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Abstract. This paper provides necessary properties to algorithmically secure first-
order maskings in scalar micro-architectures. The security notions of threshold
implementations are adapted following micro-processor leakage effects which are
known to the literature. The resulting notions, which are based on the placement of
shares, are applied to a two-share randomness-free PRESENT cipher and Keccak-f .
The assembly implementations are put on a RISC-V and an ARM Cortex-M4 core.
All designs are validated in the glitch and transition extended probing model and
their implementations via practical lab analysis.
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1 Introduction
In their seminal work, Kocher et al. [KJJ99] demonstrated that cryptographic primitives
—although mathematically secure in a black-box setting— can suffer from attacks once
deployed in the real world such as in embedded devices. Side channel analysis enables an
adversary to recover secret data by observing physical characteristics (e.g. power consump-
tion) from such a device. In an attempt to prevent these attacks, various countermeasures
were designed. Masking is one of the most prevalent countermeasures which aims to
make computations independent from the input and prevent its direct power consumption
analysis. To do so, a dth-order masking splits sensitive data into d+ 1 random shares such
that observation of up to d shares does not provide enough information to recover the
original value. Hence, provided certain assumptions such as independent leakage, masking
countermeasures are theoretically secure.

However, the assumptions on which masking relies to provide its security do not hold
in practice [MPO05, MPG05, PV17, BGG+14]. Hardware-based solutions suffer from
glitches and transitions effects which can be a source of leakages and extensive research has
been dedicated to design strategies and solutions to tackle these leakages. Software-based
countermeasures suffer from an even larger security-gap which stems from unintended
interactions between values in the CPU. While the origins of some micro-architectural
leakages have been analyzed, its analysis remains difficult due to the closed-source nature
of many commercial processors. A typical leakage in software implementations arises
from a transition of values in a register (or a memory cell) within the micro-controller
which may be unknown to the developer. On hardware platforms, an elegant masking
countermeasure called threshold implementations proposed by Nikova et al. [NRR06]
enabled first-order secure maskings even in the presence of glitches. However, securing
maskings on a micro-architecture platform is not solved by this approach alone .

The difficulty of protecting a software masked implementation resulted in various
approaches to evaluate the security of a masking scheme. Leakage simulators such as
ELMO [MOW17] or MAPS [CGD18] aim to provide an easy-to-use tool for the evaluation
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of a given assembly implementation while tools such as ROSITA [SSB+21] can perform
automatic algorithmic corrections based on the leakages simulated by ELMO. However,
these tools (and their resulting corrected algorithms) come with the limitation of being
as good as the leakage model from which the emulator is constructed and tailored for
a specific core (e.g. ARM Cortex) and can of course not provide formal proofs. In-
stead, formal verification tools such as MaskVerif [BBFG18], REBECCA [BGI+18], or
SILVER [KSM20] have mostly been applied to hardware implementations although more
recently the scVerif [BGG+21] tool allows for a more precise verification by capturing
detailed leakages from a target using domain specific language. Gigerl et al. [GHP+21]
bring together formal and empirical verification by analyzing the security of a software
masked scheme executed on a CPU from its netlist and proposed a collection of (mostly
hardware) modifications to apply on the design of a RISC-V core.

While threshold implementations were originally designed as a countermeasure for
masked hardware implementations, Sasdrich et al. [SBM18] studied the efficiency of such
masking methodologies on a software environment. Their experiment showed a first-order
secure implementation of the PRESENT cipher indicating that some properties of threshold
implementations may also benefit software masking schemes.

Contributions. In this work, we provide masking properties which are necessary to
algorithmically secure maskings, meaning that the properties can be achieved without
hardware modifications, in scalar cores with the goal of first-order probing security including
glitch and transition effects. More specifically, this paper provides the following points of
contribution.

We go through the known literature and summarize a list of leakages due to glitch and
transition effects in various components of micro-architectures. In particular, the discussed
components are standard among scalar micro-processors.

From the previous list of leakages, we propose masking notions, based on the placement
of the shares, which are necessary to secure against them. We extend the notions of
threshold implementations and propose stricter versions of non-completeness and uniformity
which are adapted to masked micro-architectures.

We discuss how to secure maskings using notions extended from threshold implemen-
tations with td+ 1 and d+ 1 shares (where d = 1 the security order and t the degree of
the function), and provide a secure software masking of a Toffoli gate using the minimal
number of shares. The security of this operation is formally proven in the glitch and
transition extended probing model.

Finally, we secure a two-shared PRESENT cipher, two Keccak variants (i.e. Keccak-
f [800] and the standard Keccak-f [1600]), and the 4-bit quadratic classes with the extended
threshold implementation notions using no additional randomness during the computation.
To show the soundness and portability of our methodology, these primitives are implemented
on a RISC-V and an ARM Cortex-M4 core where we show first-order resistance over
practical measurements up to one million traces. We emphasize the importance of our
proposed notions by showing leakage results when the placement and shifting of the shares
is done in a naive way.

2 Preliminaries

In this section, we introduce Boolean masking and threshold implementations as well as
the side-channel security model considered in this paper, namely the probing model.
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2.1 Boolean Masking
Boolean masking is a sound and widely-deployed countermeasure against side-channel
analysis which was first introduced independently by Chari et al. [CJRR99] and Goubin-
Patarin [GP99]. As a means to conceal a key-dependent variable x ∈ F2, a dth-order
Boolean masking splits such a variable into d+ 1 shares x̄ = (x0, x1, . . . , xd) where shares
x1, . . . , xd are drawn from a uniform distribution and x0 is computed such that x =

⊕d
i=0 xi.

More specifically, such a masking is called a uniform masking.

Definition 1 (Uniform masking). A random masking X̄ over Fns
2 in s shares is uniform

if for all i ∈ {0, .., s− 1}

P ((X0, ..., Xi−1, Xi+1, ..., Xs−1) = (x0, ..., xi−1, xi+1, ..., xs−1)) = 2−n(s−1) .

In words, if every set of s− 1 shares act as a set of uniform random variables.

2.2 Threshold Implementations
In 2006, Nikova et al. [NRR06] introduced a specific case of Boolean masking called a
threshold implementation which secures the masking in the presence of glitches in hardware
circuits. In its essence, a threshold implementation takes as input a uniform masking
x̄ = (x0, . . . , xsx−1) of a secret value x with a masking F̄ (x̄) = ȳ = (y0, . . . , ysy−1) of
a function F (x) = y such that each coordinate function fi of F̄ takes shares of x and
produces a share yi as output. In the following, we recall the properties of threshold
implementations.

Definition 2 (Correctness [NRR06]). The masking F̄ (x̄) is a correct masking of F when∑
i fi(x̄) = F (

∑
i xi).

Glitches in a hardware implementation can cause unexpected leakage between the shares
of a secret variable, hence reducing the security of the Boolean masking scheme (further
explained in Section 2.3). In order to prevent this effect, a threshold implementation makes
use of non-complete coordinate functions.

Definition 3 (Non-completeness [NRR06]). A function F̄ (x̄) is non-complete if each of
its coordinate functions fi uses at most sx − 1 input shares of x̄.

A typical threshold implementation will consist of a collection of Boolean functions
where the outputs of one masked function will be used as inputs in another one. To ensure
each function is given a uniform input masking as per Definition 1, we require that a
masked function outputs a uniform output masking.

Definition 4 (Uniformity [NRR06]). A masked function F̄ (x̄) = ȳ is uniform if ∀x ∈ F,
∀ȳ ∈ Sh(F (x)) : ∣∣ {x̄ ∈ Sh(x)

∣∣ F̄ (x̄) = ȳ
} ∣∣ = |F|

sx−1

|F|sy−1 ,

where Sh(x) denotes the set of valid share vectors x̄ of the secret x.

2.3 The Probing Model
In the probing model introduced by Ishai, Sahai, and Wagner [ISW03], an adversary A is
allowed to observe a set of at most t (predefined) wires of a circuit at each execution of the
masking. The security of a given implementation is proven by showing that a simulator
S can perfectly simulate any set of at most t probes without any knowledge of the input
shares (x0, . . . , xn−1). A circuit ensuring this condition for any set of size t is said to
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be t-probing secure. Dhooghe et al. [DNR19] showed that a threshold implementation
achieves first-order probing security.

While the probing model is a helpful tool to formalize the security of a circuit, its model
remains abstract and lacks the incorporation of physical defaults such as transition-based
leakages or glitches which can alter the security order of a masking scheme. In the work
by Faust et al. [FGP+17], a new model is introduced called the robust probing model
which extends the probing model in order to capture physical defaults of a circuit. As a
result, specific models are defined which enable an adversary A to use ε−extended probes
revealing additional information from a probed wire.

The first effect introduced by Faust et al., which is relevant to this work, pertains to
glitches. In a circuit, combinatorial logic cells are connected to each other such that the
input of one cell is the output of another. During each cycle of execution, the circuit will
be evaluated and the result of cells will be updated until the last cell stores its result into a
register. Because of different wire length, wire speed, or gate propagation time, the result
of each cell might change multiple times before the overall signal stabilizes. Regarding
masked implementation, glitches pose a serious risk of information leakage on a secret
value. Following the work by Faust et al., the probing model is extended to capture this
effect as follows.

“Specific model for glitches. For any ε-input circuit gadget G, combinatorial
recombinations (aka glitches) can be modeled with specifically ε-extended probes so that
probing any output of the gadget allows the adversary to observe all its ε inputs.”

The second effect relevant to this work is on transition leakage. This effect originates
from the fact that the power consumption of a CMOS circuit is dominated by its dynamic
power consumption. When a value stored in a memory cell is overwritten with a different
one, an adversary can measure a peak in the power consumption which can be modeled
as the Hamming distance between the two values. The probing model is extended in the
work by Faust et al. to capture this effect as follows.

“Specific model for transitions. For a memory cell m, memory recombinations
(aka transitions) can be modeled with specifically 2-extended probes so that probing m
allows the adversary to observe any pair of values stored in 2 of its consecutive invocations.”

3 Micro-architectural Leakage Sources
Central Processing Units (CPUs) and Micro-Controller Units (MCUs) follow a multi-
pipeline design which splits data execution into three main stages (see Figure 1) namely:
the fetch stage, the decode stage, and the execute stage. The Instruction Fetch (IF) stage
retrieves the instruction from memory held by the Program Counter (PC) and supplies it to
the Instruction Decode (ID) stage. The latter stage interprets the fetched instruction and
passes it to the EXecution stage (EX) which will forward the operation to the appropriate
functional component. Each stage internally relies on specific hardware units in order to
carry out a stage’s tasks.
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Figure 1: Ibex RISC-V Core [tea].
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Even though instruction set architectures are well defined, processors embed a collection
of undocumented micro-architectural features which generate unexpected recombinations
of data. It should be noted that the leakage sources differ from core to core, as each target
will have a specific implementation — hence different behavior — which might change the
way data is internally handled. However, aside some variations, CPUs commonly mask
sensitive components that produce unintended recombination of shares. In this section,
we aim to provide a classification of the three main types of leakage impacting masked
software implementations on low to mid range scalar cores such as ARM Cortex-M devices
or RISC-V scalar cores. This classification is mainly based on the results of previous
works. For each of these types of leakage namely: transition, glitch, and bitwise interaction
related leakages, we detail the CPU components from which these leakages stem. It is
important to note that we consider the effects of glitches and transitions throughout the
micro-architecture separately, meaning that we ignore the potential combined effects of
glitches and transition effects as detailed by Faust et al. [FGP+17].

3.1 Transition Leakage
The first effect studied on the level of micro-architectures are transition leakages as
explained in Section 2.3. Multiple components of the CPU are subject to transition leakage.
We go over these components.

Register File The register file holds the general purpose registers of the micro-processor
which consists of n m-bit registers (e.g. 31 32-bit registers in the Ibex core) available to
read and write a given number of values within one clock cycle (e.g. the Ibex core has
two read ports and one write port). In a software masked implementation, this unit will
hold shares of secret values used in the current computation which makes it a sensitive
component of the CPU from which transition leakage can occur [BGG+14, PV17, SSB+21].
Hence, in the case of masked implementations this can be a significant issue if the old
value of a register (e.g. x⊕m) is overwritten by a new one using the same mask (e.g. m)
as such operation will leak secret information (e.g. HD(x⊕m,m) = HW (x)).

Pipeline Registers The Arithmetic Logic Unit (ALU) is the combinatorial block which
implements bitwise operations and integer arithmetic. It operates in the execution stage
and receives its instruction’s operands from the decode stage. In order to propagate data
through the different stages, CPUs use specific registers known as “pipeline registers”
serving as intermediate registers holding data from one stage to the other. The update
of the values held in these registers in case of sequential instructions might generate
unexpected transition-based leakages between the operands of the instructions [SSB+21,
MPW22, CGD18, PV17]. For example, assume an initial ALU instruction such as add rA
rB is executed (where rX defines a register which contains a value X). After the decode
stage, operand rA might be stored in pipeline register P0 while operand rB is stored in
pipeline register P1. A consecutive instruction such as add rC rD will update register P0
and P1 leading to leakage of HD(rA, rC) and HD(rB, rD). Note that the storage of an
instruction’s operands in these internal registers will vary from core to core as detailed
in [GOP21]. Such micro-architectural components can be a source of unexpected leakage.
As recently observed by Gao et al. [GOP21] and Marshall et al. [MPW22], instructions
will not always follow the same distribution of operands in the pipeline registers: some
instructions may overwrite the first pipeline register with an operand (i.e. the first) while
some do not.

It is assumed that in an n-stage pipeline scalar core, there are n instructions in flight
per cycle (one in each stage). Control-flow instructions create changes at different stages.
For example, a conditional branch can occur during the decode or execute stage while an
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unconditional branch can happen during the decode or fetch stage. Hence, while a given
instruction might never actually be executed due to control-flow changes, its operands
may already reside within some pipeline registers resulting in their leakage as observed
by Marshall et al. [MPW22]. From the same work, we learn that while leakage between
operands of instructions separated by control-flow is expected in cores using branch delay
slots optimization, recombinations also unexpectedly appear in some ARM cores.

Load-store Unit The Load–Store Unit (LSU) operates during the execution stage and
handles instructions between memory and the registers. The LSU embeds a storage
element that stores the most recent value stored or loaded from the memory [PV17,
MPW22, SSB+21]. Hence, when loading from or storing to memory, the value of this
storage element is overwritten, leaking the Hamming distance between the previous and the
new value. As observed in [MPW22, GHP+21, SSB+21], the load (resp. store) operation
on a byte or halfword will fill the memory bus by the whole word that contains the wanted
byte (or half word) which will generate unintended memory interaction potentially leading
to recombination of shares.

Data Memory Similar to a register overwrite, writing data to memory interacts with data
already stored in the same location [SSB+21, MPW22]. Hence, overwriting one masked
value with another may remove the mask.

3.2 Glitch Related Leakage
The second effect we consider is a glitch as explained in Section 2.3. We go over the
components on a software platform where glitches can cause harmful leakage.

Register File Address Decode Logic While software masked implementations were
often thought to be free of glitches due to their software nature, the design of the
register file is however susceptible to glitches leading to unexpected recombinations of
shares [GHP+21, PV17]. Figure 2 illustrates a generic design of a register file where a
5-bit address signal connected to a multiplexer tree of depth five controls the selection of
registers to be read or written during an instruction. As the address signals result from
combinatorial logic performed at the same time as a given read (or write) instruction, they
are subject to glitches which lead to potential sequential access to multiple registers within
one clock cycle until the signals stabilize which —in software masked implementation—
may result in shares recombination. Moreover, a simple bit-value change from the address
signal will show transition from one register to another on the wire connecting two layers
of the multiplexer tree. For example, sequential access to register x1 and to x4 will switch
the value of Addr[5] from 0 to 1 leading to a transition (e.g. HD(x1, x2)) of value wire
L0 of the first multiplexer. Finally, the micro-controller might perform unintended reads
from registers due to its interpretation of instruction bits at specific indices as operand
addresses (e.g. “lw x1, 5(x20) will result in a read to registers x20 and x5 because bits
15-19 and 20-26 of an instruction are always interpreted as operand addresses.”[GHP+21]).

Load-store Unit In addition to transition-based leakages during a load/store byte/word
instruction, a multiplexer is used in order to output the wanted byte (or halfword) and
—due to possible glitches in the multiplexer selector— bytes (or halfwords) within a word
may also interact unintentionally [GPM21].

Data Memory Data memory suffers similar glitch issues as for the register file [GHP+21].
Hence, storing shares within data memory without special care might lead to unintended
access.



John Gaspoz and Siemen Dhooghe 161

Figure 2: Register file [GHP+21]

3.3 Bitwise Interaction Leakage
In previous works, the assumption was made that the values in a register leak separately.
This allowed designers to store all shares of a secret in a single register. This assumption
is called the “bitwise independent assumption” and is formally given in the work by Gao
et al. [GMPO20].

In this section, we go over the leakage effect where the bits in a single register get
combined. In other words, an effect which violates the bitwise independent assumption.
This leakage effect is in its essence not different from the effects of the previous section,
it originates from the architecture of an ALU (the parallel execution of many operations
where only one operation is chosen as the output) and from potential glitch effects which
occur in this component.

Always-active Computation Units Computation units within the ALU such as bitwise
operations (such as SUB, AND, ADD, OR, XOR, SHIFT, . . . ) are always active during the
execute state. The results produced are given as input to a multiplexer which will select
the appropriate result of the current instruction [GHP+21]. While bitwise operations such
as AND or XOR only operate on individual bits, ADD or SHIFT will create interactions
between the bits within one operand violating the bit-independence assumption required
in some masking schemes storing all the shares into one register [BDF+17]. Hence, when
using such a masking scheme, the execution of a simple bitwise instruction leaks. For
example an always active barrel shifter can undermine share-slicing techniques as described
in the work by Gao et al. [GMPO20].

4 Adapting Threshold Implementations for Software
Having described a list of leakage effects in Section 3, we provide necessary properties
how to secure a masking against them. More specifically, we extend the non-completeness
notion from threshold implementations as defined in Section 2.2. In Section 5, we back up
our new notions with a two-shared masked Keccak whose security is verified in practice.

4.1 Register Non-completeness
Given the effects listed in Section 3, extended notions of non-completeness are required to
secure maskings. For that purpose, we consider operations as Boolean functions which
take registers as input and provide a register as output. We refer to a bit in a register at
“index” i as the ith bit in that register.

From Section 3.3, we find that the ALU recombines bits within a single operand
(register). As a result, we cannot place all shares of a variable in a single register. The
notion of non-completeness therefore needs to necessarily span all values in a single register.
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Definition 5 (Horizontal non-completeness). A masked operation with input registers
R0, ..., R` is horizontal non-complete when the set of all values in R0, ..., R` do not contain
all shares of a variable.

To achieve the above notion, it is necessary that each register in the register file contains
a non-complete set of shares. In the case of a two-shared implementation, we thus enforce
that each registers only holds at most one share per secret value.

From Section 3.2, we find that glitches in the address decode logic of the register file (or
memory unit) can cause recombinations of values between registers. Since the multiplexer
trees decode every bit of the registers separately, such recombinations only happen at the
same index between registers. Similarly, due to the effect of transitions as described in
Section 3.1, values at a fixed index between separate registers can leak due to them being
overwritten. Due to the glitches in the address decode logic, all values in registers on a
specific index have dependent leakage. As a result, we cannot place all shares of a variable
on the same index over separate registers. The notion of non-completeness therefore needs
to necessarily span across the separate registers at a fixed index.

Definition 6 (Vertical non-completeness). A masked operation computing on m-bit
registers R0, ..., R` is vertical non-complete when the set of all values at index 0 ≤ i ≤ m
of R0, ..., R` do not contain all shares of a variable.

Again, at minimum the above notion also needs to hold for the memory and register file.
Therefore, given an n m-bit register file, all values at index 0 ≤ i ≤ m of the n registers
are non-complete. In the case of a two-shared implementation, we thus enforce that for
any set of registers, the set of values at index 0 ≤ i ≤ m holds at most one share per secret
value. Similarly, every separate register can hold at most one share per secret value.

We can also extend the notion of a uniform masking from Definition 1. Whereas
the notions of horizontal and vertical non-completeness were necessary for security, the
following notion on uniformity is neither necessary nor sufficient. However, the notion
allows for a secure sequential composition of functions similar to the regular notion of
uniformity.

Definition 7 (Register uniform masking). Given a masking in s shares, a set of ` + 1
registers R0, ..., R` are a register uniform masking when for every set of s− 1 indices the
set of shares at those indices jointly act as uniform random variables. Similarly, for every
set of s− 1 registers, the shares in those registers jointly act as uniform random variables.

A register uniform function is then one which maps a register uniform input masking
to a register uniform output masking.

The above definition of uniformity essentially requires the regular notion of uniformity
and for the different shares to be vertically separated. Take for example a uniform three-
shared x̄ = (x0, x1, x2), if we would store the three shares in three three-bit registers
R0 = [x0, 0, 0], R1 = [x1, 0, 0], and R2 = [0, x2, 0] then the masking would still be uniform
(from Definition 1) and horizontal and vertical non-complete but it would not be register
uniform (since it essentially compressed a three-sharing to a two-sharing). Instead, we need
to store the three shares in three three-bit registers such that R0 = [x0, 0, 0], R1 = [0, x1, 0],
and R2 = [0, 0, x2]. Similarly, the shares also need to be horizontally separated. Coming
back to the previous example, storing shares in two registers such as R0 = [x0, x1, 0] and
R1 = [0, 0, x2] would also not be register uniform.

As opposed to hardware operations, operations on micro-controllers are often done
sequentially. As a result, we cannot make an operation which is correct, register non-
complete, and register uniform in a single instruction. Instead, we will require the
composition of several operations (implementing a masked function) to be register uniform
and its intermediate stages to be register non-complete or, more strictly, robust probing
secure considering the effects from Section 3.
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Together, the two notions of register non-completeness and register uniformity protect
micro-processors against the effects listed in Section 3. However, in practice, due to each
micro-processor being of a different (and unknown) design, we often cannot ensure register
uniformity as values might be stored in unaccounted registers and kept throughout longer
periods of the computation. Nevertheless, the above notions can help a designer to attain
some necessary properties for a secure masking. Independently to this work, a public
repository on Github containing a software masking of ASCON [Sch] also rotates the
shares against each other to reduce leakage. In the repository, two and three shares masked
ASCON software implementations as well as TVLA results are available. While these
ad-hoc implementations show interesting results for the three-shared implementations,
the two-shared variants require device specific fixes in order to ensure practical security.
Indeed, as opposed to our work, shares are left unrotated during specific operations (e.g.
non-linear operations). We emphasize that keeping such a rotation present throughout the
nonlinear operations can secure the implementation without additional measures specific
to the platform.

4.2 Register Non-completeness with td+ 1 Shares
We start with the traditional setting from threshold implementations where we have td+ 1
shares to protect a function of degree t against dth-order probing adversaries. Since we focus
only on first-order protection, we take d = 1. In order to achieve a masking with registers
which is horizontal non-complete (Def. 5), we separate the registers in t + 1 domains.
Each share is assigned to a single domain. In order to fulfill vertical non-completeness
(Definition 6), we require that no vertical alignments of related shares between any of the
domains occur during the computation. To this end, we store shares in the registers shifted
by a unique value depending on which domain they belong to. An example is shown in
Figure 3 where the input (or output) is separated by share and shifted.

Given an arbitrary masked function F̄ : Fn(t+1)
2 → Fn(t+1)

2 : x̄ 7→ F̄ (x̄) which is non-
complete and uniform given the traditional notions from Section 2.2, the function can
be made register non-complete and register uniform by dividing x̄ in t+ 1 registers each
holding one share and shifting each domain such that they are not vertically aligned. As
a general methodology, this masked function can be computed by shifting the needed
input shares underneath each other and calculating the respective output share. The input
shares are then shifted back into place and the process is repeated until all output shares
are calculated. Once the calculation is complete, we remove or overwrite the inputs shares
x̄ as the input concatenated with the output is not register uniform. For example, for
three shares and the non-complete and uniform masked function F̄ , the input (e.g. x1) is
rotated to the left so that the first output F0(x0, x1) share can be calculated. Afterwards,
x1 is rotated back at its original position and the process is repeated to get all the outputs.
Finally, the inputs are then cleared for the state to be register uniform (see Figure 3).
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Domain B

Domain C

0 1 2

R0 x0

R1 x1

R2 x2

R3 F0(x0,x1)

R4

R5
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0 and compute F0(x0,x1)

0 1 2

R0 x0
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R2 x2
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Align x0 and x2 at index
2 and compute F2(x0,x2)

Figure 3: Methodology for td+ 1 shares. In this masking, registers R0, R1, R2 belong to
domain A, B and C respectively and R3-R5 are temporary registers in domain T.

Finding a methodology or maskings of specific functions which do not require the
clearing of input variables or which require fewer temporary registers is left as an open
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problem.

4.3 Register Non-completeness with d+ 1 Shares

Working with fewer shares makes the extended notions of non-completeness less trivial to
achieve. In order to satisfy Definition 5, we again separate registers into several domains.
In addition, we are required to use a “temporary domain” (called domain T) which can
hold any cross-products which do not belong to the main domains. A depiction of the
layout is given in Figure 4. Similar to the td+ 1 shared case, each domain (including the
temporary domain) is again shifted to ensure vertical non-completeness (Definition 6). For
example, for two-shared implementations, shares held within domain A will all be stored
at index 0 while the shares in domain B will all be stored at index 1.

When performing nonlinear operations, cross products (e.g. aibj) will be created which
—if stored in the same register holing either ai or bj— will cause harmful leakage due to
the effect listed in Section 3.3 on bitwise interactions. Instead, domain T is allocated to
hold these cross products until the products are recombined such that the result can be
stored in the main domains again, in which case the values in the temporary register can
be cleared or overwritten by independent data. Similarly, to avoid harmful leakage from
the effect listed in Section 3.2 on glitches in the decode logic, the cross products in domain
T are stored at separate indices (e.g. for two-shared implementations a0b1 is stored at
index 2 and a1b0 at index 3. Note that cross products a0b0 and a1b1 can be held at the
same index as the first and second share, respectively).

It is possible to find a register non-complete masking of an arbitrary function. Given
a function F : Fn

2 → Fn
2 consisting of u variables, from the original paper on threshold

implementations [NRR06, Corrolary 1] we find that there exists a non-complete masking
of F with 1 + 2nu output shares. By allocating a total of 1 + 2nu temporary registers and
storing each output share in a separate register and index, the output is horizontal and
vertical non-complete.

Finding a masking which achieves register non-completeness and uniformity is more
complex. However, the d+ 1 non-complete and uniform maskings provided in the work by
Shahmirzadi and Moradi [SM21] can easily be transformed to be register non-complete
and uniform by storing each cross-product in a separate register and index.

For example, take the masking of the AND gate from [SM21]. The required inputs are
rotated back and forth to compute each cross product in a separate temporary register
at a unique index. The inputs are cleared from the register file in order to enable the
construction of the compressed and uniform outputs from the cross product components
which are then rotated to the regular indices (see Figure 4).
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R3 b1

R4 a0b0 + b0 

R5
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R7 
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R3 b1

R4 a0b0 + b0

R5 a1b1

R6

R7 
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R1 b0

R2 a1

R3 b1

R4 a0b0 + b0

R5 a1b1

R6 a0b1

R7 

Domain A

0 1 2 3

R0 a0

R1 b0

R2 a1

R3 b1

R4 a0b0 + b0

R5 a1b1

R6 a0b1

R7 a1b0 + b0

Domain T

Domain B

0 1 2 3

R0

R1

R2

R3

R4 a0b1 + a0b0 + b0

R5 a1b1

R6 a0b1

R7 a1b0 + b0

0 1 2 3

R0

R1

R2

R3

R4 a0b1 + a0b0 + b0

R5 a1b1 + a1b0 + b0

R6 a0b1

R7 a1b0 + b0

0 1 2 3

R0 a0b1 + a0b0 + b0

R1

R2 a1b1 + a1b0 + b0

R3

R4

R5

R6

R7 

Initial placement of the shares. Compute a0b0 + b0  at index 0. Compute a1b1 at index 1. Rotate R0 and R3 at index 2.
Compute a0b1.

Clear R0, R1, R2, R3. Rotate R6 at index
0. Compute a0b1 + a0b0 + b0.

Rotate R1 and R2 at index 3.
Compte a1b0 + b0. 

Rotate R7 at index 1. Compute a1b1 +
a1b0 + b0.

Place output shares in R0 and R2.

Figure 4: Methodology for d+ 1 shares. In this masking, registers R0-R1, R2-R3 belong
to domain A and B respectively and R4-R7 are temporary registers in domain T.
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f0(a0, b0) = a0b0 → x′0

f1(a0, b1, r) = a0b1 + r → x′1 x′0 + x′1 = x0

f2(a1, b0, r) = a1b0 + r → x′2 x′2 + x′3 = x1

f3(a1, b1) = a1b1 → x′3

,

Investigating maskings of functions which achieve register non-completeness and uni-
formity using minimal temporary registers is left as future work.

A Secure Toffoli Gate To illustrate register non-completeness in d+ 1 shares, we detail
the computation of a Toffoli gate using two shares, namely the function which maps the
three bits (a, b, c) to (a, b, c+ ab). The masking of this function can be securely achieved
using only one temporary register.

In domain A, registers R0 to R2 will store a0, b0, c0 at index 0 while registers R3 to R5
of domain B will hold the second shares a1, b1, c1 at index 1. Quadratic terms using shares
of similar domain fulfill vertical non-completeness (Definition 6) and can be stored securely
in a temporary register in domain T under the same index as their domain (e.g. aibi can
be placed in a temporary register at index i). However, care must be taken regarding the
cross-domain quadratic terms of the function. Since the computation of a0b1 combines
shares of the domains A and B, the result has to be stored in a temporary register at an
index i where i > 1. Practically, in order to compute such a term, the two registers holding
the shares will have to be aligned (e.g. shifted) at the same index position i. Figure 5
illustrates the eight main steps required for the construction of the outputs c0 and c1.
In Table 1 we provide a step by step execution of this Toffoli gate on 1-bit size shares
which requires 1 temporary register and 21 cycles (compared to 9 cycles in the unshifted
variant). Note that in such example, we enforce that any shifted register of domain A
or B to be shifted back at their original position which counts for 4 additional cycles.
In addition, for the operation to be register uniform (Definition 7) we need to clear the
temporary register (R6) at the end of the operation. However, we note that repeating the
same operation would securely overwrite R6 by the cross product a0b0 at index 0 thus this
clearing operation is not always needed when optimization is required. Note that storing
in memory the updated results of the Toffoli gate would still be insecure due to transition
leakage from the original and updated value in memory (e.g. HD(c0 + a0b0 + a0b1, c0)).

This example is made with a CPU using a simple ISA (such as RV32I). However, CPUs
such as Cortex-M3 which support a larger instruction set such as the Thumb-2 might
benefit from “free” shift operation which would reduce the total cycle count. In addition,
by working over 32-bit words such as in the Keccak-f [800] masking in Section 5, we can
simultaneously compute 32 of such Toffoli gates.

Robust Probing Security We show that the Toffoli gate is correct, register uniform, and
glitch and transition-extended probing secure considering the leakage effects from Section 3.
In other words, we consider a probing adversary who can read all values in a register or a
value at a fixed index from all registers in the register file.

Consider the output of the Toffoli gate (a0, a1, b0, b1, c0 + a0b0 + a0b1, c1 + a1b1 + a1b0),
it is clear that a0 + a1 = a, b0 + b1 = b, and that c0 + c1 = c+ ab. Thus, the computation
is correct. Additionally, since the masking can be seen as a Feistel operation adding
computations on (a0, a1, b0, b1) to the shares (c0, c1), it is clear that the output is also
uniform (following Definition 1) since it is invertible. Since the output is again separated
into the same domains and correctly shifted, the output masking is register uniform
(following Definition 7).

It is sufficient to show that the computation is probing secure including the extensions
from Section 3. This means we have to show that a simulator can simulate the probed
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Table 1: Toffoli gate executed in 21 cycles using one temporary register.
# Operation Reg. Index # Operation Reg. Index
0 a0b0 R6 0 11 a1b1 + c1 R5 1
1 c0 + a0b0 R2 0 12 shift R3 R3 2
2 shift R0 R0 2 13 shift R1 R1 2
3 shift R4 R4 2 14 a1b0 R6 2
4 a0b1 R6 2 15 shift back R3 R3 1
5 shift back R0 R0 0 16 shift back R1 R1 0
6 shift back R4 R4 1 17 shift R5 R5 2
7 shift R2 R2 2 18 c1 + a1b1 + a1b0 R5 2
8 c0 + a0b0 + a0b1 R2 2 19 shift back R5 R5 1
9 shift back R2 R2 0 20 clear R6 R6 2
10 a1b1 R6 1

Domain A

0 1 2

R0 a0
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R2 c0
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R4 b1

R5 c1
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R3 a1

R4 b1

R5 c1
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cycle 1:
compute a0b0

cycle 2:
compute c0 + a0b0

cycles 3-7:
compute a0b1

cycles 8-10:
compute c0 + a0b0 + a0b1

 

Domain A

0 1 2
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R1 b0

R2
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+ a0b1
R3 a1

R4 b1

R5 c1

R6 a1b1

Domain B
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R1 b0
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c0 + a0b0
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R3 a1

R4 b1

R5 c1 + a1b1
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0 1 2

R0 a0
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R2
c0 + a0b0
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R4 b1

R5
c1 + a1b1

+ a1b0
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cycle 11:
compute a1b1

cycle 12:
compute c1 + a1b1

cycles 13-17:
compute a1b0

cycles 18-20:
compute c1 + a1b1 + a1b0

Figure 5: Outputs c0 and c1 of the Toffoli gate. In this masking, registers R0-R2 belong
to domain A, R3-R5 belong to domain B, and R6 is a temporary register in domain T.

result from scratch. In other words, that the probed values behave randomly.
First, note that the AND-XOR operation requires only three indices (bits) of seven

registers. In the following table, we denote the shares in the first, second, and third position
on these registers.

Second, note that each register only holds a single value and that each double-input
operation always calculates on values which are vertically aligned. As a result, the leakage
from Section 3.3 on bitwise interaction is already captured by the leakage from Section 3.2
on glitches in the address decode logic. In other words, a glitch-extended probe can only
see one cell of Table 2. Due to transition leakage, this probe will also view the shares from
the same position in the cell above.

We now claim that there is a simulator which is capable of simulating the probed values
in the operation from scratch. From Table 2, we can categorize the following types of
probed information.

1. A probe views subsets of a0, b0, c0 or a1, b1, c1.
2. A probe views subsets of c0 + a0b0, a0, b1 or c1 + a1b1, a1, b0.
3. A probe views subsets of a0, b0, c0 + a0b0 + a0b1 or a1, b1, c1 + a1b1 + a1b0.

We define our simulator as follows.
• For a probe in the first category, the simulator either samples a0, b0, c0 or a1, b1, c1

as random values.
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Table 2: Probed variables per cycle of the Toffoli gate masking.
# Position 0 Position 1 Position 2
0 a0, b0, c0 a1, b1, c1
1 a0, b0, c0, a0b0 a1, b1, c1
2 b0, c0 + a0b0, a0b0 a1, b1, c1 a0
3 b0, c0 + a0b0, a0b0 a1, c1 a0, b1
4 b0, c0 + a0b0 a1, c1 a0, b1, a0b1
5 a0, b0, c0 + a0b0 a1, c1 b1, a0b1
6 a0, b0, c0 + a0b0 a1, b1, c1 a0b1
7 a0, b0 a1, b1, c1 c0 + a0b0, a0b1
8 a0, b0 a1, b1, c1 c0 + a0b0 + a0b1, a0b1
9 a0, b0, c0 + a0b0 + a0b1 a1, b1, c1 a0b1
10 a0, b0, c0 + a0b0 + a0b1 a1, b1, c1, a1b1 a0b1
11 a0, b0, c0 + a0b0 + a0b1 a1, b1, c1 + a1b1, a1b1
12 a0, b0, c0 + a0b0 + a0b1 b1, c1 + a1b1, a1b1 a1
13 a0, c0 + a0b0 + a0b1 b1, c1 + a1b1, a1b1 a1, b0
14 a0, c0 + a0b0 + a0b1 b1, c1 + a1b1 a1, b0, a1b0
15 a0, c0 + a0b0 + a0b1 a1, b1, c1 + a1b1 b0, a1b0
16 a0, b0, c0 + a0b0 + a0b1 a1, b1, c1 + a1b1 a1b0
17 a0, b0, c0 + a0b0 + a0b1 a1, b1 c1 + a1b1, a1b0
18 a0, b0, c0 + a0b0 + a0b1 a1, b1 c1 + a1b1 + a1b0, a1b0
19 a0, b0, c0 + a0b0 + a0b1 a1, b1, c1 + a1b1 + a1b0 a1b0

• For a probe in the second category, the simulator either samples a0, b1, c0 or a1, b0, c1
as random values. We see that c0 (similarly c1) perfectly masks a0b0 (similarly a1b1).

• For a probe in the third category, the simulator either samples a0, b0, c0 or a1, b1, c1
as random values. We see that c0 (similarly c1) perfectly masks a0b1 (similarly a1b0).

Since we went over all probe position, we have shown the glitch and transition-extended
probing security of the masked Toffoli gate.

5 Software Threshold Implementation of Keccak

In this section, we detail the properties required for the implementation of our two-shared
first-order secure threshold implementation of Keccak. We first recall the basic structure
of Keccak. Afterwards, we discuss its masking and motivate our approach based on the
leakages discussed in Section 3.

5.1 Keccak

Keccak [BDPA13] is a family of sponge-based hash functions based on a permutation
Keccak-f [b] of state-size b = r + c where the rate r defines the input block size and
the capacity c determines the security level required. The state S is organized as a
3-dimensional 5 × 5 × w matrix with w = 2` bits where ` ∈ [0, 6]. Hence, a single bit
in the state can be accessed via (x, y, z) coordinates while a w-bit lane is obtain using
(x, y) coordinates. A row is defined as a 5 bits value given by coordinates (y, z), a column
via (x, z), a sheet as 5 lanes for a fixed index x and a plane as 5 lanes for a fixed y
coordinate. The Keccak-f permutation consists of Nr (e.g 22 for w = 32) iterations of a
sequence of five operations (θ, ρ, π, χ, and ι) which manipulate the state S. θ is a linear
map which computes the XOR of each bit of the state with the parity of two surrounding
columns. ρ and π perform respectively a rotation and permutation on the state. χ is the
only non-linear operation of the permutation where a 5-bit S-box is used on the entire
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state. ι adds a round constant to the first lane of the state. More information can be
found in the original reference [BDPA13].

5.2 Software Threshold Implementation of Keccak-f
In this section, we describe how we secure Keccak-f [800]. We detail on the masking of the
steps which require specific care, namely: the state storage, the χ step, the θ, and the ρ
step. We then provide arguments on its robust probing security as per Section 2.3.

5.2.1 State Storage

In order to enforce the properties defined in Section 4.1 on the storage of the state, we
follow a similar placement of the shares as in the simple Toffoli gate example. More
precisely, the second shares will be right-rotated by one relative to the first shares. Figure 6
provides an illustration on the placement of the bits in the two data blocks (represented
as matrices of 5× 5 lanes) corresponding to the first and second shares. Since the Keccak
state is initialized at zero we construct the masked default states with shifted shares of
zero values.

a640 a672 a704 a736 a768

a480 a512 a544 a576 a608

a320 a352 a384 a416 a448

a160 a192 a224 a256 a288

a0 a32 a64 a96 a128

a0 a1 a2 .  .  . a30 a31

(a) First shares.

b671 b703 b735 b767 b799

b511 b543 b575 b607 b639

b351 b383 b415 b447 b479

b191 b223 b255 b287 b319

b31 b63 b95 b127 b159

b31 b0 b1 .  .  . b29 b30

(b) Second shares.

Figure 6: Placement of the first (left) and second (right) shares represented as matrices of
5× 5 lanes. The first 32-bit lane of each share is detailed in the lower part of the figure
with their respective (shifted) bit indices. The first share is denoted by a and the second
by b where we use subscript to indicate the separate bits.

5.2.2 χ Step

The χ step is the only non-linear function in Keccak-f and operates on 5 bits (i.e. a
row) of the state, updating the five planes of the state. To compute the χ step, a full
plane is loaded into the register file from memory by filling the five registers of the
domain A (resp. domain B) with the first (resp. second) shares of the state. Since
the computation is performed on 32-bit lanes, 32 S-boxes are computed simultaneously.
We base the masking of the χ step on the masked χ given by Daemen et al. [DDE+20,
Sect. 3.5]. In that work, the Keccak S-box is calculated as the five times sequential
application of a two-shared Toffoli gate using an extra input which is recycled using a
changing of the guards construction [Dae17]. More specifically, consider the “permuted
AND-NOT” function p(a, b, c) = (a+ c+ bc, b, c) and denote its masking by p̄ such that
pi(ā, b̄, c̄) = (ai + ci + bi(c0 + c1), bi, ci) 1. This operation is calculated in the same manner
as the Toffoli gate from Section 4.3. Consider the two-shared 5-bits (ā, b̄, c̄, d̄, ē) and an

1We slightly adapted the masking from the work by Daemen et al. which originally had p0(ā, b̄, c̄) =
(a0 + c+ b0c, b0, c0) and p1(ā, b̄, c̄) = (a1 + b1c, b1, c1). This adaptation ensures improved transition leakage
protection when writing back the results from the masked χ to memory overwriting the original inputs.
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Table 3: Step-by-step execution of θ on domain A using four temporary registers.
# Operation Reg. # Operation Reg.
0 Load sheet 0 R5-R9 11 Store updated sheet 2 R5-R9
1 Sum of sheet 0 R10 12 Load sheet 4 R5-R9
2 Load sheet 1 R0-R4 13 Add R12 to sheet 3 R0-R4
3 Sum of sheet 1 R11 14 Sum of sheet 4 R12
4 Load sheet 2 R5-R9 15 Add shifted R12 to sheet 3 R0-R4
5 Sum of sheet 2 R12 16 Store updated sheet 3 R0-R4

6 Add R10 and shifted
R12 to sheet 1 R0-R4 17 Load sheet 0 R0-R4

7 Store updated sheet 1 R0-R4 18 Add R12 and shifted
R11 to sheet 0 R0-R4

8 Load sheet 3 R0-R4 19 Store updated sheet 0 R0-R4

9 Sum of sheet 3 R13 20 Add R13 and shifted
R10 to sheet 4 R5-R9

10 Add R11 and shifted
R13 to sheet 2 R5-R9 21 Store updated sheet 4 R5-R9

extra zero-sharing r̄, the two-shared χ is calculated as follows

r̄ ← p̄(r̄, ē, ā) ā← p̄(ā, b̄, c̄) ,
c̄← p̄(c̄, d̄, ē) ē← p̄(ē, ā, b̄) ,
b̄← p̄(b̄, c̄, d̄) d̄← d̄+ r̄ ,

r̄ ← (a1, a1) .

In the last operation, we update the sharing of zero r̄ with the share a1. In order to adhere
to the rotations between domains A and B, the register holding r1 is rotated.

5.2.3 θ Step

In the θ step, each sheet has to be loaded in the register file in order to compute the
parity of its columns. Because of the limited number of registers available in the register
file, and the number of registers required for this step, the execution is first performed
solely on domain A (i.e. the first shares) and then on domain B (i.e. the second shares).
Table 3 shows a step-by-step execution of the computation of θ for domain A as the same
operation is performed for domain B. The example makes use of ten registers in domain A
and four temporary registers in domain T.

5.2.4 ρ Step

The linear step ρ performs a rotation on each lane of the state which could —depending
of the rotation value— result in a temporary realignment of shares within the register
file. As a consequence, we enforce this step to be computed solely on one share at a time.
While the evaluation of the θ step needs to be done separately due to the limited number
of available registers, the ρ step requires this special care due to the nature of its operation
(e.g. rotation) and its potential effect on the placement of the shares.

5.2.5 Robust Probing Security

In this section, we show that our masking adheres to the properties given in Section 4 on
the extended notions of non-completeness and uniformity. Later in Section 6, a practical
validation is performed via lab experiments.
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First, note that since the masked functions are register uniform (since the function is
uniform and its output shares are vertically separated), each step starts from a register
uniform input. We argue the linear layers (θ, ρ, π, ι) and the nonlinear layer (χ) have
register uniform inputs and outputs, and that their computation is robust probing secure.

• Linear layer: The computation of the linear steps are performed share-wise (in
particular, ι only works on one share) where the register file only contains one share
of the state at a time. As a result, this computation automatically is robust probing
secure.

• Nonlinear layer: The computation of the χ step is the five-times sequential
application of the Toffoli gate from Section 4.3 whose register uniformity and robust
probing security was already proven in Section 4.3.

Because of each masked function being register uniform, the vertical non-completeness
protects against transition leakage between each masked function. However, it is possible
intermediate computational steps are stored (for example in pipeline registers) invalidating
register uniformity of the state. One such example is the “Data Memory” from Section 3.1
where there is potential transition leakage from results written back into memory. In
particular, our masking of the χ function was adapted to ensure this writing back does
not cause transition leakage. However, these cases still need manual work. The formal
verification of this manual work along with verification techniques for these pipeline
registers or memory write-backs are left as future work.

6 Evaluation
This section covers the first-order side-channel security analysis of various implementations
namely: two Keccak-f variants, the PRESENT cipher, and 4-bit quadratic classes. In order
to assess the soundness and portability of our methodology, we evaluate our implementations
on two different micro-controllers, namely a scalar RISC-V core and an ARM Cortex-M4
core. First, we detail specifics about the assembly implementations and the measurement
setup. Second, we present results of the first-order t-test evaluations on the first-round
using one million measurements.

6.1 Keccak-f Implementations
Our implementations follow the FIPS PUB 202 Standard [NIS15] (SHA-3) with parameters
b = 800 or b = 1600, c = 512, a delimited suffix value 0x06 and 32-bit output. In order to
ensure complete control over the registers’ usage, the Keccak-f implementations are realized
in assembly. In order to optimize the algorithms’ efficiency and ease implementation efforts,
the rotation (ρ), permutation (π), and round (ι) constant values are pre-computed and
stored in static arrays. Note that in the case of the Keccak-f [1600] variant, each lane
is composed of 64 bits. Hence, on a 32-bit processor each lane is coded following a bit
interleaving technique [BDP+11] where a 64-bit lane is represented as two 32-bit words
where the first register holds the even bits while the second register contains the odd bits.
Such an optimization is helpful regarding the 64-bit rotation required in the algorithm.
In order to optimize such an encoding of the lanes, we enforce the shift between the two
shares to be made of an even value enabling us to use the same χ assembly code as in the
Keccak-f [800] by running it twice (once for each of the 32-bit parts). Table 4 presents a
comparison between the masked and unmasked implementations on the two cores regarding
execution time (in milliseconds and clock cycles), code size, and memory usage (in bytes).
As masked implementations operate twice the linear steps (once for each share), the clock
cycles required for such steps are doubled compared to the unmasked versions. The masked
non-linear step χ requires more cycles and results in at most three times the number of
clock cycles compared to the unmasked variant. These effects can be observed notably in
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Table 4: Implementation results of the Keccak hash function and Keccak-f permutation.
The first four rows detail Keccak-f [800] while the last four rows detail Keccak-f [1600].
Time is given in milliseconds, and ROM and RAM are given in bytes.

Variant Time Cycles ROM RAM
Keccak-f Keccak-f [θ, ρ, π, ι] χ Keccak Keccak

f
[8

00
] Cortex-M4 masked 2.510 60258 28754 31770 7964 2544

Cortex-M4 unmasked 1.148 27560 14580 13172 6868 2520
RISC-V masked 4.825 76874 31487 48084 32294 6348
RISC-V unmasked 2.184 34615 16885 20025 29858 6328

f
[1

60
0]

Cortex-M4 masked 4.903 117620 43436 74422 13792 2660
Cortex-M4 unmasked 2.323 55717 21997 33925 11972 2636
RISC-V masked 9.415 150815 43448 107654 40746 6452
RISC-V unmasked 4.937 73900 24486 49647 37690 6424

the ARM variants. Implementations rely on rotation instructions especially in the masked
variant χ step. As opposed to Cortex-M4, the RISC-V instruction set does not include
rotate instructions, hence its metrics are larger than the Cortex-M4.

6.2 PRESENT Implementation
PRESENT is an ultra-lightweight block cipher which operates on 64-bit blocks with a
80-bit (or 128-bit) key size. The non-linear part of the cipher is based on a cubic 4-bit
S-box which can be decomposed in a collection of affine transformations over the quadratic
class Q4

12. Our construction of the S-box follows the one described in the work of Sasdrich
et al. [SBM18] where the S-box is coded as

S = A′′ ◦Q4
12 ◦A ◦A′′′ ◦A′′ ◦Q4

12 ◦A,

with Q4
12: 0123456789CDEFAB, A: 01AB892345EFCD67, A′ : 0B835ED61A924FC7, and A′′′ :

8FDACB9E43160752 from which we obtain the corresponding Algebraic Normal Form
(ANF). In order to perform parallel S-box computation, the 64-bit block is encoded from
two 32-bit registers into 4 registers holding respectively the ith bit of each S-box. Since
the linear steps of the algorithm are performed share-wise and the non-linear step is based
on the affine composition of the 4-bit quadratic class Q4

12 which can be constructed using
Toffoli gates [Dae17, Table 1], the robust probing security of the implementation follows
the same reasoning as in Section 5.2.5. Table 5 presents a comparison between the masked
and unmasked implementations on the two cores regarding execution time (in milliseconds
and clock cycles), code size, and memory usage (in bytes). The cycle count overhead of the
masked versions can be explained by the fact that unmasked variants use lookup tables
for the S-box and the masked variants change the state from standard to bitsliced data
representation between each S-box operation.

While the current literature does not provide many secure first-order implementations
on software, a case study of masked PRESENT implementations has been made by Sasdrich
et al. [SBM18]. They compared the security and efficiency of first and second-order Boolean
masked designs and a threshold implementation using three shares on an 8-bit AVR MCU.
Only the threshold implementation was shown to be secure. Section 6.5 shows the secure
implementation results for our two-shared PRESENT. This shows that we directly improve
the work by Sasdrich et al. as we can reduce the number of shares. However, a more
detailed comparison in efficiency is not possible due to the difference between the AVR
core and our RISC-V and ARM cores. Moreover, our design uses vectorized instructions
whereas the work by Sasdrich et al. uses a lookup table approach. Finally, they only test
the designs up to 100k traces whereas our designs are tested for 1M traces.
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Table 5: Implementation results of the PRESENT cipher on the Cortex-M4 and RISC-V
cores. Time is given in milliseconds, ROM and RAM are given in bytes.

Variant Time Cycles ROM RAM
Cortex-M4 masked 3.631 87166 17512 2256
Cortex-M4 unmasked 0.601 14467 6964 2264
RISC-V masked 5.965 95609 43398 6068
RISC-V unmasked 0.831 13296 30370 6080

6.3 4-bit Quadratic Classes Implementation
Since linear operations can be computed share-by-share, the difficulty of constructing a
secure software masked implementation lies in the non-linear part. Hence, to illustrate
the generality and efficacy of our methodology, we provide implementations of the six
classes of quadratic 4-bit functions [BNN+15]. As detailed in [Dae17], those classes can be
implemented using two-shared masked Toffoli gates whose register uniformity and robust
probing security was already proven in Section 4.3. We evaluate the security of two-shared
implementations of those classes pipelined into each other namely:

Q4
300 ◦Q4

299 ◦Q4
294 ◦Q4

293 ◦Q4
12 ◦Q4

4 .

6.4 Measurement Setup
The first target platform is a FE310-G002 [SiFa] SoC which embeds a RISC-V E31 core. The
E31 is a 32-bit single-issue, in-order, five-stage pipeline using the RV32IMAC instruction set
architecture and an internal frequency of 16 MHz. The second target is a CW308T-STM32F
target board [Newa] which embeds a STM32F415RG [STM] Cortex-M4 micro-controller
using an internal 24 MHz operating frequency. The acquisition was performed using a
NewAE CW308 UFO board [Newb] and a Tektronix DPO70404C oscilloscope with a
sample rate of 625MS/s. An external 16 MHz and 8 MHz clock frequency was used for the
RISC-V and the Cortex-M4 cores respectively. We synchronized the oscilloscope and the
external clock for all our measurements. The RISC-V assembly code is compiled from the
Freedom Studio IDE using the pre-built RISC-V GCC toolchain [SiFb]. The Cortex-M4
assembly implementation is compiled using the Arm GNU 2 toolchain.

6.5 Results
Our evaluation focuses on leakage detection using a non-specific, fixed vs. random first-
order t-test statistic [GJJR11] on the computation of the first round of the primitives. We
use the usual threshold value defined at t = 4.5 which provides a confidence of roughly
0.99999. Note that since our measurements contain a large number of sample points
(e.g. the Keccak-f [800] and Keccak-f [1600] variants respectively contain 170k and 270k
sample points), the threshold value t could be adapted to a higher value as discussed
in [DZD+17, Table 1],[BGG+14, Appendix A]. The generation of the input shares as well
as the zero-sharings for the randomness used in χ and for the initial state were computed
externally and sent directly to the micro-controllers. Only the generation of the masked
round keys in the PRESENT cipher were generated internally. We now discuss the t-test
results of the Keccak-f [800]. Figure 7a and 7b show the t-test results where the RNG is
activated. These results confirm our theoretical expectation as no significant evidence of
leakage was detected for one million measurements. As a second scenario, we evaluated
the permutation with the RNG deactivated (e.g. the random values are set to zero). As
expected, the implementation leaks with only 10k traces (see Figure 7c and 7d). Last, we

2gcc-arm-11.2-2022.02-x86_64-arm-none-eabi
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assess the impact of the shifted placement of the shares. In this scenario we evaluate the
permutation with the RNG activated but with all shares aligned (e.g. shares are aligned
at index 0 and the assembly code is stripped from any rotation operations involved in our
methodology). Figure 7e and 7f show significant leakages in the non-linear step χ which
stem from the leakage sources defined in section 3. As a reference, we provide the average
plots of the power consumption in Figure 7g and 7h in which we can distinguish the linear
steps θ, ρ, π followed by the non-linear step χ which is iterated on the five planes of the
state (producing the repeated patterns on the right). Note that in the mean plots, the
oscilloscope’s trigger functions account for the few cycles displayed on the extremities of
the figures. Figure 8 shows the t-test results for the PRESENT cipher, the Keccak-f1600
variant, and the quadratic 4-bit S-boxes on the RISC-V and the Cortex-M4 core.
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(b) Cortex-M4 RNG activated.
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(c) RISC-V RNG deactivated.
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(d) Cortex-M4 RNG deactivated.
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(e) RISC-V RNG activated shares aligned.
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(f) Cortex-M4 RNG activated shares aligned.
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(g) RISC-V Mean.
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(h) Cortex-M4 Mean.

Figure 7: First-order t-test results of a Keccak-f [800] round. The ±4.5 threshold is
marked by red lines. Experiments with RNG active use 1M traces, with RNG inactive use
10k traces, and with aligned share evaluations use 100k traces.

7 Conclusion and Future Work
We provided necessary properties for a masking in order to be secure in scalar micro-
processors. These properties led to a first-order glitch and transition secure methodology
based on share placement. This methodology, in turn, was applied to create two-shares
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(a) RISC-V Keccak-f1600.
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(b) Cortex-M4 Keccak-f1600.
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(c) RISC-V PRESENT.
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(d) Cortex-M4 PRESENT.
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(e) RISC-V quadratic classes.
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(f) Cortex-M4 quadratic classes.

Figure 8: First-order non-specific, fixed vs. random t-test results on RISC-V and Cortex-M4
cores with 1M traces. The ±4.5 threshold is marked by red lines.

randomness-free Keccak-f variants, the PRESENT cipher, and implementations of the
4-bit quadratic classes. The masked primitives were implemented on a RISC-V core and
on an ARM Cortex-M4 core where their security was practically validated.

In this work, we decided to focus on first-order and randomness-free maskings, hence
the decision to extend the notions of threshold implementations. We believe this decision
provided for a cleaner practical validation where we could not use randomness for obfus-
cation or noise-increasing purposes (i.e. no trick up your sleeve). However, we are very
interested to see the same masking techniques being applied to create higher-order and
composable secure maskings (e.g. non-interference secure) using fresh randomness. As
such, we pose this line of research as interesting future work. Additionally, the aim of this
paper was to show the placement of the shares builds towards algorithmic protection in
micro-processors. We did not place efficiency as our top priority and leave improvements
on the efficiency of the designs as future work. Finally, while in this work we provided
necessary measures to algorithmically protect masking schemes in typical scalar cores and
we showed these measures can lead to secure designs, the properties are not yet sufficient.
There are leakage sources which are not covered as-is such as transition leakage that stems
from overwriting an old value in memory by its updated version from the register file or
glitch related leakages in case of a non-uniform register file or memory due to unknown
registers holding a temporary value.
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