authors also provide
a multiplicative to additive masking conversion algorithm, without a security proof. In the
following, we recall their algorithm, and prove that it achieves the t−SNI security property.
We refer to the full version of this paper [CGTZ22] for the proof. The complexity of the
algorithm is TM2A(n) ∼ 2n2.

Algorithm 13 Multiplicative to additive conversion (M2A)
Input: m = m1 · · · · ·mn ∈ R
Output: m = a1 + · · ·+ an ∈ R
1: a1 ← m1
2: for i = 1 to n− 1 do
3: a1, . . . , ai+1 ← LinearRefreshR(a1, . . . , ai, 0)
4: for j = 1 to i+ 1 do aj ← aj ·mi+1
5: end for
6: return a1, . . . , an

Theorem 7 (t − NI security of M2A conversion). Any set of t probed variables can be
perfectly simulated from the input variables m|I , with |I| ≤ t
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High-order polynomial inversion. Finally, we describe the full SNI-secure inversion algo-
rithm based on mask conversion. The algorithm achieves the (n−1)−SNI security property,
based on the composition of a (n− 1)− SNI and a (n− 1)−NI gadget. The complexity of
high-order polynomial inversion in S/q = Zq[X]/Φ` is O(n2 + log `) operations in S/q.

Algorithm 14 Inversion based on multiplicative masking INVMul

Input: a = a1 + · · · an ∈ R?

Output: a−1 = b1 + · · ·+ bn

1: m1, . . . ,mn ← A2MINV(a1, . . . , an)
2: b1, . . . , bn ← M2A(m1, . . . ,mn)
3: return b1, . . . , bn

Theorem 8 (t−SNI security of INVMul). For any subset O ⊂ [1, n] and any t1 intermediate
variables with t1 + |O| ≤ t, the output variables b|O and the t1 intermediate variables can
be perfectly simulated from input variables a|I , with |I| ≤ t1.

5.3 Comparison
The repaired polynomial inversion algorithm from [KLRBG22] is asymptotically faster
than our algorithm from Section 4.3, since for inversion in S/q = Zq[X]/Φ`, its complexity
is O(n2 + log `) operations in S/q, instead of O(n2 · (log `+ log log q)). This is confirmed
experimentally in tables 3 and 4 below, in which we compare the cycle count and randomness
consumption between the two polynomial inversion algorithms.

Table 3: Comparison for the inversion in S/q between multiplicative masking and our
technique for a naive and an optimized implementation of the polynomial multiplication,
in thousands of cycles.

Security order t

1 2 3 4 5 6 7
SecSqInverse 18760 41912 115196 213702 332595 484385 644636
INVMul 4187 11264 21558 30964 42155 56451 71288
SecSqInverse_AVX2 743 1192 2044 2947 4115 5611 7525
INVMul_AVX2 87 141 232 357 522 700 927

Table 4: Randomness usage comparison for the inversion in S/q between multiplicative
masking and our technique, in thousands of calls to the RNG outputting 32 bits of
randomness.

Security order t

1 2 3 4 5 6 7
SecSqInverse 19 50 94 151 221 303 398
INVMul 3 8 14 23 34 46 61

6 High-order masking of NTRU decryption
In the previous sections, we have considered the masking of some specific components
of NTRU. In this section, we consider the full high-order masking of the NTRU IND-CCA
decryption, more precisely the Decapsulate algorithm (Alg. 6).

We first recall the NTRU Decrypt and Decapsulate algorithms, already described in
Section 3. The Decrypt algorithm takes as input the ciphertext c and returns (r,m) if the
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ciphertext c is well formed (fail = 0), otherwise it returns fail = 1. If the ciphertext is
well formed, the Decapsulate algorithm returns the session key k1 = H1(r,m), otherwise it
returns the dummy key k2.

Algorithm 3 Decrypt((f, fp, hq), c)
1: if c 6= 0 mod (q,Φ1) return (0, 0, 1)
2: a← (c · f) mod (q,Φ1Φ`)
3: m← (a · fp) mod (3,Φ`)
4: r ← ((c−m) · hq) mod (q,Φ`)
5: if (r,m) ∈ (Lr,Lm) return (r,m, 0)
6: else return (0, 0, 1)

Algorithm 6 Decapsulate((f, fp, hq, s), c)
1: (r,m, fail)← Decrypt((f, fp, hq), c)
2: k1 ← H1(r,m)
3: k2 ← H2(s, c)
4: if fail = 0 return k1
5: else return k2

We summarize below the high-order masking of the Decrypt and Decapsulate operations.

1. At Step 1 of Decrypt, the input ciphertext is unmasked, so we can perform the test
c 6= 0 mod (q,Φ1) in clear.

2. At Step 2 of Decrypt, by assumption the secret-key f is arithmetically masked modulo
q with n shares, so we obtain a masked polynomial a modulo q, by multiplying each
share of f by c, as explained in Section 4.1.

3. At Step 3 of Decrypt, we must convert the masked polynomial a = c ·f = 3 ·g ·r+m ·f
(mod (q,Φ1Φ`)) into a masked polynomial ã modulo 3, so that the term 3 · g · r is
removed by reduction modulo 3. This has been described in Section 4.1. After high-
order multiplication by fp, which is arithmetically masked modulo 3, we eventually
obtain the masked message m modulo 3.

4. At Step 4 of Decrypt, we must first convert m from arithmetic masking modulo 3 to
masking modulo q. See Appendix A.2 for a description of the technique. We can
then obtain an arithmetic masking of r modulo q.

5. At Step 5 of Decrypt, we must test membership r ∈ Lr = T and m ∈ Lm from
masked r and m. We describe the corresponding high-order algorithms in sections
6.1 and 6.2 below. The bit fail can be computed in the clear.

6. At Step 1 of Decapsulate, we obtain masked polynomials m and r, modulo q. For
hashing (r,m) at Step 2 in Decapsulate, we must high-order mask the packS3 algorithm
from [CDH+19], which is applied to (r,m) before hashing, with a Boolean masked
output; see Section 6.3. We then high-order compute the hash function H1 over
Boolean shares, and the session-key k1 is eventually returned with Boolean shares.
The same procedure is applied for H2 if fail = 1.

6.1 Testing membership r ∈ Lr = T
The membership test r ∈ Lr = T is used at Step 5 of Decrypt. Recall that T is the set
of non-zero ternary polynomials of degree at most `− 2. We actually test if r ∈ T ∪ {0},
which means that we consider (r,m) with r = 0 as a legitimate plaintext in the DPKE
scheme. We consider the `− 1 coefficients r(j) of r, where each coefficient is arithmetically
masked modulo q with n shares. To test if r ∈ T ∪ {0}, we must check that each of the
`− 1 coefficients r(j) is in {−1, 0, 1}. More precisely, we must high-order compute the bit:

b =
`−2∧
j=0

(
r(j) ?= −1

)
∨
(
r(j) ?= 0

)
∨
(
r(j) ?= 1

)
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which we can rewrite as:

b =
`−2∧
j=0

(
r(j) ⊕ (−1) ?= 0

)
∨
(
r(j) ?= 0

)
∨
(
r(j) ⊕ 1 ?= 0

)
(7)

In order to high-order compute (7), we first convert each coefficient r(j) from arithmetic
to Boolean masking (see Appendix A.1). Secondly, we xor the first share with −1, 0
and 1 modulo q. Thirdly, we perform 3 zero-tests on Boolean shares to check whether
the coefficient equals −1, 0 or 1 (see Appendix A.3). We then perform a secure Or
between the 3 resulting tests, using x ∨ y = x ∧ y, with the same secure And gadget as in
[ISW03]. Eventually, we obtain a Boolean sharing of the bit b. Since we must perform an
arithmetic modulo q to Boolean conversion for each of the ` coefficients, the complexity is
O(` · log(q) · n2).

6.2 Testing membership m ∈ Lm

The membership test r ∈ Lm is used at Step 5 of Decrypt. In the HRSS version, we have
Lm = T (see Table 1), and since the coefficients of m are ternary by definition (as they are
obtained modulo 3), we do not need to perform any additional test. For the HPS version,
we have Lm = T (q/8− 2), so we need to check that m has q/16− 1 coefficients equals to 1
and q/16− 1 coefficients equals to −1. To do so we first check if the sum of the coefficients
of m is zero, and we then test if the sum of squared coefficients of m is q/8 − 2. More
precisely, given the `− 1 coefficients (m(0), . . . ,m(`−2)) of m, we high-order compute the
bit:

b =

`−2∑
j=0

m(j) mod q ?= 0

 ∧
`−2∑

j=0
(m(j))2 − (q/8− 2) mod q ?= 0


For this, we need to perform two zero-tests on arithmetic sharing modulo q, starting from
an arithmetic masking modulo q of the coefficients of m (which is also required for the
high-order computation of r at Step 4 of Decrypt); see Appendix A.4. The complexity is
O((log(q) + `) · n2).

Note that for the testing of m ∈ Lm and r ∈ Lr, the adversary should not learn whether
m ∈ Lm and r ∈ Lr separately, so we must keep the result of both tests in masked form
before returning the result of the And of the two tests. However this final result (fail = 0
or fail = 1) is not sensitive and can be computed in the clear. The total complexity is
O(` · log(q) · n2).

6.3 Packing ternary polynomials
In the NIST submission of NTRU [CDH+19], the authors describe the PackS3 algorithm
for converting ternary polynomials into a sequence of bytes. In particular, the PackS3
algorithm is used for computing the hash k1 = H1(r,m) at Step 2 of Decapsulate.

More precisely, given as input a vector v of 5 ternary coefficients v = (v0, . . . , v4) ∈
{0, 1, 2}5, the packS3 algorithm interprets the vector v as an integer 0 ≤ x < 243 in base 3:

x =
4∑

j=0
3j · vj (8)

which is then converted into a 8-bit string. The above procedure is applied sequentially on
chunks of five coefficients of the polynomial until no coefficient is left.

When the polynomials r and m are arithmetically masked modulo 3, the above
coefficients vj ’s are also masked modulo 3. Therefore, we first perform an arithmetic
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modulo 3 to arithmetic modulo 256 conversion of each coefficient vj (we refer to Appendix
A.2 for a full description of the conversion algorithm):

vj = vj,1 + · · ·+ vj,n (mod 3)
= wj,1 + · · ·+ wj,n (mod 256) (9)

Combining (8) and (9), we obtain an arithmetic masking of x modulo 256:

x =
4∑

j=0
3j ·

n∑
i=1

wj,i =
n∑

i=1

 4∑
j=0

3j · wj,i

 (mod 256)

Eventually we perform an arithmetic to Boolean conversion of x. The final complexity is
O(n2) for n shares.

In the algorithm above we have assumed that the polynomial r is initially masked
modulo 3, while after Step 4 of the Decrypt algorithm (Alg. 3), the polynomial r is actually
masked modulo q. However, we know after Line 5 that the polynomial r must be ternary.
Therefore, we can use the Mod3Red algorithm from Section 4.1 to obtain an arithmetic
masking modulo 3 of r. We also describe in Appendix C another method to pack ternary
polynomials when they are arithmetically masked modulo q.

7 High-order masking of NTRU key generation
In this section, we consider the high-order masking of the NTRU key generation. We first
recall the KeyGen algorithm, already described in Section 3.

Algorithm 1 KeyGen
1: f ← Lf , g ← Lg

2: fq ← (1/f) mod (q,Φ`)
3: h← (3 · g · fq) mod (q,Φ1Φ`)
4: hq ← (1/h) mod (q,Φ`)
5: fp ← (1/f) mod (3,Φ`)
6: return ((f, fp, hq), h)

We summarize below the high-order masking of the KeyGen algorithm:

1. At Step 1 of KeyGen, we must obtain the masked secret f ← Lf . In the HPS
version, Lf = T , which is the set of non-zero ternary polynomials. We describe the
corresponding algorithm in Section 7.1. In the HRSS version, we have Lf = T+.
We describe the corresponding algorithm in Section 7.2. In both cases, we output
both an arithmetic masking modulo 3 and an arithmetic masking modulo q of the
polynomial f .

2. Similarly, we must generate g ← Lg. The polynomial g must be masked modulo q.
In the HPS version, we must sample g ∈ T (q/8 − 2). The procedure was already
described in Section 4.3. In the HRSS version, we must sample g ← Φ1 · T+, see
Section 7.2.

3. At Step 2, we must mask the inversion fq ← (1/f) mod (q,Φ`), starting from an
arithmetic masking modulo q of f . The inversion can be computed as a sequence of
squares and multiplies in the finite field modulo (2,Φ`), and then lifted by a sequence
of multiplications to modulo (q,Φ`). This was already considered in Section 4.3.



198 High-order masking of NTRU

4. At Step 3, we compute a high-order multiplication of g and fq to obtain the public-key
h, whose shares are recombined. The inversion at Step 4 is then done in the clear.
Namely, hq is part of the secret key only to fasten the recomputation of r during the
CCA decryption, but hq does not need to be secret since it can be computed from
the public key h.

5. Finally, at Step 5, we must also high-order compute the inversion fp ← (1/f) mod
(3,Φ`). This is also performed as a sequence of squares and multiplies in the finite
field modulo (3,Φ`), as when working modulo 2. We describe this procedure in
Appendix D.

7.1 Masked generation of f ← Lf with Lf = T (HPS version)
We describe the high-order masked generation of f ← Lf at Step 1 of KeyGen. We first
consider the HPS version where Lf = T ; we will consider the HRSS version in the next
section. Recall that T is the set of non-zero ternary polynomials of degree at most `− 2.
Therefore |T | = 3`−1 − 1. For simplicity we can actually generate a random f ∈ T ∪ {0},
so that we can generate each coefficient of f in {−1, 0, 1} independently. 2

The high-order sampling is straightforward: we simply generate independently n
polynomials fi for 1 ≤ i ≤ n with random coefficients modulo 3. The polynomials fi’s will
be the n arithmetic shares modulo 3 of the secret polynomial f :

f =
n∑

i=1
fi (mod 3)

Recall that we must also obtain an arithmetic sharing modulo q of f . For this we will
convert each coefficient f (j) of f from masking modulo 3 to modulo q. This is easily done
by applying the table-based conversion algorithm from [CGMZ22], see Appendix A.2.

7.2 Masked generation of f ← Lf with Lf = T+ (HRSS version)
In the HRSS version of the scheme, one must sample the polynomial f in the set T+, which
is a subset of T containing solely polynomials

∑`−2
i=0 v

(i)Xi such that
∑`−2

i=0 v
(i) · v(i+1) ≥ 0.

Elements of T+ are said to be non-negatively correlated; we refer to [CDH+19, Section
2.2.4] for the motivation of generating f in T+ rather than T .

We first describe the unmasked version. We first randomly generate a random element
v ← T , with v =

∑`−2
i=0 v

(i)Xi. We then compute the correlation:

t =
`−2∑
i=0

v(i) · v(i+1) (10)

If t < 0, we flip the sign of even-indexed coefficients, so that we obtain a positive t. Indeed,
letting v′ be the polynomial with flipped coefficients and letting t′ be its correlation, we
obtain:

t′ =
`−2∑
i=0

v′(i) · v′(i+1) =
`−2∑
i=0
−v(i) · v(i+1) = −t > 0

For the high-order masked version, we start from a high-order masked v ← T from
the procedure of Section 7.1, with an arithmetic masking modulo q. We can high-order
compute the value t in (10) using a sequence of secure multiplications and additions
modulo q. The sign of t can then be retrieved by converting to Boolean masked form

2In [CDH+19], the polynomial f is generated by the Ternary algorithm, which samples each coefficient
independently from {−1, 0, 1}, but with a slightly biased distribution.
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and extracting the most significant bit. This sign bit is not sensitive, since eventually we
must have t ≥ 0. Therefore it can be unmasked, and if t < 0 we can flip the even-indexed
coefficients over the arithmetic shares modulo q. Note that the value of t can be computed
modulo q, because we must have |t| < ` < q/2. The complexity is O((log(q) + `) · n2).

Masked generation of g ← Lg = Φ1 · T+ (HRSS version). We proceed similarly for
the generation of g ← Lg = Φ1 · T+, simply by generating a random element in T+ as
above, and then multiplying by Φ1.

8 Implementation results and concrete evaluation

8.1 Implementation results

In order to assess the practicality and scalability at high-order of our countermeasure, we
have performed a proof of concept implementation in C. The source code can be found at

https://github.com/fragerar/Masked_NTRU

We have run our implementation on a laptop equipped with an Intel CPU, and also on a
Cortex-M3 core mounted on an Arduino Due board. Random numbers are generated using
a simple xorshift PRNG, a secure implementation should replace it by a cryptographically
secure PRNG or a TRNG.

Performances on Intel CPU. We provide the running times for various security orders
t in tables 5, 6, 7 and 8. More precisely, in Table 5, we display the cycle counts for the
masked version of the decapsulation procedure incorporated in the reference code, across
all parameters sets. The scaling seems to be quite reasonable for all versions of NTRU.
However, this result is slightly biased by the fact that the polynomial multiplication used
in the reference code of NTRU is not optimized. Indeed, this operation is relatively slow,
and therefore the overhead incurred by our new gadgets is relatively low, since a large
amount of time is spent in the polynomial multiplications.

Table 5: Cycle counts for decapsulation for all parameters of NTRU, in thousands of cycles,
on Intel(R) Core(TM) i7-1065G7 CPU @1.30GHz.

Security order t

0 1 2 3 4 5 6 7 8
ntruhps2048509 716 2 178 4 496 7 715 12 217 18 645 25 986 31 533 38 717
ntruhps2048677 1 074 3 406 7 582 12 537 19 658 29 395 37 610 51 538 74 899
ntruhrss701 1 219 3 777 8 329 13 887 21 526 30 259 40 560 59 834 83 818
ntruhps4096821 1 593 4 917 11 190 18 196 28 805 39 129 60 898 90 625 123 323

Similarly, we provide in tables 6 and 7 the cycle count for the key generation, using
the exponentiation method from Section 4.3 and the multiplicative method from Section
5.2. We see that as in Section 5.3, the later is more efficient.

https://github.com/fragerar/Masked_NTRU
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Table 6: Cycle counts for key generation (exponentiation method) for all parameters of
NTRU, in thousands of cycles, on Intel(R) Core(TM) i7-1065G7 CPU @ 1.30GHz.

Security order t

0 1 2 3
ntruhps2048509 3 565 33 060 73 685 130 005
ntruhps2048677 6 398 71 054 129 927 287 812
ntruhrss701 7236 71 560 138 982 269 223
ntruhps4096821 8 580 82 550 202 390 333 269

Table 7: Cycle counts for key generation (multiplicative method) for all parameters of
NTRU, in thousands of cycles, on Intel(R) Core(TM) i7-1065G7 CPU @ 1.30GHz.

Security order t

0 1 2 3
ntruhps2048509 3 565 10 339 14 858 22 306
ntruhps2048677 6 398 18 307 27 012 38 778
ntruhrss701 7 236 16 635 34 845 57 310
ntruhps4096821 8 580 23 322 38 745 59 819

We also provide in Table 8 the cycle counts using the AVX2 optimized version of the
reference code for the ntruhps2048509 parameter set, significantly reducing the cost of
polynomial multiplication. We obtain a significant speed-up for the Decapsulate, KeyGen
(exponentiation method) and KeyGen’ (multiplicative method) algorithms. In particu-
lar, since KeyGen and KeyGen’ consist almost only in polynomial multiplications (and
randomness generation), their runtime is hugely reduced by the AVX2 optimizations,
which makes it competitive with the decapsulation. On the other hand, the overhead to
mask the decapsulation is now way larger, since gadgets not depending on the polynomial
arithmetic are taking a larger amount of the runtime.3 We also display in Table 8 the
relative performances of the gadgets. We see that the reduction modulo 3 and the ternary
check are the most time consuming, because of the conversions between arithmetic and
Boolean masking.

Table 8: Cycle counts for key generation, decapsulation and main gadgets for the optimized
AVX2 version of ntruhps2048509, in thousands of cycles

Security order t

0 1 2 3 4 5 6 7 8
Decaps 20 608 1758 3210 5479 8683 12019 15453 19505
KeyGen 89 753 1915 3599 6877 8661 12976 17684 21032
KeyGen’ 89 323 581 1077 1782 2619 3520 4644 6207
sec_S3_mul − 15 37 84 130 193 268 333 467
poly_mod3_reduce − 249 671 1457 2313 3633 5028 6443 8879
ternary_check − 92 420 676 1234 1786 2350 2960 3913
pack_S3 − 26 93 187 317 491 667 874 1205
check_message_space − 47 94 198 307 471 653 869 1141
lift − 24 56 132 219 349 501 660 893

Randomness usage We provide in Table 9 the randomness usage of the full decryption
(Decapsulate) and of the key generation (KeyGen and KeyGen’); we also provide the

3Note that it would also be possible to write the other gadgets in AVX2 to speed them up, but the
benefit is likely to be reduced compared to polynomial arithmetic which is a highly structured operation.
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randomness consumption of the main gadgets. As expected, the number of calls to the
RNG is growing significantly when the order increases. In general, randomness usage
is strongly correlated to performances, because shares refreshing is needed at the core
of most gadgets to ensure security in the probing model. The exceptions are gadgets
that manipulate polynomials with small coefficients such as the masked multiplication of
ternary polynomials and the key generation procedure. Indeed, they are cheap in terms of
randomness since multiple coefficients can be extracted from a 32-bit integers but are still
performing the expensive polynomial multiplication in the ring. Note that for the gadgets
performing refreshes modulo q, a whole call to the RNG is counted for each value in Zq.
In practice, at least two values could be extracted from the 32-bit output of the RNG, but
it was not done for the sake of simplicity and to avoid potential leakage due to multiple
random elements of Zq depending on the same initial random value.

Table 9: Randomness usage for key generation, decapsulation and main gadgets, in
thousands of calls to the RNG outputting 32 bits of randomness.

Security order t

1 2 3 4 5 6 7 8
Decapsulate 52 205 419 745 1147 1621 2170 2842
KeyGen 31 84 161 264 393 552 740 960
KeyGen’ 13 38 78 134 207 301 415 551
sec_S3_mul 0.042 0.129 0.258 0.428 0.641 0.897 1.189 1.543
poly_mod3_reduce 17 74 154 278 432 612 822 1080
ternary_check 15 61 122 219 337 475 633 832
pack_S3 2 10 21 38 59 84 113 149
check_message_space 3 10 22 37 57 80 108 140
lift 2 7 15 26 41 58 78 102

Embedded implementation. In addition, since masking schemes are mainly aimed at
embedded devices, we have also tested our code on a Cortex-M3 core mounted on an
Arduino Due board. The cycle counts on this platform for the decapsulation and the key
generation of ntruhps2048509 are displayed in Table 10. We see that the scaling of the
masking scheme at different orders is mostly similar to the results of tables 5 and 6. This is
not surprising since the implementation is in plain C and not optimized for any particular
architecture.

Table 10: Cycle counts for decapsulation and key generation of ntruhps2048509 on a
Cortex-M3 CPU, in thousands of cycles

Security order t

0 1 2 3 4
Decaps 10 508 32 472 70 357 117 367 182 471
KeyGen 117 348 541 752 1 152 565 1 992 624 3 051 656

8.2 Concrete leakage evaluation
Finally, we also provide some security guarantees by performing a fixed vs random t-test
over 10 000 traces for one of the main gadgets, namely the reduction modulo 3 described in
Section 4.1. The results can be found in Figure 1. The platform used for the experiments
is a ChipWhisperer-Lite board that embeds a Cortex-M4 microcontroller (STM32F303)
and a light oscilloscope.

For the leakage assessment, we have rewritten the gadget specifically at order 1 in ARM
assembly, to avoid potential side-channel unsafe modifications from the compiler. We have
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conducted a fixed versus random t-test using the methodology described in [SM15]. The
technique consists in performing the power consumption measurements while the device
is executing the targeted gadget either with a fixed secret value chosen beforehand, or
with a random value sampled before each measurement. This creates two sets of traces
corresponding to the fixed vs the random values respectively. The t-test will then be used
as a distinguisher between the two sets at each point in the power traces. If the values
output by the t-test are high, it means that the statistical difference could potentially be
used by the adversary to learn something about the secret key. In practice, we have used
a set of 10 000 traces. For each trace, a coin was flipped to determine whether the random
or the fixed secret value should be used.

We see in Figure 1 that when the RNG is switched off with randomness set to 0 (that
is, without refreshing the shares), the random and fixed inputs are distinguishable as the
t-values are well above the usual threshold |t| > 4.5. When the random number generator
is switched on, values are properly masked and the test is successful on the gadget.

(a) RNG off (b) RNG on

Figure 1: t-test results on a ChipWhisperer-Lite board, with 10 000 traces.

9 Conclusion
In this paper, we have described the first fully masked implementation of the NTRU
Key Encapsulation Mechanism submitted to NIST (IND-CCA decapsulation and key
generation), with a security proof in the ISW probing model. We have provided a concrete
implementation on ARM Cortex-M3 architecture, showing that our implementation is
reasonably efficient, and also a t-test leakage evaluation. Finally, we have described a
3-rd order attack against a high-order polynomial inversion algorithm for NTRU recently
published in [KLRBG22], and a repaired algorithm with a security proof in the ISW
probing model.
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A Existing masking gadgets
In this section, we summarize the main masking gadgets used in the definition of our
algorithms, with their running-time complexity and security property.

A.1 Conversion between arithmetic and Boolean masking
For the high-order masking of NTRU, we need to convert between arithmetic masking modulo
2k and Boolean masking. Such high-order conversion was first described in [CGV14], with
complexity O(n2 · k) for n shares and k-bit words, with the NI property, in both directions.
To obtain the SNI property, it suffices to compose with a SNI mask refreshing. These
conversion algorithms were later extended by [BBE+18] to arithmetic masking modulo
any integer q, with complexity O(n2 · k) or even O(n2 · log k), where k = log2(q), still with
the SNI property.

Recently, a different algorithm was described in [CGMZ22], based on randomized
table-recomputation, with the same complexity O(n2 · k) in both directions, and satisfying
the SNI property. An alternative algorithm for converting from Boolean to arithmetic
masking is also described in [SPOG19], with the same property.

In summary, we can assume that we have SNI conversion algorithms denoted AtoBq

and BtoAq, to convert between arithmetic masking modulo q and Boolean masking, with
asymptotic complexity O(n2 · log q) in both directions, and satisfying the SNI property.

A.2 Arithmetic modulo 3 to modulo q conversion
We describe the conversion from arithmetic masking modulo 3 to masking modulo 2k. One
could use the composition of two conversions with Boolean masking as a intermediate step,
with complexity O(n2 · k). Alternatively, a direct approach based on table recomputation
is easier and more efficient, with complexity O(n2) only.

More precisely, in [CGMZ22], the authors described the high-order computation of any
function f : G → H where G and H are arbitrary groups. We instantiate their generic
conversion with G = Z3, H = Z2k and the injection f : Z3 → Z2k that maps 0, 1,−1 to
0, 1, (2k − 1) respectively. This leads to the following algorithm below (Alg. 18), with
complexity O(n2). It uses a table T with 3 rows T (0), T (1) and T (2) of n shares each. As
shown in [CGMZ22], the algorithm satisfies the SNI property.

A.3 Zero-testing over Boolean shares
We consider the zero-testing of a value x ∈ {0, 1}k over Boolean shares. More precisely,
the algorithm takes as input a Boolean sharing of x, and returns a Boolean sharing of
b ∈ {0, 1} such that b = 1 if and only if x = 0. Writing x = (x(0), . . . , x(k−1))2 the k bits
of x, we have b =

∧k−1
i=0 x

(i). Therefore the bit b can be high-order computed by using
high-order secure And gadgets, with the SNI property. We refer to [CGMZ21] for the
description of such an algorithm, with complexity TZeroTestBool(k, n) = O(k · n2).

https://ia.cr/2013/004
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Algorithm 18 ConvertZ3,Z2k
(x1, . . . , xn)

Input: (x1, . . . , xn) ∈ Zn
3

Output: (y1, . . . , yn) ∈ Zn
2k with

∑n
i=1 yi = x (mod 2k),

∑n
i=1 xi = x (mod 3) and

x ∈ {0, 1,−1}.
1: T (0)← (0, 0, . . . , 0)
2: T (1)← (1, 0, . . . , 0)
3: T (2)← (2k − 1, 0, . . . , 0)
4: for i = 1 to n− 1 do
5: for u = 0 to 2 do
6: for j = 1 to n do T ′(u)[j]← T (u+ xi mod 3)[j]
7: end for
8: for u = 0 to 2 do
9: T (u)← RefreshZ2k

(T ′(u))
10: end for
11: end for
12: y1, . . . , yn ← RefreshZ2k

(T (xn))
13: return y1, . . . , yn

A.4 Zero-testing over arithmetic shares

For the zero-testing over arithmetic shares, we refer to [CGMZ21] for the description of
various techniques. A first technique consists in first applying an arithmetic to Boolean
conversion and then applying the zero-testing over the Boolean shares as in the previous
section. Another method for prime moduli is based on Fermat’s little theorem. A third
method, also for prime moduli, is based on converting from arithmetic to multiplicative
masking. Eventually, we assume that we have an SNI zero-test algorithm ZeroTestArith
taking as input an arithmetic sharing modulo 2k of a value x, and returning a Boolean
sharing of b such that b = 1 if and only if x = 0, with complexity TZeroTestArith(k, n) =
O(k · n2)

A.5 Linear mask refreshing

We recall the LinearRefresh algorithm from [RP10], working in any additive group G:

Algorithm 19 LinearRefresh
Input: x1, . . . , xn ∈ G
Output: y1, . . . , yn ∈ G such that y1 + · · ·+ yn = x1 + · · ·+ xn

1: yn ← xn

2: for j = 1 to n− 1 do
3: rj ← G
4: yj ← xj + rj

5: yn ← yn − rj

6: end for
7: return y1, . . . , yn
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B Computing inverses in S/q

B.1 Proof of Theorem 3 (correctness of exponentiation in Z2[X]/Φ`)
We claim Algorithm 9 is correct. Let x ∈ Z2[X]/Φ` and m ∈ N. We show by induction on
k − 1 ≥ i ≥ 0 that at the end of each iteration of the loop, the value yi of the variable
y satisfies yi = x2Mi−1, where Mi = m � i. For i = k − 1, we have Mk−1 = mk−1 = 1,
hence yk−1 = x = x2Mk−1−1 as required. We now assume the result holds at iteration
i and we show that the result holds at step i − 1. From the square step, we have
y′i = (yi)2Mi × yi, and after the multiply step, we have yi−1 = (y′i)2mi−1 × xmi−1 , which
gives yi−1 = y2mi−1

i ×y2Mi+mi−1
i ×xmi−1 = (y2Mi +1

i )2mi−1×xmi−1 . By induction hypothesis
yi = x2Mi−1, so we obtain yi−1 = xe with

e = (2Mi − 1) · (2Mi + 1) · 2mi +mi−1 = (22Mi − 1) · 2mi−1 +mi−1

= 22Mi+mi−1 +mi−1 − 2mi−1

From 2 ·Mi +mi−1 = Mi−1 and mi−1 − 2mi−1 = −1 we deduce e = 2Mi−1 − 1. Hence the
induction step is proven. Therefore y0 = x2M0−1 = x2m−1 and the algorithm is correct.

Moreover we need a multiplication for each square step and from each multiply step
with exception of the first square step which corresponds to 1 ∗ 1. This lead to a number
of multiplications:

blog2(m)c+Hw(m)− 1 ≤ 2blog2(m)c

B.2 Proof of Theorem 4
We claim that Algorithm 10 is correct. Indeed, we show by induction that at the beginning
of each step i of the while loop we have ti = 2i and vi · a = 1 (mod (2ti ,Φ`)), where vi

denotes the variable v at Step i. At step i = 0, by definition we have t0 = 1. Moreover we
have v0 · a = 1 mod (2,Φ`).

We now prove the induction step, assuming that ti = 2i and vi · a = 1 (mod (2ti ,Φ`))
holds. First, we have ti+1 = 2ti = 2i+1. We have:

1− a · vi+1 = 1− a · vi · (2− a · vi) (mod (22ti ,Φ`))
= (1− a · vi)2 (mod (22ti ,Φ`))

From the induction hypothesis, we can write 1 − a · vi = P · 2ti (mod Φ`) for some
polynomial P ∈ Z[x], which gives:

1− a · vi+1 = P 2 · 22ti (mod (22ti ,Φ`))
= 0 (mod (2ti+1 ,Φ`))

which proves the induction step, and therefore the correctness of the SqInverse algorithm.

B.3 Secure exponentiation modulo 2
We provide in Algorithm 20 the high-order masking of the FastExpo algorithm recalled in
Section 4.3. We assume that we have a SecMult algorithm for high-order computing the
product of two polynomials in Z2[X]/Φ`, with the SNI property. It can be obtained as a
straightforward extension of the And gadget from [ISW03].
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Algorithm 20 SecFastExpo((x1, . . . , xn),m)
Input: An integer m = (mk−1, . . . ,m0)2, and an arithmetic sharing modulo 2 of x ∈

Z2[X]/Φ`, denoted (x1, . . . , xn).
Output: An arithmetic sharing modulo 2 of x2m−1 in Z2[X]/Φ`, denoted (y1, . . . , yn).
1: y1, . . . , yn ← (1, 0, · · · , 0)
2: for i = k − 1 to 0 do
3: m′ ← m� (i+ 1)
4: for l = 1 to n do zl ← y2m′

l

5: z1, . . . , zn ← RefreshS/2(z1, . . . , zn)
6: y1, . . . , yn ← SecMult((y1, . . . , yn), (z1, . . . , zn))
7: if mi = 1 then
8: for l = 1 to n do yl ← y2

l

9: y1, . . . , yn ← SecMult((y1, . . . , yn), (x1, . . . , xn))
10: end if
11: end for
12: return y1, . . . , yn

B.4 Masking inversion in S/q

We provide an algorithmic description of the high-order masked version of the SqInverse
algorithm from Section 4.3. As previously, we assume that we have a SecMulPoly algorithm
for high-order computing the product of two polynomials in Zq[X]/Φ`, with the SNI
property, as it can be obtained as a straightforward extension of the And gadget from
[ISW03].

Algorithm 21 SecSqInverse(a1, . . . , an)
Input: An arithmetic sharing modulo q (a1, . . . , an) of a ∈ S/q×.
Output: An arithmetic sharing modulo q (v1, · · · , vn) of v such that v ·a = 1 mod (q,Φ`).
1: v1, . . . , vn ← SecFastExpo((a1 mod 2, . . . , an mod 2), `− 2)
2: v1, . . . , vn ← (v2

1 mod q, . . . , v2
n mod q)

3: t← 1
4: while t < log2(q) do
5: v′1, . . . , v

′
n ← v1, . . . , vn

6: v1, . . . , vn ← SecMulPoly((v1, . . . , vn), (−a1, . . . ,−an))
7: v1 ← v1 + 2
8: v1, . . . , vn ← SecMulPoly((v′1, . . . , v′n), (v1, . . . , vn))
9: t← 2t
10: end while
11: return (v1, . . . , vn)

B.5 Proof of Theorem 5
The SecFastExpo algorithm is SNI, thanks to the SNI property of SecMult and the SNI mask
refreshing at Line 5. Similarly, the SecSqInverse is SNI, by composition of SNI gadgets.

B.6 Addition chain improvement
The FastExpo algorithm is not the most efficient since it does not necessarily use the
minimal addition chain. In particular, for computing an inverse over Z2[X]/Φ701 we have
the following minimal addition chain for 699 : 1 < 2 < 3 < 6 < 12 < 15 < 27 < 42 < 84 <
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168 < 336 < 672 < 699. Hence, we deduce the following algorithm computing the inverse
with 12 multiplications, instead of 15 multiplications for Algorithm 9, as in [HRSS17].

Algorithm 22 FastInvS2_701(x)
Input: An element x ∈ Z2[X]/Φ701
Output: The inverse of x in Z2[X]/Φ701

1: y0 ← x2

2: y1 ← y2
0 × y0

3: y2 ← y2
1 × y0

4: y3 ← y23

2 × y2
5: y4 ← y26

3 × y3
6: y5 ← y23

4 × y2
7: y6 ← y212

5 × y4
8: y7 ← y215

6 × y5
9: y8 ← y242

7 × y7
10: y9 ← y284

8 × y8
11: y10 ← y2168

9 × y9
12: y11 ← y2336

10 × y10
13: y12 ← y227

11 × y6
14: return y12

We also recall the minimal addition chains for `− 2 for the four versions of the NTRU
parameters (see Table 2):

507 : 1 < 2 < 3 < 6 < 12 < 15 < 30 < 60 < 63 < 126 < 252 < 504 < 507
675 : 1 < 2 < 3 < 5 < 10 < 20 < 21 < 42 < 84 < 168 < 336 < 672 < 675
699 : 1 < 2 < 3 < 6 < 12 < 15 < 27 < 42 < 84 < 168 < 336 < 672 < 699
819 : 1 < 2 < 2 < 6 < 12 < 24 < 48 < 51 < 102 < 204 < 408 < 816 < 819

We note that the masking of Algorithm 22 is straightforward. It suffices to replace each
multiplication with a secure multiplication and apply the linear power-of-two exponentiation
on each share independently. However, one should be careful about refreshes when the
two shared inputs are linearly dependent.

C Packing S/3 polynomials from S/q

During decryption, it is required to pack polynomials with coefficients in {0, 1, q − 1}. In
the unmasked version, this is performed by first applying the map {0, 1, q − 1} 7→ {0, 1, 2}
to the five coefficients to obtain (v0, . . . , v4) ∈ {0, 1, 2}5 and then packing as depicted in
Section 6.3. While straightforwardly applying the map is cheap in unmasked form, it is
more expensive over shares. Instead, we use the following trick: consider the function

f : Z512 → Z512 : x 7→ x · (511 + 3x)

that effectively maps the set {0, 1, 511} to {0, 2, 4} in Z512. We note that a masked version
of f is fairly cheap to compute over arithmetic shares modulo 512 since the only non-linear
operation is a SecMult. We first map the coefficients from {0, 1, q − 1} to {0, 1, 511} by
reducing every share mod 512 (recall that q is a power of two) and then apply the masked
f to bring the coefficients in {0, 2, 4} in arithmetic form modulo 512. Once we have our
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five coefficients (v′0, . . . , v′4) ∈ {0, 2, 4}5, we compute

x′ =
4∑

j=0
3j · v′j = 2 ·

4∑
j=0

3j · vj

as in the regular packS3. Eventually, we obtain the correct result by performing an
arithmetic to Boolean conversion of x′ and right-shifting every share by 1, effectively
dividing x′ by 2. We note that it is trivial to find an equivalent to f over Zq and thus
that we could have directly mapped {0, 1, q − 1} to {0, 2, 4} but we decided to first reduce
modulo 512 (which is the smallest power of two giving a result holding over Z) to make
the arithmetic to Boolean conversion cheaper.

D High-order computing inverses over S/3 = Z[x]/(3, Φ`)

D.1 Computing inverses over S/3

At Step 5 of KeyGen, we must compute f3 = (1/f) mod (3,Φ`). Since 3 is of maximal
order in Z×` , the cyclotomic polynomial Φ` is irreducible modulo 3 and therefore S/3 is a
field, with |S/3| = |Z<`−1

3 [X] \ {0}| = 3`−1 − 1. Therefore, as in the modulo 2 case, we
can compute the inverse of f via an exponentiation:

f−1 = f3`−1−2 = f3·(3`−2−1)+1 (mod (3,Φ`))

To compute this exponentiation efficiently, we can adapt equation (6) from the modulo 2
case, using the identity 3a+b − 1 = 3a · (3b − 1) + (3a − 1):

f (3a+b−1) = f3a·(3b−1)+(3a−1) mod (3,Φ`)

Adapting Algorithm 9 from Section 4.3, we obtain the following algorithm. The correctness
is proved similarly.

Algorithm 23 FastExpo3(x,m)
Input: An integer m = (mk−1, . . . ,m0)2 and an element x ∈ Z3[X]/Φ`

Output: x(3m−1) in Z3[X]/Φ`

1: y ← 1
2: x← x× x
3: for i = k − 1 to 0 do
4: m′ ← m� (i+ 1)
5: y ← y × y3m′

6: if mi = 1 then y ← y3 × x
7: end for
8: return y

D.2 High-order inversion in S/3

We describe the high-order masking of the previous FastExpo3 algorithm.
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Algorithm 24 SecFastExpo3(x,m)
Input: An integer m = (mk−1, . . . ,m0)2 and an arithmetic sharing modulo 3 (x1, . . . , xn)

of an element x ∈ Z3[X]/Φ`

Output: An arithmetic sharing modulo 3 (y1, . . . , yn) of x(3m−1) in Z3[X]/Φ`

1: y1, . . . , yn ← (1, 0, . . . , 0)
2: x′1, . . . , x

′
n ← RefreshZ3(x1, . . . , xn)

3: x1, . . . , xn ← SecMult((x1, . . . , xn), (x′1, . . . , x′n))
4: for i = k − 1 to 0 do
5: m′ ← m� (i+ 1)
6: for l = 1 to n do zl ← y3m′

l

7: z1, . . . , zn ← Refresh3(z1, . . . , zn)
8: y1, . . . , yn ← SecMult((y1, . . . , yn), (z1, . . . , zn))
9: if mi = 1 then
10: for l = 1 to n do yl ← y3

l

11: y1, . . . , yn ← SecMult((y1, . . . , yn), (x1, . . . , xn))
12: end if
13: end for
14: return y1, . . . , yn

The theorem below shows our inverse algorithm SecFastExpo3 achieves the t − SNI
security notion. The proof is similar to the proof of Theorem 5 and is therefore omitted.

Theorem 9 (t − SNI security of SecFastExpo3). For any subset O ⊂ [1, n] and any t1
intermediate variables with t1 + |O| ≤ t, the output variables y|O and the t1 intermediate
variables can be perfectly simulated from input variables x|I , with |I| ≤ t1.
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