
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2023, No. 2, pp. 115–154. DOI:10.46586/tches.v2023.i2.115-154

Areion: Highly-Efficient Permutations and Its
Applications to Hash Functions for Short Input

Takanori Isobe1,2, Ryoma Ito2, Fukang Liu1, Kazuhiko Minematsu3,
Motoki Nakahashi1, Kosei Sakamoto1 and Rentaro Shiba4

1 University of Hyogo, Kobe, Japan.
takanori.isobe@ai.u-hyogo.ac.jp,liufukangs@gmail.com,

motoki.n1998@gmail.com,k.sakamoto0728@gmail.com
2 National Institute of Information and Communications Technology, Koganei, Japan.

itorym@nict.go.jp
3 NEC Corporation, Kawasaki, Japan.

k-minematsu@nec.com
4 Mitsubishi Electric Corporation, Kamakura, Japan.

shiba.rentaro@dc.mitsubishielectric.co.jp

Abstract. In the real-world applications, the overwhelming majority of cases require
hashing with relatively short input, say up to 2K bytes. The length of almost all
TCP/IP packets is between 40 to 1.5K bytes, and the maximum packet lengths of
major protocols, e.g., Zigbee, Bluetooth low energy, and Controller Area Network
(CAN) are less than 128 bytes. However, existing schemes are not well optimized
for short input. To bridge the gap between real-world needs (in future) and limited
performances of state-of-the-art hash functions for short input, we design a family of
wide-block permutations Areion that fully leverages the power of AES instructions,
which are widely deployed in many devices. As its applications, we propose several
hash functions. Areion significantly outperforms existing schemes for short input and
even competitive to relatively long message. Indeed, our hash function is surprisingly
fast, and its performance is less than 3 cycles/byte in the latest Intel architecture for
any message size. Especially, it is about 10 times faster than existing state-of-the-art
schemes for short message up to around 100 bytes, which are most widely-used input
size in real-world applications, on both the latest CPU architectures (IceLake, Tiger
Lake, and Alder Lake) and mobile platforms (Pixel 6 and iPhone 13).
Keywords: Short message · AES instruction · hash function · beyond 5G · IoT

1 Introduction
1.1 Background
In real-world communication environments, the overwhelming majority of cases require
hashing with relatively short input, say up to 2K bytes. It is common knowledge that “real-
world” TCP/IP packet length is biased towards short packets [MKZ+17], as implemented
by the standard benchmark method (Internet Mix1 and the variants) for Internet routers
etc. Packet sizes on the Internet generally follow a bimodal distribution, where 44%
of packets are between 40 and 100 bytes long, and 37% are between 1400 and 1500
bytes in size. Low-power wireless protocols employ short packets, e.g., the maximum
packet length of Zigbee is 127 bytes and 47 bytes for Bluetooth low energy. The next
Controller Area Network (CAN) standard, CAN-FD, has a maximum packet size of 64

1https://en.wikipedia.org/wiki/Internet_Mix

Licensed under Creative Commons License CC-BY 4.0.
Received: 2022-10-15 Accepted: 2022-12-15 Published: 2023-03-06

https://doi.org/10.46586/tches.v2023.i2.115-154
mailto:takanori.isobe@ai.u-hyogo.ac.jp, liufukangs@gmail.com
mailto:motoki.n1998@gmail.com, k.sakamoto0728@gmail.com
mailto:itorym@nict.go.jp
mailto:k-minematsu@nec.com
mailto:shiba.rentaro@dc.mitsubishielectric.co.jp
https://en.wikipedia.org/wiki/Internet_Mix
http://creativecommons.org/licenses/by/4.0/

116 Areion: Highly-Efficient Permutations and Its Applications

bytes. In the use of narrow-band IoT [NBI19], even the communication of 1-bit messages
(e.g., for device monitoring) is considered one of the target applications. For end-to-
end encryption schemes in real-time video conference systems such as Zoom [Jos21] and
Webex [Sys20, OUGM21], which rapidly became popular due to the COVID-19 pandemic,
the frame size is about 1K bytes. In these applications, an efficient hash function for short
messages is essential. Specifically, to maintain the authenticity of the message, particularly
against potentially malicious servers, the hash value of each packet/frame should be signed
by digital signatures [IIM21]. As such systems require real-time processing, the hash
function should be as fast as possible for short messages.

Short inputs are also crucial for the future of mobile communications. So-called “beyond
5G” or 6G mobile communication technology will require the use of short packets to achieve
ultra-low latency communication. In comparison, some applications of 6G are expected to
require a peak speed of over 100 GBps [LaL19].

The importance of the short-input hash function has been widely recognized in
the cryptographic research community. The NIST report on Lightweight Cryptogra-
phy (LwC) [MBTM17, Sect 2.3.2] explicitly mentioned that lightweight applications
typically need a hash function optimized for short messages, such as 256 bits. Some
NIST LwC proposals advertise their performances for short inputs, such as the finalists
Ascon [DEMS19] and Romulus [IKMP20], and a second-round candidates ForkAE [ALP+19]
and Saturnin [CDL+20].

The ongoing NIST LwC project targets lightweight hash functions, but only a few
proposals use AES because the project mainly focuses on devices with low computational
resources. On the other hand, the percentage of CPUs that have (the components of)
AES as a dedicated instruction is rapidly increasing in the mobile and desktop PC world,
represented by Intel AES-NI and ARMv8 AES instructions. Steam Hardware Survey
shows that the number of CPUs with AES instructions is as high as 96.05% of the clients
as of June 20222. Standardization of AES instructions is also being considered for the
RISC-V architecture [MNP+21], which is expected to become popular in the future. This
trend will also spread to low-end platforms such as IoT edge devices.

1.2 Related Work
Short-(Fixed)-Input-Length (SFIL) Hash Functions. Haraka v2 is a SFIL hashing for
post-quantum applications such as hash-based signature schemes [KLMR16]. However, a
recent study by Bao et al. [BDG+21] reveals that preimage attacks on Haraka-256 and
Haraka-512 up to 9 out of 10 rounds and 11 out of 10 rounds are feasible, respectively.
That is, Haraka-512 is completely broken by their cryptanalyses, and the security margin
of Haraka-256 is only one round. Simpira v2 is a family of permutations [GM16], and a
short-input hashing is one of its applications. Although the security flaw of this application
has yet to be found, it needs to be better optimized for recent CPU architectures, especially
for a single permutation call, which is required for this application. For example, one
round of the 256-bit variant requires two times AES round function calls, and each AES
call should be sequentially executed because the second execution requires the output of
the first execution. Because Intel Ice Lake or later processors can pipeline up to 6 AES
instructions, it does not take full advantage of the pipeline.

Variable-Input-Length (VIL) Hash Functions. As efficient VIL hash functions, there
are KangarooTwelve [BDP+18], ParallelHash256 [KjCP16], and BLAKE3 [OANWO20], in
which parallel/tree hash structures allow to leverage pipeline and parallel executions to
enhance the performance in software. However, these are effective only for long input,
i.e., processing short messages (less than 2K bytes) is much less efficient. In addition,

2https://store.steampowered.com/hwsurvey/Steam-Hardware-Software-Survey-Welcome-to-Steam

https://store.steampowered.com/hwsurvey/Steam-Hardware-Software-Survey-Welcome-to-Steam

T. Isobe, R. Ito, F. Liu, K. Minematsu, M. Nakahashi, K. Sakamoto, and R. Shiba 117

KangarooTwelve and BLAKE3 guarantee the 128-bit preimage security. Other standard
hash functions SHA2-256 [oST15a] and SHA3-256 [oST15b] are also not efficient for short
messages.

1.3 Motivation
Looking into real-world applications, an efficient hash function for short inputs up to
2K bytes is essential and will become increasingly important in the future. However,
existing schemes need to be better optimized for short input. Especially, there are still
no satisfactory VIL hash functions for short messages in terms of speed and security. To
bridge the gap between real-world applications’ needs and state-of-the-art hash functions’
performances, we aim to design efficient and secure hash functions for short messages.

Specifically, our design goal for hash functions is to be highly efficient for short messages
up to 2K bytes, and competitive even for long messages to software-efficient hash functions
KangarooTwelve, ParallelHash256, and BLAKE3 on modern desktop and mobile platforms.

1.4 Our Contribution
To achieve our design goals, we first specify a family of efficient permutations Areion that
is optimized for the latest CPU architectures, including Intel and ARM, by fully leveraging
the power of AES instructions. As for its applications, we propose SFIL and VIL hashing.
We then evaluate the security of underlying permutations and their applications and
measure software performances in several architectures. Our contributions in this paper
are summarized as follows.

Software-Efficient AES-Based Permutations. For environments where AES instructions
are available, we design a family of permutations, dubbed Areion, that can be implemented
by only AES instructions such as aesenc and aesenclast in AES-NI or vaeseq and vaesmcq in
ARMv8 NEON as AES instructions are most efficient cryptographic operation among
SIMD operations. As an underlying structure, we propose pipeline-friendly Feistel-type
schemes in which additional F functions are appended to Feistel-type schemes to take full
advantage of the pipeline executions. We find optimal instantiations of F functions by
thoroughly analyzing the security and performance of all possible candidates. As a result,
the performance of Areion is significantly faster than existing permutations in the latest
CPU architectures. Especially, Areion outperforms other permutations in the encrypt
direction. It is an important characteristic of our target applications.

SFIL Hash Function. For an SFIL hashing, we apply Areion to the Davies-Meyer (DM)
construction, which consists of a permutation with a feed-forward (applying the XOR
operation) of the input as with Simpira v2 [GM16] and Haraka v2 [KLMR16]. Our schemes
provide a 256-bit security level against preimage attacks. In addition, these are about 1.4
times faster than the schemes based on Simpira v2.

VIL Hash Function. For a VIL hashing, we design a compression function based on
Areionand implant it to the general Merkle-Damgård (MD) construction [Mer89, Dam89].
Our scheme performs much faster than any other hash functions for the input size up to
1024 bytes and even competitive to other software-efficient hash functions for longer inputs
in laptop and mobile environments while ensuring the 256-bit security level of preimage
attacks. Its performance is less than three cycles/byte for any message size. It is about
ten times faster than existing state-of-the-art schemes for short messages up to around
100 bytes. We remark that such message lengths are typical in real-world applications on
the latest CPU architectures (IceLake, Tiger Lake, and Alder Lake) and mobile platforms
(Pixel 6 and iPhone 13).

118 Areion: Highly-Efficient Permutations and Its Applications

(a) Areion-256 (b) Areion-512

Figure 1: The round functions of Areion.

1.5 Paper Organization

In Sect. 2, we describe the specification of Areion. Sect. 3 explains details of our design
rational of Areion and discusses the optimally of our design choices. In Sect. 4, we show
several applications of Areion. In Sects. 5 and 6, we give the security and performance
evaluations of Areion and its applications, respectively. Sect. 7 concludes the paper.

2 Specification of Permutations

We show the specification of Areion. Areion is based on Simpira v2 but has the structure
that allows more AES instructions to be executed in parallel. We provide the following
two variants of our permutation: Areion-256 and Areion-512. The former accepts a 256-bit
block, and the latter accepts a 512-bit block as input.

To illustrate the specification of each permutation, we denote by Fi (i ∈ {0, 1, 2, 3})
the function based on the operations in AES round function. Let SubBytes, ShiftRows,
MixColumns, and AddRoundConstant in the AES round function be SB, SR, MC, and
AC, respectively. AC is equivalent to AddRoundKey in ordinal AES, but the constant is
added instead of the round key. Fi consists of a combination of SB, SR, MC and AC.
For each value of i, Fi is defined as follows:

F0 = MC ◦ SR ◦ SB
F1 = SR ◦ SB
F2 = MC ◦ SR ◦ SB ◦AC ◦MC ◦ SR ◦ SB
F3 = MC ◦ SR ◦ SB ◦AC ◦ SR ◦ SB

A combination of AES instructions in AES-NI or NEON can implement these functions.
Areion-256 consists of F1 and F2, and Areion-512 consists of F0, F1, and F3. The round
function of each variant is shown in Fig. 1.

We set the number of rounds of Areion-256 and Areion-512 are 10 and 15, respectively.
These are derived from our security evaluation. Sect. 5 describes the details. The round
constants are derived from the binary digits of a fraction part of π = 3.1415926 · · · . Table 1
shows round constants in hexadecimal notation. In the r-th round of Areion, RCr is added
to the state.

T. Isobe, R. Ito, F. Liu, K. Minematsu, M. Nakahashi, K. Sakamoto, and R. Shiba 119

Table 1: Round constants.
RC Round constant
RC0 0x243f6a8885a308d313198a2e03707344
RC1 0xa4093822299f31d0082efa98ec4e6c89
RC2 0x452821e638d01377be5466cf34e90c6c
RC3 0xc0ac29b7c97c50dd3f84d5b5b5470917
RC4 0x9216d5d98979fb1bd1310ba698dfb5ac
RC5 0x2ffd72dbd01adfb7b8e1afed6a267e96
RC6 0xba7c9045f12c7f9924a19947b3916cf7
RC7 0x801f2e2858efc16636920d871574e690
RC8 0xa458fea3f4933d7e0d95748f728eb658
RC9 0x718bcd5882154aee7b54a41dc25a59b5
RC10 0x9c30d5392af26013c5d1b023286085f0
RC11 0xca417918b8db38ef8e79dcb0603a180e
RC12 0x6c9e0e8bb01e8a3ed71577c1bd314b27
RC13 0x78af2fda55605c60e65525f3aa55ab94
RC14 0x5748986263e8144055ca396a2aab10b6

3 The Design

3.1 AES Instructions and SIMD

SIMD is an abbreviation for single instruction multiple data, and a type of parallel
processing. Most modern processors support instructions set for SIMD. SIMD instructions
perform operations vector-wise using data stored in dedicated registers, which allows
arithmetic/bitwise operations in parallel and advanced operations like data shuffling to be
performed with a single instruction.

An example of SIMD instructions that can perform complex operations is an instruction
for executing AES, which is the dominant block cipher. This instruction belongs to AES-NI
(AES New Instructions set) in the Intel/AMD processors. AES-NI includes aesenc to
perform the round function of the encryption, aesenclast for the final round, instructions
for decryption, and instructions to support the round key generation. On the other hand,
in the ARMv8 processors, AES instructions are included in the NEON instructions set.
AES instructions in NEON include vaeseq for AddRoundKey, SubBytes, and ShiftRows,
and vaesmcq for MixColumns. NEON also supports the decryption instructions, while
instructions to assist in the round key generation are not supported.

The performance of SIMD instructions can be measured by their latency, throughput,
and port usage. Latency means the number of clock cycles that are required for the
execution of an instruction. Throughput means the number of clock cycles required to wait
before the responsible ports can accept the same instruction again. Dispatched instructions
are decomposed into micro-operations and then processed by each execution port.

According to the website by Abel and Reineke et al. [RTL21], the latency and throughput
of aesenc/aesenclast in Ice Lake are 3 and 0.5, respectively. A throughput of 0.5 means
that two execution ports can accept the micro-operation from aesenc/aesenclast and each
operation’s throughput is 1 [RTL21]. Fig. 2 illustrates the pipelined execution of multiple
aesenc on Ice Lake. We can see that up to 6 aesenc can be executed in 5 cycles on Ice Lake
using two execution ports, port 0 and port 1.

120 Areion: Highly-Efficient Permutations and Its Applications

Figure 2: Execution of aesenc on Ice Lake processors.

Table 2: The latency and throughput of aesenc, referred by [RTL21].

Processor aesenc
Latency Throughput

Skylake

4 1Kaby Lake
Coffee Lake
Cannon Lake

0.5Ice Lake
3Tiger Lake

Alder Lake
Zen + 4 0.5Zen2

3.2 General Construction
3.2.1 Permutations Realized by only AES Instructions

To construct optimal permutations in environments where hardware instructions of AES
are available, we focus on a class of permutations that can be implemented solely by AES
instructions such as aesenc and aesenclast in AES-NI or vaeseq and vaesmcq in ARMv8
NEON for the following reasons.

• The latency of AES instructions in AES-NI becomes smaller as the processor’s
architecture is upgraded. Moreover, Intel 9th generation and later processors have an
additional execution port that accepts micro-operations generated from AES instruc-
tions, which improves the throughput from 1 to 0.5. The latency and throughput of
aesenc in Intel processors from 6 to 11 generation are shown in Table 2.

• Schemes based solely on AES instructions are beneficial in terms of performance and
security. Since NIST selected AES as a standard block cipher in 2001, no attack has
been published in spite of considerable cryptanalytic efforts over the past 20 years,
and its security is deeply understood in the community of symmetric cryptography.
Thus, it is easy to evaluate its security by existing tools convincingly and accumulated
cryptanalysis knowledge.

• Haraka v2 [KLMR16] is a family of permutations. It is an SPN-type scheme based on
AES instructions and word shuffle operations, such as unpack instructions. Shiba et

T. Isobe, R. Ito, F. Liu, K. Minematsu, M. Nakahashi, K. Sakamoto, and R. Shiba 121

al. show that the structure of Haraka v2 is optimal among SPN-type schemes based
solely on AES instructions and shuffle operations [SSI21]. Thus, presenting a new
SPN-type scheme with better performance than Haraka v2should be challenging.

• Word shuffle operations provide only simple linear transformations. In contrast,
AES instructions include not only more complex linear operations (i.e., MixColumns
and ShiftRows) but also nonlinear operations (i.e., 16 parallel executions of 8-bit
S-box) by only a single instruction call. In addition, the latency of word shuffle
operations requires one, even on the latest CPU architectures. Thus, arguably AES
instructions are the most efficient and cryptographically-strong operations in all
SIMD instructions.

• Haraka v2 does not provide a sufficient level of security as a hash function according
to the recent study by Bao et al. [BDG+21]. They present preimage attacks on
Haraka-256 and Haraka-512 up to 9 out of 10 rounds and 11 out of 10 rounds,
respectively. In addition, designers of Haraka v2 did not claim any security as a
public permutation. According to these facts, Haraka v2 should require roughly 1.2
to 1.5 times of recommended rounds by the designers, i.e., about 12 to 15 rounds
to ensure the security as public permutations of Haraka v2 and hash functions.
These additional rounds degrade the performance of Haraka v2 significantly. We
remark that, due to the structure of Haraka v2, increasing the number of rounds
requires not only more AES instructions but also more word shuffle operations.
Thus, it significantly impacts the overall performance of the tweaked versions of
Haraka v2 compared to the Feistel-type scheme such as Simpira v2, which is a class
of permutations that can be implemented solely by AES instructions.

For the above reasons, we choose the Feistel-type scheme to design new 256- and 512-bit
permutations from 128-bit AES instructions.

3.2.2 Feistel-type Scheme for Leveraging the Pipeline

Limitations of Simpira v2. For the 256- and 512-bit variants of Simpira v2 (hereafrer,
we will refer to each variant as Simpira-256 and Simpira-512, respectively), there is still
room for improvement in their design, considering the characteristic of AES instructions
in modern processors, especially for applications that require sequential executions of
underlying permutations, e.g., SFIL and VIL hash functions.

Specifically, the one-block encryption of Simpira-256 requires two times of executions,
and each AES call should be sequential because the second execution requires the output
of the first execution. On the other hand, one-block encryption of Simpira-512 is capable
of pipelining up to two 2-round AES executions. However, since Intel Ice Lake or later
processors can pipeline up to 6 AES instructions, the structure of Simpira-256 and Simpira-
512 does not take full advantage of the pipeline.

Pipeline-Friendly Feistel-type Schemes. To take advantage of the pipeline as possible,
we design pipeline-friendly Feistel-type schemes in which F functions are added in left
branch for 256-bit version and first and third branches for 512-bit version to Feistel-type
scheme, respectively, as shown in Fig. 3. These allow for pipelined execution of two and
four AES instructions, respectively.

As another possible scheme, we can add F functions in the right branch for the 256-bit
version and the second and fourth branches for the 512-bit version to the above schemes
before XOR operations, respectively. However, our initial evaluation confirmed that these
additional instructions do not improve the performance because they cannot significantly
reduce the required number of rounds to ensure the security of structural attacks on
Feistel, such as impossible differential and integral attacks. Besides, the critical path in

122 Areion: Highly-Efficient Permutations and Its Applications

Table 3: Instructions per cycle (IPC) of each permutation.
Algorithm #Round IPC
Areion-256 10 0.66
Simpira-256 15 0.46
Areion-512 15 0.92
Simpira-512 15 0.52

the decryption of this scheme becomes three times longer than that of the encryption.
From these facts, we conclude that the schemes in Fig. 1 are optimal for 2- and 4-line
Feistel-type schemes for high performance.

Comparison. In order to compare the degree of utilization of the pipeline, we checked
instructions per cycle (IPC) of each variant of Areion and Simpira v2 by static code analysis
using LLVM machine code analyzer (llvm-mca). Table 3 shows the results. For both
variants, the results show the IPC of Areion is larger than that of Simpira v2. Based on
this fact, the construction of Areion can utilizes the pipeline more effectively.

3.3 Finding Optimal Constructions
Possible Candidates of F Functions. Recall that our permutations are realized solely by
AES instructions. As already discussed in [KLMR16, GM16, SSI21], F functions consisting
of one or two AES round functions are optimal in Feistel- and SPN-type schemes. In this
work, to find further efficient constructions, we also consider last-round instructions such as
aesenclast in AES-NI or vaesmcq in ARMv8 NEON, respectively, as underlying instructions.
Thus, F functions should be realized by one or two combinations of aesenc and aesenclast in
AES-NI or vaeseq and vaesmcq in ARMv8 NEON, respectively.

There are six possible candidates of Fi (i ∈ {0, 1, 2, 3, 4, 5}), where F0, F1, F2, F3 are
defined in Sect. 2 and F4 and F5 are as follows.

F4 = SR ◦ SB ◦AC ◦MC ◦ SR ◦ SB
F5 = SR ◦ SB ◦AC ◦ SR ◦ SB

For AES-NI, F0, F1, F2, F3, F4 and F5 are implemented by aesenc, aesenclast, aesenc→
aesenc, aesenclast → aesenc, aesenc → aesenclast, and aesenclast → aesenclast, respectively.
Note that XOR operations in the Feistel-type scheme are executed by the operation of
AddRoundKey, which is the last operation of aesenc and aesenclast, respectively. This
feature of AddRoundKey is the reason why AC is absent in the last of these equations.

For ARMv8 NEON, F0, F1, F2, F3, F4 and F5 are implemented by vaeseq → vaesmcq,
vaeseq, vaeseq → vaesmcq → vaeseq → vaesmcq, vaeseq → vaeseq → vaesmcq, vaeseq →
vaesmcq → vaeseq, vaeseq → vaeseq, respectively. As vaeseq performs AddRoundKey
before SubBytes, the AddRoundKey operation of the first vaeseq in each function is used to
realize the XOR operation of the previous round for Feistel-type schemes. This observation
implies that our schemes can be implemented solely by vaeseq and vaesmcqin NEON,
except for the XOR operation in the last round.

How to Find F functions. To find optimal combinations of functions Fi (i ∈ {0, 1, 2, 3, 4, 5})
in Fig. 3, we first evaluate the security against differential/linear, impossible differential,
and integral attacks using Mixed-Integer Linear Programming (MILP) for all combinations.
Let R1, R2 and R3 be the number of rounds where the following three conditions are
satisfied, respectively.

R1: The number of rounds where the minimum number of active S-boxes is enough to
ensure the security against differential/linear attacks.

T. Isobe, R. Ito, F. Liu, K. Minematsu, M. Nakahashi, K. Sakamoto, and R. Shiba 123

(a) 256-bit Permutation (b) 512-bit Permutation

Figure 3: Target constructions of our permutations.

R2: The number of rounds where there is no any byte-truncated impossible differential
characteristic.

R3: The number of rounds where there is no any byte-wise integral distinguisher.

Besides, we define max{R1, R2, R3} as Rmax. After obtaining Rmax, we will look into
characterises for the performance in Rmax to find most efficient ones. The details are
explained in the followings.

3.3.1 On 256-bit Permutations

Let a 256-bit permutation with Fα and Fβ functions be (α, β)-perm, where α, β ∈
{0, 1, 2, 3, 4, 5}, as illustrated in Fig. 3. As a 256-bit permutation has two functions
in which there are six possible candidates, the total number of combinations is 36 (= 6×6).
Among them, we look for combinations implemented by the lowest number of AES instruc-
tions in Rmax, i.e., we choose the ones that can achieve the required security level with
the lowest number of AES instructions.

Table 4 shows R1, R2, R3, Rmax and the number of AES instructions in Rmax of all 36
candidates. According to this table, the lowest one is (2, 1)-perm for which, R1, R2 and R3
are estimated as 5, 5, and 4, respectively, namely, Rmax = 5, and #AES instructions in 5
rounds is only 15. From this result, we select (2, 1)-perm as underlying one for Areion-256.

3.3.2 On 512-bit Permutations

Let a 512-bit permutation with Fα, Fβ , Fγ and Fδ functions using π block shuffle layer be
(α, β, γ, δ, π)-perm, where α, β, γ, δ ∈ {0, 1, 2, 3, 4, 5}, as illustrated in Fig. 3. As a 512-bit
permutation has four F functions in which there are six possible candidates, and π block
shuffle has 24 (= 4!) patterns, the total number of combinations is estimated as 31104
(= 6× 6× 6× 6× 4!).

To find the most efficient combination among them, we thoroughly analyze security
and performance using the following procedures.

Step 1: Limiting the Number of AES Instructions in Rmax. As with the 256-bit case,
we focus on combinations implemented by the lowest number of AES instructions in
Rmax. As a result of our search, we find 30 candidates in which the lowest number
of AES instructions in Rmax(= 9) is 45, as shown in Table 5.

Step 2: Eliminating the Equivalent Candidates. 28 candidates out of the remaining 30
ones can be classified into 14 equivalent classes, i.e., each two candidates of them is

124 Areion: Highly-Efficient Permutations and Its Applications

Table 4: Search results on 256-bit permutations.
(α, β) R1 R2 R3 Rmax #AES instructions
(0, 0) 23 7 5 23 46
(0, 1) 8 9 5 9 18
(0, 2) 6 5 4 6 18
(0, 3) 16 7 4 16 48
(0, 4) 6 6 4 6 18
(0, 5) 6 8 5 8 24
(1, 0) 8 9 6 9 18
(1, 1) 33 - - - -
(1, 2) 6 5 4 6 18
(1, 3) 6 9 6 9 27
(1, 4) 6 9 5 9 27
(1, 5) 23 - - - -
(2, 0) 6 5 4 6 18
(2, 1) 5 4 5 5 15
(2, 2) 6 4 3 6 24
(2, 3) 6 5 4 6 24
(2, 4) 4 5 3 5 20
(2, 5) 5 5 4 5 20
(3, 0) 16 7 4 16 48
(3, 1) 7 9 5 9 27
(3, 2) 6 5 4 6 24
(3, 3) 12 - 4 - -
(3, 4) 4 6 4 6 24
(3, 5) 7 - 5 - -
(4, 0) 6 7 4 7 21
(4, 1) 6 9 5 9 27
(4, 2) 4 5 3 5 20
(4, 3) 4 6 4 6 24
(4, 4) 7 - 3 - -
(4, 5) 6 - 5 - -
(5, 0) 7 8 6 8 24
(5, 1) 23 - - - -
(5, 2) 4 5 4 5 20
(5, 3) 7 - 6 - -
(5, 4) 6 - 5 - -
(5, 5) 17 - - - -

mapped to one equivalent class. Based on this fact, we can eliminate 14 equivalent
classes, and then we can reduce to 16 (= 30− 14) candidates.

Step 3: Considering Efficiency in NEON Instructions. The remaining 16 combinations
can be classified into three different classes. Specifically, each different class has the
following different π:

π1 : xr0||xr1||xr2||xr3 7→ xr+1
1 ||xr+1

2 ||xr+1
3 ||xr+1

0

π2 : xr0||xr1||xr2||xr3 7→ xr+1
3 ||xr+1

0 ||xr+1
1 ||xr+1

2

π3 : xr0||xr1||xr2||xr3 7→ xr+1
1 ||xr+1

3 ||xr+1
0 ||xr+1

2

The two constructions in π3 are unsuitable for implementations using NEON in-
structions in ARMv8. This is due to the fact that the implementation of these

T. Isobe, R. Ito, F. Liu, K. Minematsu, M. Nakahashi, K. Sakamoto, and R. Shiba 125

Table 5: Search results of 512-bit permutations.
(α, β, γ, δ, π) R1 R2 R3 Rmax #AES instructions
(0, 0, 0, 4, π1) 8 9 5 9 45
(0, 0, 1, 2, π1) 9 9 6 9 45
(0, 0, 2, 1, π1) 9 9 6 9 45
(0, 0, 4, 0, π1) 8 9 6 9 45
(0, 0, 5, 0, π1) 9 9 7 9 45
(0, 1, 0, 2, π1) 9 9 6 9 45
(0, 1, 0, 3, π1) 9 9 6 9 45
(0, 1, 0, 4, π1) 8 9 6 9 45
(0, 1, 2, 0, π1) 9 9 6 9 45
(0, 1, 2, 1, π1) 8 9 6 9 45
(0, 2, 0, 1, π1) 9 9 6 9 45
(0, 2, 1, 0, π1) 9 9 6 9 45
(0, 3, 0, 1, π1) 9 9 6 9 45
(0, 4, 0, 0, π1) 8 9 5 9 45
(0, 4, 0, 1, π1) 8 9 6 9 45
(1, 0, 0, 2, π1) 9 9 6 9 45
(1, 0, 2, 0, π1) 9 9 7 9 45
(1, 2, 0, 0, π1) 9 9 6 9 45
(2, 0, 0, 1, π1) 9 9 6 9 45
(2, 0, 1, 0, π1) 9 9 7 9 45
(2, 1, 0, 0, π1) 9 9 6 9 45
(2, 1, 0, 1, π1) 8 9 6 9 45
(4, 0, 0, 0, π1) 8 9 6 9 45
(5, 0, 0, 0, π1) 9 9 7 9 45
(0, 1, 0, 2, π2) 8 9 5 9 45
(0, 2, 0, 1, π2) 8 9 5 9 45
(1, 0, 2, 0, π2) 9 9 5 9 45
(2, 0, 1, 0, π2) 9 9 5 9 45
(0, 0, 1, 2, π3) 9 9 6 9 45
(0, 0, 1, 4, π3) 9 9 6 9 45

two constructions by NEON requires successive XORs, which hampers the imple-
mentation with only vaeseq and vaesmcq while maintaining the compatibility of
the implementation on ARM and Intel. Based on this fact, we eliminate these two
constructions using π3 from the candidates. As a result, we obtain 14 constructions.

Step 4: Estimating Theoretical Number of Cycles. For the remaining 14 candidates, we
use a performance analysis tool llvm-mca to estimate the theoretical number of cycles
in Ice Lake or later architecture. Table 6 shows theoretical values of total cycles in
15-round encryption, calculated by llvm-mca. According to this result, we reduce to
6 candidates with the lowest number of cycles to perform the encryption.

Step 5: Performing Experimental Evaluations. We measure the performance of the re-
maining six candidates on several platforms. Table 6 shows the results on Ice Lake
architecture (Intel(R) Core(TM) i7-1068NG7 CPU @ 2.30GHz). From these results,
we selected (0, 1, 0, 3, π1)-perm as the optimal combination for Areion-512.

126 Areion: Highly-Efficient Permutations and Its Applications

Table 6: Theoretical and experimental value of total cycles at 15-round encryption.
(α, β, γ, δ, π) total cycle cpb

(by llvm-mca) (by experiments)
(0, 0, 0, 4, π1) 8899 1.09016
(0, 0, 1, 2, π1) 8899 1.08927
(0, 0, 2, 1, π1) 11528 -
(0, 0, 4, 0, π1) 11528 -
(0, 0, 5, 0, π1) 11528 -
(0, 1, 0, 2, π1) 8899 1.08918
(0, 1, 0, 3, π1) 8899 1.08882
(0, 1, 0, 4, π1) 8899 1.08989
(0, 1, 2, 0, π1) 11528 -
(0, 1, 2, 1, π1) 11528 -
(1, 0, 0, 2, π1) 8899 1.09017
(1, 0, 2, 0, π1) 11528 -
(0, 1, 0, 2, π2) 9109 -
(1, 0, 2, 0, π2) 9919 -

4 Applications
4.1 SFIL Hash Function
For an SFIL hashing, we apply Areion to the Davies-Meyer (DM) construction, which
consists of a permutation with a feed-forward (applying the XOR operation) of the input.
The use of DM for SFIL hashing has already been discussed in [GM16, KLMR16]. In
particular, Haraka v2 implemented two SFIL hash functions, Haraka256-DM : F256

2 → F256
2

and Haraka512-DM : F512
2 → F256

2 , defined as follows:

Haraka256-DM(x) = π256(x)⊕ x, (1)
Haraka512-DM(x) = trunc(π512(x)⊕ x), (2)

where π256 and π512 are the 256- and 512-bit permutations of Haraka v2, respectively; and
trunc : F512

2 → F256
2 is a truncation function defined as follows:

trunc(x0|| · · · ||x15) = x2||x3||x6||x7||x8||x9||x12||x13, (3)

where x = x0|| · · · ||x15 ∈ F512
2 . Our SFIL hash functions, Areion256-DM and Areion512-DM,

use Areion-256 and Areion-512 instead of Haraka v2’s ones. The DM construction uses only
the forward direction of the permutation, and the overhead beyond the permutation is
negligible. Thus, the performances of Areion256-DM and Areion512-DM are effectively the
same as those of the forward direction of underlying permutations.

The designers of Simpira v2 suggested its application to SFIL hash functions [GM16].
Then, for performance comparison, we define DM construction instantiations of Simpira
v2 in the same way as above and refer to them as Simpira256-DM and Simpira512-DM.

4.2 VIL Hash Function
For a VIL hashing, we apply Areion-512 to the Merkle-Damgård (MD) construction, a
classical method of building a cryptographic hash function from a compression func-
tion [Mer89, Dam89].

Our VIL hash function, Areion512-MD, is an MD construction instantiated with
Areion512-DM. Other design details of Areion512-MD follow SHA2-256 [oST15a]. SHA2-
256 has two phases, preprocessing and hash computation phases. The former is further

T. Isobe, R. Ito, F. Liu, K. Minematsu, M. Nakahashi, K. Sakamoto, and R. Shiba 127

divided into three steps: padding the message, parsing the message into message blocks
and setting the initial hash value. For Areion512-MD, padding and message parsing are
executed in the same procedure as SHA2-256. However, the length of the padded message
should be adjusted to be a multiple of 256 bits instead of a multiple of 512 bits; and the
size of the parsed message block is 256 bits (see [oST15a, Section 5] for more details).
Areion512-MD uses the same initial hash value H of SHA2-256, and it consists of the
following two 128-bit words:

H0 = 0x6a09e667bb67ae853c6ef372a54ff53a, (4)
H1 = 0x510e527f9b05688c1f83d9ab5be0cd19. (5)

Then, Areion512-DM is used for the hash computation phase. The parsed message block
is inserted into x0 and x1 of the input word positions in Areion-512, and the initial hash
value and chaining values (that is, the output value of each compression function) are set
into x2 and x3 of the input word positions in Areion-512 (see Fig. 1b). Finally, the output
value of the last DM compression function becomes a 256-bit message digest.

The designers of Simpira v2 and Haraka v2 did not mention its application to VIL hash
functions [GM16, KLMR16]. However, for performance comparison, we define an MD
construction instantiation of Simpira512-DM and Haraka512-DM in the same way as above
and refer to them as Simpira512-MD and Haraka512-MD, respectively.

5 Security Evaluation
5.1 Security for Underlying Permutations
We evaluate the security of Areion-256 and Areion-512 as public permutations against
differential, linear, impossible differential, and integral attacks.

Claimed Security for Underlying Permutations. We claim 128-bit security for both
Areion-256 and Areion-512 as with Simpira v2, i.e., we consider the attacks up to 2128

complexity. There is no rigorous definition of a distinguisher for a public permutation.
In the literature, there is, however, a very related concept called the known-key distin-
guisher [KR07] or the correlation intractability [CGH04]. Note that once the key is known
for a block cipher, the block cipher becomes a public permutation. Roughly speaking, a
known-key distinguisher is that for a block cipher, there exists a relation such that given
the key, it is easy to find plaintext-ciphertext pairs satisfying this relation. However, it is
difficult to find them for a random permutation [KR07]. Moreover, if the relationship is
simply the description of the block cipher itself, this should be meaningless for the following
reasons. First, every block cipher will be vulnerable to this attack with only 1 query.
Second, the relationship is not interesting at all from the designers’ perspective [KR07].
In [Gil14], a more formal definition of the known-key distinguisher for a block cipher was
given, which is a rigorous description of the above statement. In both the known-key
distinguishers on AES [KR07, Gil14], they indeed are the extensions of the well-known
integral attack on round-reduced AES, where the attackers start from a middle round
and aim to find an input-output set such that the sum of some bytes in the input and
output are all zero, respectively. We will rely on similar start-from-the-middle techniques
to construct zero-sum distinguishers for our proposed public permutations. Moreover, our
zero-sum distinguishers also resemble the known-key distinguishers on AES [KR07, Gil14]
because we similarly find distinguishers based on the well-known integral attack on AES.

Differential/Linear Attacks. We estimate the security against differential/linear attacks
by obtaining the lower bound for the number of differentially/linearly active S-boxes with

128 Areion: Highly-Efficient Permutations and Its Applications

Table 7: The lower bound for the number of differentially/linearly active S-boxes for
Areion-256 and Areion-512. Here, ASD and ASL denote the number of differentially
and linearly active S-boxes, respectively.

Primitives
Rounds 1 2 3 4 5 6 7 8 9 10 11 12

Areion-256
ASD

0 6 12 38 46 53 60 86 92 99 108 135
Areion-512 0 2 5 8 20 36 62 73 90 106 119 135
Areion-256

ASL
0 1 9 24 42 48 65 79 91 102 114 128

Areion-512 0 1 4 8 21 35 50 68 89 103 120 131

an MILP-based method proposed by Mouha et al. [MWGP11]. ASD and ASL denote the
lower bound for the number of differentially and linearly active S-boxes, respectively.

Since the maximal differential and linear probability of the S-box of AES are both 2−6,
ASD/L of ≥ 22 (2−6×22 < 2−128) is sufficient to ensure 128-bit security against differential/-
linear attacks. Table 7 shows the lower bound for the number of differentially/linearly active
S-boxes for Areion-256 and Areion-512. In our evaluation, Areion-256/Areion-512 achieves
both ASD and ASL of ≥ 22 at 4/6 rounds, and both ASD and ASL at 12 rounds for both
permutations outnumber well over 22. Therefore, we expect full rounds of Areion-256 and
Areion-512 can resist differential and linear attacks.

Impossible Differential Attacks. The miss-in-the-middle approach is known as an efficient
way to find the longest impossible differences, which can be implemented by an MILP
with a small change from an MILP model for counting the number of differentially active
S-boxes [ST17, CJF+16]. In our evaluation, we search a class of impossible differential
characteristics where input and output differences activate only one byte to find the longest
impossible differences efficiently.

By this approach, we find the impossible differences at 4/8 rounds of Areion-256/Areion-
512, both of which are the longest ones we can find. Since there is still enough margin to full
rounds for both permutations, we expect that full rounds of Areion-256 and Areion-512 can
resist impossible differential attacks.

Integral Attacks. To find the integral distinguisher, we evaluate the byte-wise division
property with a MILP-based method proposed by Xiang et al. [XZBL16]. We search the
input space where only one byte is constant, and the remaining bytes are active, i.e., the
data/time complexity of the integral distinguishers are 2248 and 2504 for Areion-256 and
Areion-512, respectively.

As a result, we find the 3- and 5-round integral distinguisher on Areion-256 and Areion-
512, respectively. It should be emphasized that the required data/time complexities for
these distinguishers exceed our security claim. Hence, the longest integral distinguishers
with up to 2128 data/time complexity, which are in our security claim, are expected to
exist on fewer rounds than that of these distinguishers. Thus, we expect full rounds of
Areion-256 and Areion-512 can resist integral attacks.

Zero-sum Distinguishers. The zero-sum distinguisher [AM09] is a popular attack on
public permutations. The overall attack procedure is straightforward. Specifically, the
attackers first choose a particular set of intermediate state values and then propagate this
set of values backwards and forwards, respectively. If, in the corresponding set of inputs
and outputs, the sum of some input bits and output bits are zero, respectively, a zero-sum
distinguisher is found. We have evaluated the resistance against this attack based on the

T. Isobe, R. Ito, F. Liu, K. Minematsu, M. Nakahashi, K. Sakamoto, and R. Shiba 129

well-known 4-round integral distinguisher for AES. It is found that there are zero-sum
distinguishers for 5-round Areion-256 and 10-round Areion-512, respectively. The data and
time complexity of the 2 zero-sum distinguishers are the same, which are both 232. We
give the details below.

The distinguisher for 5-round Areion-256. First, we explain the zero-sum distinguisher
for 5-round Areion-256, as shown in Fig. 4.

G0

G1 ⊕

G0

G1 ⊕

G0

G1 ⊕

G0

G1 ⊕

G0

G1 ⊕

G0 = SR ◦ SB

G1 = MC ◦ SR ◦ SB ◦AC ◦MC

x1

0

x2

0

x3

0

x4

0

x2

1

x3

1

x4

1

x5

0
x5

1

x1

1

x0

1
x0

0

constant

all

balanced

unknown

Figure 4: The zero-sum distinguisher for 5-round Areion-256.

Specifically, we choose 4 bytes of x2
1 which traverses all the 232 possible values. For x2

0,
it is assigned to a random constant value. According to the round function, we have

x4
0 = G1 ◦G0(x3

0)⊕ x3
1 = G1 ◦G0(G1 ◦G0(x2

0)⊕ x2
1)⊕G0(x2

0),
x4

1 = G0(x3
0) = G0(G1 ◦G0(x2

0)⊕ x2
1),

x5
0 = G1 ◦G0(x4

0)⊕ x4
1,

x5
1 = G0(x4

0),

For the term G1 ◦G0(x4
0) in x5

0, with our input form for (x2
0, x

2
1), it is equivalent to that

x2
1 passes 4 AES rounds. For the term x4

1 in x5
0, it is equivalent to that x2

1 passes 2 AES
rounds. Hence, we need to use a data set of size 232, and all the bytes in x5

0 will be
balanced. For x5

1, as x4
0 can be viewed as applying 2 AES rounds to x2

1, each byte of x5
1

will also be balanced. The above observation also explains why the automatic method
based on the division property could only detect a 3-round integral distinguisher in the
forward direction, i.e., we at least need to consider 4 AES rounds.

In the backward direction, we have

x1
0 = G−1

0 (x2
1),

x1
1 = G0 ◦G1(x1

0)⊕ x2
0,

x0
0 = G−1

0 (x1
1).

130 Areion: Highly-Efficient Permutations and Its Applications

Therefore, all the bytes in x0
0 will be balanced. To better understand this, one can first

consider the case when only one byte of x2
1 traverses all the 28 possible values. For such

a case, it can be easily checked that each byte in x0
0 will also traverse all the 28 possible

values. Hence, if one diagonal of x2
1 takes all the possible 232 values, all bytes in x0

0 are
also balanced.

The distinguisher for 10-round Areion-256. Next, we explain the zero-sum distinguisher
for 10-round Areion-512, as shown in Fig. 5. We start from the state (x4

0, x
4
1, x

4
2, x

4
3) after 4

rounds of permutation. For the input form, we restrict that 4 bytes of x4
0 will traverse all

the 232 possible values, as shown in Fig. 5. Then, we randomly choose a 128-bit constant
C such that F0(x4

0)⊕ x4
1 = C always holds. In other words, the value of x4

1 is conditioned,
and it is dynamically chosen according to x4

0. For x4
2, we assign a random constant value

to it. For x4
3, we also assign a random constant value C′ to it but we require that the first

column of x3
0 = F−1

1 (C′) is all 0. Note that (F0, F1, F2, F3) are defined in Sect. 2.
For such an input state, in the forward direction, we can trivially deduce that (x6

0, x
6
1, x

6
3)

are constants and one diagonal of x6
2 will take all the 232 possible values. Therefore, we

can also deduce that (x7
0, x

7
3, x

8
3) are all constants.

Since

x10
2 = F0(x9

2)⊕ x9
3,

x9
2 = F0(x8

2)⊕ x8
3,

x8
2 = F0(x7

2)⊕ x7
3,

x9
3 = F1(x8

0) = F1(F0(x7
0)⊕ x7

1),

we can rewrite x10
2 as follows where Ci are 128-bit constants:

x10
2 = F0(F0(F0(x7

2)⊕ C0)⊕ C1)⊕ F1(x7
1 ⊕ C2)

= F0(F0(F0(F0(x6
2)⊕ C3)⊕ C0)⊕ C1)⊕ F1(F3(x6

2)⊕ C2).

Since F0 = MC ◦ SR ◦ SB, F1 = SR ◦ SB and F3 = MC ◦ SR ◦ SB ◦AC ◦ SR ◦ SB, the
term F0(F0(F0(F0(x6

2)⊕C3)⊕C0)⊕C1) is equivalent to applying 4 AES rounds to x6
2. The

term F1(F3(x6
2)⊕C2) is equivalent to applying 2.5 AES rounds to x6

2. This implies that we
need to use a data set of size 232 to detect an integral property at x10

2 . Since one diagonal
of x6

2 takes all the 232 possible values, each byte in x10
2 is balanced. For (x10

0 , x
10
1 , x

10
3), we

will lose the zero-sum property, and this can be deduced similarly. In other words, we can
obtain a 6-round integral distinguisher with data complexity 232 in the forward direction,
which is one more round than the result obtained with the automatic method based on
the division property. The main reason is that we dynamically choose values for x4

1 such
that F0(x4

0)⊕ x4
1 is always a constant when x4

0 varies.
In the backward direction, we consider a subset of (x4

0, x
4
1, x

4
2, x

4
3). Specifically, we

consider the case when the first byte x4
0 takes all the 28 possible values. In this case, the

value of the first column of x4
1 is dynamically chosen such that F0(x4

0)⊕ x4
1 is a constant C,

as shown in Fig. 5. Then, we have 224 such subsets in total.
Since

x4
1 = F3(x3

2) = F0 ◦AC ◦ SR ◦ SB(x3
2),

C = F0(x4
0)⊕ x4

1,

we have

AC ◦ SR ◦ SB(x3
2) = F−1

0 (F0(x4
0)⊕ C).

Since F0 = MC◦SR◦SB, the above formula implies that the first byte of AC◦SR◦SB(x3
2)

will traverse all the 28 possible values. Hence, only the first byte of x3
2 will traverse all the

28 possible values. Therefore, we obtain the form of (x3
0, x

3
1, x

3
2, x

3
3) shown in Fig. 5.

T. Isobe, R. Ito, F. Liu, K. Minematsu, M. Nakahashi, K. Sakamoto, and R. Shiba 131

Deducing (x2
0, x

2
1, x

2
2, x

2
3) from (x3

0, x
3
1, x

3
2, x

3
3) is trivial and we omit the details. Deducing

(x1
0, x

1
1) is also trivial based on (x2

0, x
2
1, x

2
2, x

2
3). Next, we mainly focus on (x1

2, x
1
3). Similarly,

we have

x2
1 = F3(x1

2) = F0 ◦AC ◦ SR ◦ SB(x1
2),

x3
0 = F0(x2

0)⊕ x2
1,

AC ◦ SR ◦ SB(x1
2) = F−1

0 (F0(x2
0)⊕ x3

0).

As the first column of x3
0 is zero, the first diagonal of x1

2 will equal the first diagonal of
AC ◦ SR ◦ SB(x1

2). Hence, we obtain the form of (x1
2, x

1
3) as shown in Fig. 5. Based on

(x1
0, x

1
1, x

1
2, x

1
3), deducing (x0

0, x
0
1, x

0
2, x

0
3) is trivial and we omit the details.

In a word, we can construct a zero-sum distinguisher for 10-round Areion-512.

5.2 Security for Hash Functions
Claimed Security for Hash Functions. We claim 256-bit security against the preimage
attack for both Areion256-DM and Areion512-DM. However, as in Haraka v2 and the SFIL
hash function built on Simpira v2, we do not claim their resistances against the collision
attack since it is unnecessary for their applications.

For the MD-based hash function, we claim 256-bit security against the preimage attack
and 128-bit security against the collision attack, the same as SHA2-256. Due to the generic
second-preimage attack on the MD construction [KS05], our MD-based hash scheme could
only provide about 193-bit security for second-preimage attacks. This limitation is because
the maximal number of allowed message blocks is 264 and 193 = 256− 64 + 1, which is the
same security level as SHA2-256.

Meet-in-the-Middle Preimage Attack. For the DM-based SFIL hash functions by using
Areion-256 and Areion-512 as the underlying permutations, respectively, it is necessary
to take into account Sasaki’s meet-in-the-middle (MITM) preimage attack [Sas11]. This
attack is the most powerful preimage attack on such hash functions. Indeed, the designers
of Haraka v2 have evaluated its resistance against this attack in a dedicated way. To better
understand the security of our constructions, we also performed a careful analysis. We
found preimage attacks on 5-round Areion256-DM and 10-round Areion512-DM, respectively.
Therefore, there is still a sufficiently large security margin. We detail our analysis below.

To save space, we only describe the general procedure of Sasaki’s meet-in-the-middle
preimage attack, as shown below:

Step 1: Identify the bytes that are fixed to constants and assign proper values to them.

Step 2: Identify the bytes that are to be exhausted. Classify them into backward neutral
bytes and forward neutral bytes.

Step 3: In the forward direction, we assume that the backward neutral bytes are unknown
and compute the internal state values based on the constant bytes and the forward
neutral bytes. In other words, we only compute the bytes that can be computed
from the knowledge of the constant bytes and the forward neutral bytes. This
step is repeated for all the possible values of the forward neutral bytes, and we
store the corresponding computed information.

Step 4: In the backward direction, we assume that the forward neutral bytes and unknown,
and we only compute the bytes that can be computed from the knowledge of the
constant bytes and the backward neutral bytes. This step is repeated for all the

132 Areion: Highly-Efficient Permutations and Its Applications

constant

all

balanced

unknown

x
r

0
x
r

1
x
r

2
x
r

3

r = 0

r = 1

r = 2

r = 3

r = 4

r = 4

r = 5

r = 6

r = 7

r = 8

r = 9

r = 10

0

0

0

0

Figure 5: The zero-sum distinguisher for 10-round Areion-512.

T. Isobe, R. Ito, F. Liu, K. Minematsu, M. Nakahashi, K. Sakamoto, and R. Shiba 133

possible values of the backward neutral bytes, and we store the corresponding
computed information3.

Step 5: Find matches between the store information obtained at Step 3 and Step 4. Suppose
the matching probability is 2−p and there are 2bf and 2bb possible values for the
forward neutral bytes and the backward neutral bytes, respectively. Moreover, for
each obtained state information at Step 3, if it is possible to identify the matched
information obtained at Step 4 with time complexity 1, or vice versa, we can say
that we find 2bf +bb−p possible pairs among the 2bf +bb pairs with time complexity
max(2bf , 2bb) where usually bf + bb − p ≤ 0. In other words, we exhaust 2bf +bb

possible candidates only with time complexity max(2bf , 2bb). Hence, the MITM
preimage attack is min(2bb , 2bf) times faster than the brute force.

x
1

0

x
2

0

x
3

0

x
4

0

x
2

1

x
3

1

x
4

1

x
5

0
x
5

1

x
1

1

x
0

1
x
0

0

SR

SB

MC

AC

⊕

SR

SB

MC

AC

⊕

SR

SB

MC

AC

⊕

SR−1

SB−1

MC

AC

⊕

SR

SB

MC

AC

⊕

Ap

SR

SB

MC

initial
structure

match

forward neutral bytes

backward neutral bytes

constant

unknown

Figure 6: The preimage attack on 5-round Areion256-DM.

Hence, this attack aims to identify the forward and backward neutral bytes as well
as an efficient matching method. For the two short-input hash schemes, we performed
careful analysis and found preimage attacks on 5-round Areion256-DM and 10-round
Areion512-DM, respectively. In the two attacks, bb = bf = 8 and the matching phase can
be efficiently finished with time complexity 1. Hence, both the preimage attacks are 28

times faster than the brute force. The corresponding illustration of the two preimage
attacks can be referred to Figs. 6 and 7, respectively.

Collision Attacks. The most powerful collision attack on AES-based hash functions is
the rebound attack [MRST09], especially when it is built on the DM construction, as the
attacker can fully control the whole internal state. However, as already mentioned in
Haraka v2 and the SFIL hash function based on Simpira v2, the collision resistance of SFIL
hash schemes is not necessary when they are used in the signature scheme, which is also
the case of our SFIL hash functions.

3Note that in the actual implementations, we only need to store either the information obtained at
Step 3 or Step 4. For simple explanations, we assume both are stored.

134 Areion: Highly-Efficient Permutations and Its Applications

Match
(probability: 2−24)

x
r

0
x
r

1
x
r

2
x
r

3

r = 0

r = 1

r = 2

r = 3

r = 4

r = 5

r = 6

r = 7

r = 8

r = 9

r = 10

r = 0

initial
structure

forward neutral bytes

backward neutral bytes

constant

unknown

Figure 7: The preimage attack on 10-round Areion512-DM.

T. Isobe, R. Ito, F. Liu, K. Minematsu, M. Nakahashi, K. Sakamoto, and R. Shiba 135

Security of MD Construction. For our hash scheme built on the MD construction, the
attacker will soon lose the capability to fully control the internal state since each message
block is only 256 bits, i.e., half of the state size. However, by using j > 1 message blocks,
Sasaki’s MITM attack can still be applied in the same way as in the attack on the DM
constructions. Specifically, although the 256-bit initial value set at (x2, x3) in the first
input state is fixed, the attackers can view the 256-bit chaining variable (CV) in the last
input state as a controllable part. Then, Sasaki’s MITM attack is applied, and we aim to
find 2i solutions of the last input state to match the given hash value in less than 2256

time. This way, 2i candidates of CV in the last input state can be obtained. Finally, we
randomly pick values for the first j − 1 message blocks to compute the corresponding CV
for the last input state and expect that one such CV can match one of the 2i candidates
obtained by the MITM attack. Hence, we need to try 2256−i different values for the first
j − 1 message blocks, and the time complexity is below 2256.

For the collision resistance, we consider the rebound attack, the most efficient technique
for AES-based hash functions. In particular, the most powerful rebound attack is always
based on the Super-Sbox technique [GP10, LMR+09]. For such a technique, the attacker can
control the difference transitions over two consecutive AES rounds with a pre-computation
phase called the inbound phase, as shown in Fig. 8. Combined with the feature of the

SB

SR

MC

AC

SB

SR

MC

AC

MC

AC

∆A

∆B

Figure 8: The inbound phase: precomputing the pairs (A, ∆A) such that ∆A → ∆B
holds with probability 1.

rebound attack, this technique allows the attacker to ignore the influence of 4+16+16+4 =
38 active S-boxes by using 128 free bits. Since the size of one message block in our VIL
hash function is 256 bits, we expect that the attacker can ignore 38× 2 = 76 active S-boxes
with the Super-Sbox technique. However, we emphasize that it does not necessarily imply
that the attacker can always ignore 76 active S-boxes in the actual attack because the
rebound attack is also a start-from-the-middle-style attack, and one should be careful of
the consistency in the CV.

According to Table 7, the minimal number of active S-boxes in 11-round Areion-512 is
119. By ignoring 76 active S-boxes, there are still 119− 76 = 43 active S-boxes left. In
the outbound phase, we usually need to cancel the truncated differences. In the best case,
we only need to consider half of the left active S-boxes, i.e., we know the propagation of
the truncated differences, and we only add conditions on the sum of the two truncated
differences, as shown in Fig. 9. Even if we only consider 43/2 ≈ 21 active S-boxes, they
still correspond to a very low uncontrolled probability of 2−21×8 = 2−168. Note that we
have not yet taken into account the extra conditions on the truncated input and output
differences to generate a collision. If they are considered, the truncated differential may be
worse (i.e., there are more active S-boxes), and the uncontrolled probability may further
decrease. Hence, we believe the VIL hash function based on the 15-round Areion-512 is
secure against the collision attack.

136 Areion: Highly-Efficient Permutations and Its Applications

SB

SR

MC

AC

SB

SR

MC

AC

SB

SR

MC

AC

SB

SR

MC

AC

⊕

Probability = 2−32

The pattern

already holds

Figure 9: Cancel the truncated differences.

We also note that there is a variant method [JNP12] of the 2-round Super-Sbox
technique that can cover three consecutive AES rounds, which can allow the attackers to
ignore the influence of 4+16+16+16+4 = 54 active S-boxes. However, this technique does
not come for free. Specifically, different from the 2-round Super-Sbox technique to satisfy
4 + 16 + 16 + 4 = 38 active S-boxes where lots of degrees of freedom are left after this phase,
there is no degrees of freedom left after performing such a 3-round Super-Sbox technique
and finding a solution to satisfy these 54 active S-boxes succeeds with probability 2−64. In
other words, it is like 2-round Super-Sbox technique with satisfying extra 16 active S-boxes
with a probability of only 2−64, which is a huge improvement over the 2-round Super-Sbox
technique. We also note that it is almost equivalent to our conservative estimation that
we only need to consider half of the remaining active S-boxes at the outbound phase when
using the 2-round Super-Sbox technique for the inbound phase.

6 Performance Evaluation
In this section, we evaluate the performance of both Areion and its applications to the
permutation-based hash functions described in Sect. 4. To this end, we used the available
source code at GitHub4 to evaluate the cycle counters, i.e., cycles per byte (cpb), in the
target primitive. All our evaluations were performed on the following widely deployed
platforms: the Ice Lake, Tiger Lake, and Alder Lake platforms. More precisely, the Ice
Lake platform has an Intel(R) Core(TM) i7-1068NG7 CPU @ 2.30GHz. The Tiger Lake
platform has an Intel(R) Core(TM) i7-1165G7 CPU @ 2.80GHz. The Alder Lake platform
has an Intel(R) Core(TM) i9-12900K CPU @ 3.20GHz on a performance-core (P-core) and
2.40GHz on an efficient-core (E-core). Turbo Boost technology has been switched off for
all our evaluations. We note here that the P-core has been specified for our evaluations on
the Alder Lake platform because there is almost no difference in the benchmarks between
using either the P-core or E-core.

Besides, we also evaluate the performance of NEON implementations of permutation-
based hash functions proposed in Sect. 4 in several mobile environments. To keep the page
limit, the NEON implementations of Areion is shown in Appendix A.3.

6.1 Underlying Permutations
We first evaluate the performance of the underlying permutations, i.e., Areion-256 and
Areion-512. These implementations are given in Appendix A.1. For comparison, we used the
underlying permutations of Simpira v2, Haraka v2, and the 512-bit permutation BLAKE2s.

4https://github.com/seb-m/cycles

https://github.com/seb-m/cycles

T. Isobe, R. Ito, F. Liu, K. Minematsu, M. Nakahashi, K. Sakamoto, and R. Shiba 137

Table 8: Benchmarks for single block encryption/decryption on the Ice Lake, Tiger
Lake, and Alder Lake platforms. All values are given as cpb.

Ice Lake Tiger Lake Alder Lake
Primitive Enc Dec Enc Dec Enc Dec
Areion-256 1.92 2.84 1.91 2.83 1.93 2.81
Simpira-256 2.94 2.94 2.92 2.92 2.94 2.94
Haraka-256 1.58 4.08 1.58 4.08 1.55 4.00
Haraka-256 (x1.2) 1.90 5.28 1.90 5.28 1.86 4.80
Haraka-256 (x1.5) 2.37 6.12 2.37 6.12 2.32 6.00
Areion-512 1.09 2.52 1.09 2.52 1.09 2.52
Simpira-512 1.47 1.47 1.46 1.46 1.47 1.47
Haraka-512 1.06 2.58 1.06 2.58 1.09 2.58
Haraka-512 (x1.2) 1.27 3.10 1.27 3.10 1.31 3.10
Haraka-512 (x1.5) 1.59 3.87 1.59 3.87 1.63 3.87
BLAKE2s 3.05 1.83 3.04 1.83 3.04 1.80

Table 9: Benchmarks for parallel block encryption/decryption on the Ice Lake,
Tiger Lake, and Alder Lake platforms. All values are given as cpb.

Ice Lake Tiger Lake Alder Lake
Primitive Enc Dec Enc Dec Enc Dec
Areion-256 0.55 0.66 0.55 0.66 0.51 0.56
Simpira-256 0.69 0.69 0.68 0.68 0.57 0.57
Haraka-256 0.53 1.75 0.54 1.74 0.44 1.52
Haraka-256 (x1.2) 0.64 2.10 0.65 2.09 0.53 1.83
Haraka-256 (x1.5) 0.79 2.62 0.81 2.61 0.66 2.28
Areion-512 0.64 1.24 0.63 1.25 0.61 1.13
Simpira-512 0.63 0.62 0.62 0.61 0.53 0.53
Haraka-512 0.67 2.06 0.66 2.04 0.64 1.83
Haraka-512 (x1.2) 0.81 2.48 0.80 2.45 0.77 2.20
Haraka-512 (x1.5) 1.00 3.09 0.99 3.06 0.96 2.74
BLAKE2s 2.51 1.64 2.51 1.64 2.29 1.59

We can find the source codes of Haraka v2 and BLAKE2s available at GitHub5,6, but we
could not find the available source code for Simpira v2. For this reason, we implemented it
as described in Appendix A.2.

According to [GM16, KLMR16], Simpira v2 and Haraka v2 are supposed to operate on
multiple message blocks, not just a single message block, to get the highest performance.
Based on this concept, we also evaluate the performance when operating on eight message
blocks in parallel as well as a single message block.

Tables 8 and 9 show benchmarks for single and parallel encryption/decryption on
our platforms. From these tables, Haraka v2 appears to be the fastest encryption, but
it cannot be regarded to have a security margin sufficiently, as discussed in Sect. 3.2.1.
For this reason, we consider there is no problem even if Haraka v2 is excluded from
our comparison. Instead of the original Haraka v2, we use the 12/15-round variants of
Haraka v2, Haraka-256 (x1.2/x1.5) and Haraka-512 (x1.2/x1.5), for our comparison. This is
because DM-based instantiations of the tweaked variants, Haraka256-DM (x1.2/x1.5) and
Haraka512-DM (x1.2/x1.5), can be regarded to have a similar security level as Areion256-
DM and Areion512-DM. Indeed, the security margins against MITM preimage attacks of
Areion256-DM, Haraka256-DM (x1.2), and Haraka256-DM (x1.5) are 5, 3, and 6, respectively.
Similarly, the security margins of Areion512-DM, Haraka512-DM (x1.2), and Haraka512-

5https://github.com/kste/haraka
6https://github.com/BLAKE2/BLAKE2

https://github.com/kste/haraka
https://github.com/BLAKE2/BLAKE2

138 Areion: Highly-Efficient Permutations and Its Applications

DM (x1.5) are 5, 1, and 4, respectively. We summarize the performance comparison for
the underlying permutations as follows:

• Areion-256 realizes the fastest encryption among the target permutations, excluding
Haraka-256 (x1.2) for single block encryption (although there are almost no differences
in performance). Specifically, Areion-256 performs at least 1.52 and 1.20 times faster
than Simpira-256 and Haraka-256 (x1.5) for single block encryption, respectively,
and at least 1.12 and 1.03 times faster than Simpira-256 and Haraka-256 (x1.2) for
parallel block encryption, respectively. On the other hand, for single and parallel
block decryptions, Areion-256 performs faster than Haraka-256 (x1.2/x1.5), but there
are almost no differences in performance between Areion-256 and Simpira-256.

• Areion-512 realizes the fastest encryption among the target permutations, excluding
Simpira-512 for parallel block encryption (although there are almost no differences in
performance). Specifically, Areion-512 performs at least 1.34 and 1.16 times faster
than Simpira-512 and Haraka-512 (x1.2) for single block encryption, respectively, and
at least 1.26 times faster than Haraka-512 (x1.2) for parallel block encryption. On the
other hand, Areion-512 performs faster than Haraka-256 (x1.2/x1.5) and BLAKE2s,
especially for parallel block decryption, but it performs at least 2.00 times slower
than Simpira-512.

Given that the Areion-512 decryption function is not used for the proposed applications of
Areion described in Sect. 4, we consider that there is no problem even if Areion-512 performs
slower than Simpira-512 for decryption. Therefore, Areion has the strongest advantage of
performing faster than any other target permutations, especially in terms of encryption
direction.

Regarding the advantage of Areion-256 over Areion-512, Table 9 suggests that Areion-
256 is consistently faster than Areion-512 for parallel processing and even the fastest among
all the selected 256-/512-bit permutations in many cases. In addition, it has a balanced
performance for encryption and decryption thanks to its Feistel-like structure, unlike
Haraka-256, and faster than the Feistel-based Simpira-256. That is, it should work more
efficiently with the existing parallelizable permutation-based authenticated encryption
modes, e.g., OPP [GJMN16] and a permutation-based counterpart of OTR [Min14] than
other permutations. The latter would be similar to Prøst-OTR [KLL+14] adopting the
masking scheme of OPP for provable security and for avoiding the attack specific to (the
masking scheme of) Prøst-OTR [DEM15]. Its applications to the parallel authenticated
encryption modes are left as our future work. On the other hand, Areion-512 is the
fastest among the selected 256-/512-bit permutations for single block encryption direction
(Table 8). That is, it should work more efficiently with the existing permutation-based
compression functions such as DM construction, and the existing sequential hash functions
such as MD construction. These are the target applications for this study.

6.2 Permutation-based Hash Functions
Next, we evaluate the performance of the permutation-based hash functions, i.e., the SFIL
and VIL hash functions (DM and MD constructions). These instantiations of Areion are
implemented based on the source codes of Areion-256 and Areion-512 described in Ap-
pendix A.1. For comparison regarding the SFIL hash functions, we used DM constructions
instantiated with Simpira v2 and Haraka v2. On the other hand, for comparison regarding
the VIL hash functions, we used AES-based VIL hash functions, such as Simpira512-
MD, Haraka512-MD, and double-block-length hash functions proposed by Hirose at FSE
2006 [Hir06]. We refer to the Hirose’s hash function as Hirose-DBL. These instantiations are
also implemented similarly to those of Areion. In addition, we used SHA2-256, SHA3-256,

T. Isobe, R. Ito, F. Liu, K. Minematsu, M. Nakahashi, K. Sakamoto, and R. Shiba 139

Table 10: Benchmarks for SFIL hash functions on the Ice Lake, Tiger Lake, and
Alder Lake platforms. All values are given as cpb.

Primitive Ice Lake Tiger Lake Alder Lake
Areion256-DM 2.01 2.01 1.99
Simpira256-DM 2.84 2.83 2.81
Haraka256-DM 1.64 1.63 1.61
Haraka256-DM (x1.2) 1.97 1.96 1.94
Haraka256-DM (x1.5) 2.46 2.44 2.41
Areion512-DM 1.05 1.05 1.04
Simpira512-DM 1.41 1.41 1.40
Haraka512-DM 1.12 1.10 1.13
Haraka512-DM (x1.2) 1.35 1.32 1.36
Haraka512-DM (x1.5) 1.68 1.65 1.69

ParallelHash256, KangarooTwelve, and BLAKE3. We can find these source codes available
at GitHub7,8,9; then, we modified these source codes to use for our comparison.

Tables 10 and 11 show benchmarks for the SFIL and VIL hash functions on our
platforms. From Table 10, Haraka512-DM appears to be the fastest SFIL hash function,
but Haraka v2 cannot be regarded to have the security margin sufficiently; thus, we use
Haraka256-DM (x1.2/x1.5) and Haraka512-DM (x1.2/x1.5) for our comparison regarding the
SFIL hash functions, as discussed in Sect. 6.1. Similarly, we use Haraka512-MD (x1.2/x1.5)
for our comparison regarding the VIL hash functions. We summarize the performance
comparison for the SFIL hash functions as follows:

• Areion256-DM realizes the fastest SFIL hashing among the target DM constructions
with the 256-bit permutation, excluding Haraka256-DM (x1.2) (although there are
almost no differences in performance). Specifically, Areion256-DM performs at least
1.41 and 1.21 times faster than Simpira256-DM and Haraka256-DM (x1.5), respectively.

• Areion512-DM realizes the fastest SFIL hashing among the target DM constructions
with the 512-bit permutation. Specifically, Areion512-DM performs at least 1.34 and
1.25 times faster than Simpira256-DM and Haraka256-DM (x1.2), respectively.

Consequently, It can be considered that Areion256-DM and Areion512-DM are the fastest
SFIL hash functions. On the other hand, we summarize the performance comparison for
the VIL hash functions as follows:

• Areion512-MD realizes the fastest VIL hashing among the target hash functions
with a 256-bit security level for input sizes up to around 4K bytes. Specifically,
its performance is less than 3 cpb for any message size. Moreover, it is about 10
times faster than existing state-of-the-art schemes (e.g., SHA2-256, SHA3-256, and
ParallelHash256) for short messages up to around 100 bytes, widely-used input size
in real-world applications.

Considering the need for cryptographic primitives resistant to symmetric-key cryptanalysis
based on quantum algorithms (e.g., Grover’s algorithm [Gro96]), hash functions with a
256-bit security level must be required for the future. For this reason, we consider that
there is no problem even if Areion512-MD performs slower than KangarooTwelve when
the input size is 2K bytes or more. In addition, according to the current study on packet
sizes on the Internet [MKZ+17], it is known that around 44% of packets are between 40
and 100 bytes long and 37% are between 1400 and 1500 bytes in size. Given that most of

7https://github.com/wereHamster/sha256-sse
8https://github.com/XKCP/XKCP
9https://github.com/BLAKE3-team/BLAKE3

https://github.com/wereHamster/sha256-sse
https://github.com/XKCP/XKCP
https://github.com/BLAKE3-team/BLAKE3

140 Areion: Highly-Efficient Permutations and Its Applications

Table 11: Benchmarks for VIL hash functions on the Ice Lake, Tiger Lake, and
Alder Lake platforms. All values are given as cpb.

Security Input sizes (bytes)
Platform Primitive level† Impl. 64 128 256 512 1024 2048 4096
Ice Lake Areion512-MD 256 AES-NI 1.99 2.35 2.54 2.60 2.63 2.65 2.66

Simpira512-MD 256 AES-NI 2.03 2.65 3.04 3.25 3.34 3.38 3.40
Haraka512-MD 256 AES-NI 2.12 2.47 2.57 2.66 2.69 2.71 2.72
Haraka512-MD (x1.2) 256 AES-NI 2.55 2.96 3.09 3.19 3.23 3.25 3.26
Haraka512-MD (x1.5) 256 AES-NI 3.18 3.70 3.86 3.99 4.03 4.07 4.08
Hirose-DBL 256 AES-NI 12.29 12.21 12.21 12.34 12.27 12.28 12.27
SHA2-256 256 SSE 23.90 23.57 23.42 23.74 23.71 23.32 23.31
SHA3-256 256 AVX2 18.69 9.48 9.33 9.13 9.05 9.03 8.70
SHA3-256 256 AVX512 13.20 6.66 6.47 6.20 6.06 5.99 5.78
ParallelHash256 256 AVX2 61.09 30.65 19.88 14.43 11.71 10.33 9.37
ParallelHash256 256 AVX512 42.61 21.39 13.89 9.90 7.91 6.92 6.24
BLAKE3 128 SSE 57.77 32.10 18.64 11.61 7.93 4.93 2.94
KangarooTwelve 128 AVX2 11.59 5.96 5.27 4.86 4.15 3.79 3.61
KangarooTwelve 128 AVX512 8.16 4.17 3.78 3.34 2.79 2.52 2.38

Tiger Lake Areion512-MD 256 AES-NI 1.89 2.31 2.50 2.57 2.61 2.63 2.64
Simpira512-MD 256 AES-NI 1.98 2.60 3.01 3.22 3.32 3.37 3.40
Haraka512-MD 256 AES-NI 2.09 2.44 2.57 2.64 2.68 2.71 2.72
Haraka512-MD (x1.2) 256 AES-NI 2.51 2.92 3.08 3.16 3.22 3.26 3.27
Haraka512-MD (x1.5) 256 AES-NI 3.14 3.65 3.85 3.95 4.02 4.07 4.08
Hirose-DBL 256 AES-NI 12.30 12.21 12.24 12.34 12.24 12.24 12.24
SHA2-256 256 SSE 23.85 23.56 23.46 23.69 23.66 23.29 23.27
SHA3-256 256 AVX2 18.67 9.46 9.30 9.14 9.05 8.99 8.70
SHA3-256 256 AVX512 13.14 6.63 6.44 6.17 6.02 5.99 5.74
ParallelHash256 256 AVX2 61.04 30.62 19.86 14.40 11.67 10.35 9.36
ParallelHash256 256 AVX512 42.40 21.77 13.83 9.98 7.86 6.87 6.20
BLAKE3 128 SSE 57.63 32.17 18.70 11.66 7.96 4.96 2.94
KangarooTwelve 128 AVX2 11.60 5.93 5.30 4.87 4.16 3.78 3.61
KangarooTwelve 128 AVX512 8.22 4.20 3.78 3.33 2.78 2.50 2.36

Alder Lake‡ Areion512-MD 256 AES-NI 1.60 2.16 2.42 2.60 2.66 2.68 2.70
Simpira512-MD 256 AES-NI 1.65 2.30 2.87 3.19 3.32 3.39 3.42
Haraka512-MD 256 AES-NI 1.68 2.15 2.41 2.55 2.62 2.65 2.67
Haraka512-MD (x1.2) 256 AES-NI 2.02 2.58 2.90 3.05 3.14 3.18 3.21
Haraka512-MD (x1.5) 256 AES-NI 2.52 3.23 3.62 3.82 3.92 3.97 4.01
Hirose-DBL 256 AES-NI 12.67 12.61 12.58 12.59 12.61 12.61 12.61
SHA2-256 256 SSE 21.46 21.72 21.58 21.52 21.49 21.48 21.47
SHA3-256 256 AVX2 18.56 9.36 9.23 9.08 9.01 9.00 8.71
SHA3-256 256 AVX512 – – – – – – –
ParallelHash256 256 AVX2 59.38 29.47 19.48 14.25 11.62 10.30 9.36
ParallelHash256 256 AVX512 – – – – – – –
BLAKE3 128 SSE 55.24 30.76 17.99 11.25 7.72 4.50 2.79
KangarooTwelve 128 AVX2 10.65 5.40 4.99 4.73 4.06 3.73 3.57
KangarooTwelve 128 AVX512 – – – – – – –

† The security level is against preimage attacks.
‡ Our Alder Lake platform does not support the AVX512 instruction set.

the packet sizes on the Internet are 1.5K bytes or less, Areion512-MD has the strongest
advantage of performing faster than any other target VIL hash functions with a 256-bit
security level.

Tables 12 shows benchmarks for the VIL hash functions using NEON implementations in
Appendix A.3 on mobile environments. We compare with existing schemes of SHA2-256 and
SHA3-256 which are available for optimized implementations in OpenSSL. Areion512-
MD achieves outstanding performance for short messages, especially up to 128 bytes.

7 Conclusion
We proposed a family of wide-block permutations Areion that fully leverages the power of
AES instructions and show its applications of hash functions. Our schemes significantly
outperform existing schemes for short input and are competitive for relatively-long messages.

T. Isobe, R. Ito, F. Liu, K. Minematsu, M. Nakahashi, K. Sakamoto, and R. Shiba 141

Table 12: Benchmarks for hash functions on the Pixel5, Pixel6, iPhone13, iPadPro.
All values are given as Gbps.

Input sizes (bytes)
Platform Primitive 32 64 128 256 512 1024 2048 4096
Pixel 5 (Snapdragon765G) Areion512-MD 3.99 4.38 4.82 5.07 5.22 5.29 5.33 5.33

SHA2-256 0.33 0.63 1.23 2.21 3.69 5.57 7.42 8.96
SHA3-256 0.20 0.40 0.80 1.17 1.51 1.76 1.93 2.09

Pixel 6 (Google Tensor) Areion512-MD 6.07 7.28 7.20 7.19 7.18 7.18 7.18 7.18
SHA2-256 0.45 0.86 1.62 2.87 4.71 6.94 9.07 10.72
SHA3-256 0.28 0.56 1.12 1.66 2.19 2.59 2.86 3.11

iPhone 13 (A15) Areion512-MD 8.39 14.71 13.84 11.15 10.19 9.75 9.56 9.46
SHA2-256 0.96 1.81 3.44 6.00 9.08 12.19 14.70 16.42
SHA3-256 0.47 0.96 1.97 2.78 3.51 3.98 4.33 4.67

iPad Pro (Apple M1) Areion512-MD 8.39 14.98 14.38 11.74 10.75 10.31 10.11 10.00
SHA2-256 0.49 1.81 3.40 5.92 8.68 12.03 14.48 16.19
SHA3-256 0.47 0.95 1.98 2.76 3.49 3.92 4.33 4.56

Our hash function is surprisingly fast. Its performance is less than 3 cycle/byte in the
latest Intel architectures for any message size. It is about 10 times faster than existing
schemes for short messages up to around 100 bytes, which are the most widely-used input
size in real-world applications, on both of on latest CPU architectures (IceLake, Tiger
Lake, and Alder Lake) and mobile environments (Pixel 6 and iPhone 13).

Acknowledgments
Takanori Isobe is supported by JST, PRESTO Grant Number JPMJPR2031. These
research results were also obtained from the commissioned research (No.05801) by National
Institute of Information and Communications Technology (NICT), Japan. Fukang Liu is
supported by Grant-in-Aid for Research Activity Start-up (Grant No. 22K21282). Kosei
Sakamoto is supported by Grant-in-Aid for JSPS Fellows (KAKENHI 20J23526) for Japan
Society for the Promotion of Science.

References
[ALP+19] Elena Andreeva, Virginie Lallemand, Antoon Purnal, Reza Reyhanitabar,

Arnab Roy, and Damian Vizár. Forkcipher: A New Primitive for Authen-
ticated Encryption of Very Short Messages. In Steven D. Galbraith and
Shiho Moriai, editors, Advances in Cryptology - ASIACRYPT 2019 - 25th
International Conference on the Theory and Application of Cryptology and
Information Security, Kobe, Japan, December 8-12, 2019, Proceedings, Part
II, volume 11922 of Lecture Notes in Computer Science, pages 153–182.
Springer, 2019. doi:10.1007/978-3-030-34621-8_6.

[AM09] Jean-Philippe Aumasson and Willi Meier. Zero-sum Distinguishers for
Reduced Keccak-f and for the Core Functions of Luffa and Hamsi. 2009.
https://131002.net/data/papers/AM09.pdf.

[BDG+21] Zhenzhen Bao, Xiaoyang Dong, Jian Guo, Zheng Li, Danping Shi, Siwei
Sun, and Xiaoyun Wang. Automatic Search of Meet-in-the-Middle Preimage
Attacks on AES-like Hashing. In Anne Canteaut and François-Xavier Stan-
daert, editors, Advances in Cryptology - EUROCRYPT 2021 - 40th Annual
International Conference on the Theory and Applications of Cryptographic
Techniques, Zagreb, Croatia, October 17-21, 2021, Proceedings, Part I, vol-
ume 12696 of Lecture Notes in Computer Science, pages 771–804. Springer,
2021. doi:10.1007/978-3-030-77870-5_27.

https://doi.org/10.1007/978-3-030-34621-8_6
https://131002.net/data/papers/AM09.pdf
https://doi.org/10.1007/978-3-030-77870-5_27

142 Areion: Highly-Efficient Permutations and Its Applications

[BDP+18] Guido Bertoni, Joan Daemen, Michaël Peeters, Gilles Van Assche, Ronny Van
Keer, and Benoît Viguier. KangarooTwelve: Fast Hashing Based on
Keccak-p. In Bart Preneel and Frederik Vercauteren, editors, Applied
Cryptography and Network Security - 16th International Conference, ACNS
2018, Leuven, Belgium, July 2-4, 2018, Proceedings, volume 10892 of Lec-
ture Notes in Computer Science, pages 400–418. Springer, 2018. doi:
10.1007/978-3-319-93387-0_21.

[CDL+20] Anne Canteaut, Sébastien Duval, Gaëtan Leurent, María Naya-Plasencia,
Léo Perrin, Thomas Pornin, and André Schrottenloher. Saturnin: a suite of
lightweight symmetric algorithms for post-quantum security. IACR Trans.
Symmetric Cryptol., 2020(S1):160–207, 2020. doi:10.13154/tosc.v2020.
iS1.160-207.

[CGH04] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle method-
ology, revisited. J. ACM, 51(4):557–594, 2004.

[CJF+16] Tingting Cui, Keting Jia, Kai Fu, Shiyao Chen, and Meiqin Wang. New
Automatic Search Tool for Impossible Differentials and Zero-Correlation
Linear Approximations. IACR Cryptol. ePrint Arch., page 689, 2016. URL:
http://eprint.iacr.org/2016/689.

[Dam89] Ivan Damgård. A Design Principle for Hash Functions. In Gilles Brassard,
editor, Advances in Cryptology - CRYPTO ’89, 9th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 20-24, 1989,
Proceedings, volume 435 of Lecture Notes in Computer Science, pages 416–427.
Springer, 1989. doi:10.1007/0-387-34805-0_39.

[DEM15] Christoph Dobraunig, Maria Eichlseder, and Florian Mendel. Related-Key
Forgeries for Prøst-OTR. In Gregor Leander, editor, Fast Software Encryp-
tion - 22nd International Workshop, FSE 2015, Istanbul, Turkey, March 8-11,
2015, Revised Selected Papers, volume 9054 of Lecture Notes in Computer
Science, pages 282–296. Springer, 2015. doi:10.1007/978-3-662-48116-5\
_14.

[DEMS19] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and
Martin Schläffer. Ascon v1.2. Submission to Round 1 of the
NIST Lightweight Cryptography project, 2019. URL: https:
//csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/
documents/round-1/spec-doc/ascon-spec.pdf.

[Gil14] Henri Gilbert. A simplified representation of AES. In ASIACRYPT (1),
volume 8873 of Lecture Notes in Computer Science, pages 200–222. Springer,
2014.

[GJMN16] Robert Granger, Philipp Jovanovic, Bart Mennink, and Samuel Neves.
Improved Masking for Tweakable Blockciphers with Applications to Au-
thenticated Encryption. In Marc Fischlin and Jean-Sébastien Coron, ed-
itors, Advances in Cryptology - EUROCRYPT 2016 - 35th Annual In-
ternational Conference on the Theory and Applications of Cryptographic
Techniques, Vienna, Austria, May 8-12, 2016, Proceedings, Part I, volume
9665 of Lecture Notes in Computer Science, pages 263–293. Springer, 2016.
doi:10.1007/978-3-662-49890-3_11.

[GM16] Shay Gueron and Nicky Mouha. Simpira v2: A Family of Efficient Permu-
tations Using the AES Round Function. In Jung Hee Cheon and Tsuyoshi

https://doi.org/10.1007/978-3-319-93387-0_21
https://doi.org/10.1007/978-3-319-93387-0_21
https://doi.org/10.13154/tosc.v2020.iS1.160-207
https://doi.org/10.13154/tosc.v2020.iS1.160-207
http://eprint.iacr.org/2016/689
https://doi.org/10.1007/0-387-34805-0_39
https://doi.org/10.1007/978-3-662-48116-5_14
https://doi.org/10.1007/978-3-662-48116-5_14
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/ascon-spec.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/ascon-spec.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/ascon-spec.pdf
https://doi.org/10.1007/978-3-662-49890-3_11

T. Isobe, R. Ito, F. Liu, K. Minematsu, M. Nakahashi, K. Sakamoto, and R. Shiba 143

Takagi, editors, Advances in Cryptology - ASIACRYPT 2016 - 22nd In-
ternational Conference on the Theory and Application of Cryptology and
Information Security, Hanoi, Vietnam, December 4-8, 2016, Proceedings,
Part I, volume 10031 of Lecture Notes in Computer Science, pages 95–125,
2016. doi:10.1007/978-3-662-53887-6_4.

[GP10] Henri Gilbert and Thomas Peyrin. Super-sbox cryptanalysis: Improved
attacks for aes-like permutations. In FSE, volume 6147 of Lecture Notes in
Computer Science, pages 365–383. Springer, 2010.

[Gro96] Lov K. Grover. A Fast Quantum Mechanical Algorithm for Database Search.
In Gary L. Miller, editor, Proceedings of the Twenty-Eighth Annual ACM
Symposium on the Theory of Computing, Philadelphia, Pennsylvania, USA,
May 22-24, 1996, pages 212–219. ACM, 1996. doi:10.1145/237814.237866.

[Hir06] Shoichi Hirose. Some Plausible Constructions of Double-Block-Length Hash
Functions. In Matthew J. B. Robshaw, editor, Fast Software Encryption,
13th International Workshop, FSE 2006, Graz, Austria, March 15-17, 2006,
Revised Selected Papers, volume 4047 of Lecture Notes in Computer Science,
pages 210–225. Springer, 2006. doi:10.1007/11799313_14.

[IIM21] Takanori Isobe, Ryoma Ito, and Kazuhiko Minematsu. Security Analysis
of SFrame. In Elisa Bertino, Haya Shulman, and Michael Waidner, editors,
Computer Security - ESORICS 2021 - 26th European Symposium on Research
in Computer Security, Darmstadt, Germany, October 4-8, 2021, Proceedings,
Part II, volume 12973 of Lecture Notes in Computer Science, pages 127–146.
Springer, 2021. doi:10.1007/978-3-030-88428-4_7.

[IKMP20] Tetsu Iwata, Mustafa Khairallah, Kazuhiko Minematsu, and Thomas Peyrin.
Duel of the Titans: The Romulus and Remus Families of Lightweight AEAD
Algorithms. IACR Trans. Symmetric Cryptol., 2020(1):43–120, 2020. doi:
10.13154/tosc.v2020.i1.43-120.

[JNP12] Jérémy Jean, María Naya-Plasencia, and Thomas Peyrin. Improved rebound
attack on the finalist grøstl. In Anne Canteaut, editor, Fast Software
Encryption - 19th International Workshop, FSE 2012, Washington, DC,
USA, March 19-21, 2012. Revised Selected Papers, volume 7549 of Lecture
Notes in Computer Science, pages 110–126. Springer, 2012. doi:10.1007/
978-3-642-34047-5_7.

[Jos21] Josh Blum and Simon Booth and Oded Gal and Maxwell Krohn and Julia
Len and Karan Lyons and Antonio Marcedone and Mike Maxim and Merry
Ember Mou and Jack O’Connor and Miles Steele and Matthew Green and
Lea Kissner and Alex Stamos. E2E Encryption for Zoom Meetings – Version
3.2, October 2021. https://github.com/zoom/zoom-e2e-whitepaper.

[KjCP16] John Kelsey, Shu jen Chang, and Ray Perlner. SHA-3 Derived Functions:
cSHAKE, KMAC, TupleHash and ParallelHash. NIST special publication,
800:185, 2016.

[KLL+14] Elif Bilge Kavun, Martin M. Lauridsen, Gregor Leander, Christian Rech-
berger, Peter Schwabe, and Tolga Yalçın. Prøst. CAESAR Proposal, 2014.
http://proest.compute.dtu.dk.

https://doi.org/10.1007/978-3-662-53887-6_4
https://doi.org/10.1145/237814.237866
https://doi.org/10.1007/11799313_14
https://doi.org/10.1007/978-3-030-88428-4_7
https://doi.org/10.13154/tosc.v2020.i1.43-120
https://doi.org/10.13154/tosc.v2020.i1.43-120
https://doi.org/10.1007/978-3-642-34047-5_7
https://doi.org/10.1007/978-3-642-34047-5_7
https://github.com/zoom/zoom-e2e-whitepaper
http://proest.compute.dtu.dk

144 Areion: Highly-Efficient Permutations and Its Applications

[KLMR16] Stefan Kölbl, Martin M. Lauridsen, Florian Mendel, and Christian Rech-
berger. Haraka v2 - Efficient Short-Input Hashing for Post-Quantum Ap-
plications. IACR Trans. Symmetric Cryptol., 2016(2):1–29, 2016. doi:
10.13154/tosc.v2016.i2.1-29.

[KR07] Lars R. Knudsen and Vincent Rijmen. Known-key distinguishers for some
block ciphers. In ASIACRYPT, volume 4833 of Lecture Notes in Computer
Science, pages 315–324. Springer, 2007.

[KS05] John Kelsey and Bruce Schneier. Second preimages on n-bit hash functions
for much less than 2n work. In EUROCRYPT, volume 3494 of Lecture Notes
in Computer Science, pages 474–490. Springer, 2005.

[LaL19] Matti Latva-aho and Kari Leppänen. Key drivers and research challenges
for 6g ubiquitous wireless intelligence. 6G Research Visions 1, 2019.

[LMR+09] Mario Lamberger, Florian Mendel, Christian Rechberger, Vincent Rijmen,
and Martin Schläffer. Rebound distinguishers: Results on the full whirlpool
compression function. In ASIACRYPT, volume 5912 of Lecture Notes in
Computer Science, pages 126–143. Springer, 2009.

[MBTM17] Kerry A. McKay, Larry Bassham, Meltem Sönmez Turan, and Nicky Mouha.
Report on Lightweight Cryptography, 2017. National Institute of Standards
and Technology IR 8114. URL: https://nvlpubs.nist.gov/nistpubs/
ir/2017/NIST.IR.8114.pdf.

[Mer89] Ralph C. Merkle. One Way Hash Functions and DES. In Gilles Brassard,
editor, Advances in Cryptology - CRYPTO ’89, 9th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 20-24, 1989,
Proceedings, volume 435 of Lecture Notes in Computer Science, pages 428–446.
Springer, 1989. doi:10.1007/0-387-34805-0_40.

[Min14] Kazuhiko Minematsu. Parallelizable Rate-1 Authenticated Encryption from
Pseudorandom Functions. In Phong Q. Nguyen and Elisabeth Oswald,
editors, Advances in Cryptology - EUROCRYPT 2014 - 33rd Annual In-
ternational Conference on the Theory and Applications of Cryptographic
Techniques, Copenhagen, Denmark, May 11-15, 2014. Proceedings, volume
8441 of Lecture Notes in Computer Science, pages 275–292. Springer, 2014.
doi:10.1007/978-3-642-55220-5_16.

[MKZ+17] David Murray, Terry Koziniec, Sebastian Zander, Michael Dixon, and Poly-
chronis Koutsakis. An Analysis of Changing Enterprise Network Traf-
fic Characteristics. In 23rd Asia-Pacific Conference on Communications,
APCC 2017, Perth, Australia, December 11-13, 2017, pages 1–6. IEEE, 2017.
doi:10.23919/APCC.2017.8303960.

[MNP+21] Ben Marshall, G. Richard Newell, Dan Page, Markku-Juhani O. Saarinen,
and Claire Wolf. The design of scalar AES Instruction Set Extensions for
RISC-V. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2021(1):109–136,
2021. doi:10.46586/tches.v2021.i1.109-136.

[MRST09] Florian Mendel, Christian Rechberger, Martin Schläffer, and Søren S. Thom-
sen. The rebound attack: Cryptanalysis of reduced whirlpool and grøstl. In
Orr Dunkelman, editor, Fast Software Encryption, 16th International Work-
shop, FSE 2009, Leuven, Belgium, February 22-25, 2009, Revised Selected
Papers, volume 5665 of Lecture Notes in Computer Science, pages 260–276.
Springer, 2009. doi:10.1007/978-3-642-03317-9_16.

https://doi.org/10.13154/tosc.v2016.i2.1-29
https://doi.org/10.13154/tosc.v2016.i2.1-29
https://nvlpubs.nist.gov/nistpubs/ir/2017/NIST.IR.8114.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2017/NIST.IR.8114.pdf
https://doi.org/10.1007/0-387-34805-0_40
https://doi.org/10.1007/978-3-642-55220-5_16
https://doi.org/10.23919/APCC.2017.8303960
https://doi.org/10.46586/tches.v2021.i1.109-136
https://doi.org/10.1007/978-3-642-03317-9_16

T. Isobe, R. Ito, F. Liu, K. Minematsu, M. Nakahashi, K. Sakamoto, and R. Shiba 145

[MWGP11] Nicky Mouha, Qingju Wang, Dawu Gu, and Bart Preneel. Differential
and Linear Cryptanalysis Using Mixed-Integer Linear Programming. In
Chuankun Wu, Moti Yung, and Dongdai Lin, editors, Information Security
and Cryptology - 7th International Conference, Inscrypt 2011, Beijing, China,
November 30 - December 3, 2011. Revised Selected Papers, volume 7537 of
Lecture Notes in Computer Science, pages 57–76. Springer, 2011. doi:
10.1007/978-3-642-34704-7_5.

[NBI19] 3GPP TS 36.213: Evolved Universal Terrestrial Radio Access (E-UTRA);
Physical layer procedures. https://portal.3gpp.org/desktopmodules/
Specifications/SpecificationDetails.aspx?specificationId=2427,
2019.

[OANWO20] Jack O’Connor, Jean-Philippe Aumasson, Samuel Neves, and Zooko Wilcox-
O’Hearn. BLAKE3: One Function, Fast Everywhere, 2020. https://github.
com/BLAKE3-team/BLAKE3-specs/blob/master/blake3.pdf.

[oST15a] National Institute of Standards and Technology. Secure Hash Standard
(SHS). Federal Information Processing Standards Publication. FIPS PUB
180-4, August 2015. URL: https://nvlpubs.nist.gov/nistpubs/FIPS/
NIST.FIPS.180-4.pdf.

[oST15b] National Institute of Standards and Technology. SHA-3 Standard:
Permutation-Based Hash and Extendable-Output Functions. Federal In-
formation Processing Standards Publication. FIPS PUB 202, August 2015.
URL: https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf.

[OUGM21] Emad Omara, Justin Uberti, Alexandre Gouaillard, and Sergio Gar-
cia Murillo. Secure Frame (SFrame). https://tools.ietf.org/html/
draft-omara-sframe-03, August 2021.

[RTL21] Real-Time and Embedded Sys Lab. uops.info. Official webpage, https:
//www.uops.info/, 2021.

[Sas11] Yu Sasaki. Meet-in-the-middle preimage attacks on AES hashing modes
and an application to whirlpool. In Antoine Joux, editor, Fast Software
Encryption - 18th International Workshop, FSE 2011, Lyngby, Denmark,
February 13-16, 2011, Revised Selected Papers, volume 6733 of Lecture
Notes in Computer Science, pages 378–396. Springer, 2011. doi:10.1007/
978-3-642-21702-9_22.

[SSI21] Rentaro Shiba, Kosei Sakamoto, and Takanori Isobe. Efficient con-
structions for large-state block ciphers based on AES New Instruc-
tions. IET Information Security, 2021. URL: https://ietresearch.
onlinelibrary.wiley.com/doi/abs/10.1049/ise2.12053, doi:https:
//doi.org/10.1049/ise2.12053.

[ST17] Yu Sasaki and Yosuke Todo. New Impossible Differential Search Tool from
Design and Cryptanalysis Aspects - Revealing Structural Properties of
Several Ciphers. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors,
Advances in Cryptology - EUROCRYPT 2017 - 36th Annual International
Conference on the Theory and Applications of Cryptographic Techniques,
Paris, France, April 30 - May 4, 2017, Proceedings, Part III, volume 10212
of Lecture Notes in Computer Science, pages 185–215, 2017. doi:10.1007/
978-3-319-56617-7_7.

https://doi.org/10.1007/978-3-642-34704-7_5
https://doi.org/10.1007/978-3-642-34704-7_5
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2427
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2427
https://github.com/BLAKE3- team/BLAKE3- specs/blob/master/blake3.pdf
https://github.com/BLAKE3- team/BLAKE3- specs/blob/master/blake3.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
https://tools.ietf.org/html/draft-omara-sframe-03
https://tools.ietf.org/html/draft-omara-sframe-03
https://www.uops.info/
https://www.uops.info/
https://doi.org/10.1007/978-3-642-21702-9_22
https://doi.org/10.1007/978-3-642-21702-9_22
https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/ise2.12053
https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/ise2.12053
https://doi.org/https://doi.org/10.1049/ise2.12053
https://doi.org/https://doi.org/10.1049/ise2.12053
https://doi.org/10.1007/978-3-319-56617-7_7
https://doi.org/10.1007/978-3-319-56617-7_7

146 Areion: Highly-Efficient Permutations and Its Applications

[Sys20] Cisco Systems. Zero-Trust Security for Cisco Webex, 2020. https:
//www.cisco.com/c/en/us/solutions/collateral/collaboration/
white-paper-c11-744553.html.

[XZBL16] Zejun Xiang, Wentao Zhang, Zhenzhen Bao, and Dongdai Lin. Applying
MILP Method to Searching Integral Distinguishers Based on Division Prop-
erty for 6 Lightweight Block Ciphers. In Jung Hee Cheon and Tsuyoshi
Takagi, editors, Advances in Cryptology - ASIACRYPT 2016 - 22nd In-
ternational Conference on the Theory and Application of Cryptology and
Information Security, Hanoi, Vietnam, December 4-8, 2016, Proceedings,
Part I, volume 10031 of Lecture Notes in Computer Science, pages 648–678,
2016. doi:10.1007/978-3-662-53887-6_24.

https://www.cisco.com/c/en/us/solutions/collateral/collaboration/white-paper-c11-744553.html
https://www.cisco.com/c/en/us/solutions/collateral/collaboration/white-paper-c11-744553.html
https://www.cisco.com/c/en/us/solutions/collateral/collaboration/white-paper-c11-744553.html
https://doi.org/10.1007/978-3-662-53887-6_24

T. Isobe, R. Ito, F. Liu, K. Minematsu, M. Nakahashi, K. Sakamoto, and R. Shiba 147

A Reference Implementations
A.1 Areion-256 and Areion-512
#include <stdint.h>
#include <immintrin.h>

/* Round Constant */
const uint32_t RC[24*4] = {

0x243f6a88, 0x85a308d3, 0x13198a2e, 0x03707344,
0xa4093822, 0x299f31d0, 0x082efa98, 0xec4e6c89,
0x452821e6, 0x38d01377, 0xbe5466cf, 0x34e90c6c,
0xc0ac29b7, 0xc97c50dd, 0x3f84d5b5, 0xb5470917,
0x9216d5d9, 0x8979fb1b, 0xd1310ba6, 0x98dfb5ac,
0x2ffd72db, 0xd01adfb7, 0xb8e1afed, 0x6a267e96,
0xba7c9045, 0xf12c7f99, 0x24a19947, 0xb3916cf7,
0x801f2e28, 0x58efc166, 0x36920d87, 0x1574e690,
0xa458fea3, 0xf4933d7e, 0x0d95748f, 0x728eb658,
0x718bcd58, 0x82154aee, 0x7b54a41d, 0xc25a59b5,
0x9c30d539, 0x2af26013, 0xc5d1b023, 0x286085f0,
0xca417918, 0xb8db38ef, 0x8e79dcb0, 0x603a180e,
0x6c9e0e8b, 0xb01e8a3e, 0xd71577c1, 0xbd314b27,
0x78af2fda, 0x55605c60, 0xe65525f3, 0xaa55ab94,
0x57489862, 0x63e81440, 0x55ca396a, 0x2aab10b6,
0xb4cc5c34, 0x1141e8ce, 0xa15486af, 0x7c72e993,
0xb3ee1411, 0x636fbc2a, 0x2ba9c55d, 0x741831f6,
0xce5c3e16, 0x9b87931e, 0xafd6ba33, 0x6c24cf5c,
0x7a325381, 0x28958677, 0x3b8f4898, 0x6b4bb9af,
0xc4bfe81b, 0x66282193, 0x61d809cc, 0xfb21a991,
0x487cac60, 0x5dec8032, 0xef845d5d, 0xe98575b1,
0xdc262302, 0xeb651b88, 0x23893e81, 0xd396acc5,
0xf6d6ff38, 0x3f442392, 0xe0b4482a, 0x48420040,
0x69c8f04a, 0x9e1f9b5e, 0x21c66842, 0xf6e96c9a

};

#define RC0(i) _mm_setr_epi32(RC[(i)*4+0], RC[(i)*4+1], RC[(i)*4+2], RC[(i)*4+3])
#define RC1(i) _mm_setr_epi32(0, 0, 0, 0)

/* Round Function for the 256-bit permutation */
#define Round_Function_256(x0, x1, i) do { \

x1 = _mm_aesenc_si128(_mm_aesenc_si128(x0, RC0(i)), x1); \
x0 = _mm_aesenclast_si128(x0, RC1(i)); \

} while(0)

/* 256-bit permutation */
#define perm256(x0, x1) do { \

Round_Function_256(x0, x1, 0); \
Round_Function_256(x1, x0, 1); \
Round_Function_256(x0, x1, 2); \
Round_Function_256(x1, x0, 3); \
Round_Function_256(x0, x1, 4); \
Round_Function_256(x1, x0, 5); \
Round_Function_256(x0, x1, 6); \
Round_Function_256(x1, x0, 7); \
Round_Function_256(x0, x1, 8); \
Round_Function_256(x1, x0, 9); \

} while(0)

/* Inversed Round Function for the 256-bit permutation */
#define Inv_Round_Function_256(x0, x1, i) do { \

x0 = _mm_aesdeclast_si128(x0, RC1(i)); \
x1 = _mm_aesenc_si128(_mm_aesenc_si128(x0, RC0(i)), x1); \

} while(0)

/* Inversed 256-bit permutation */
#define Inv_perm256(x0, x1) do { \

148 Areion: Highly-Efficient Permutations and Its Applications

Inv_Round_Function_256(x1, x0, 9); \
Inv_Round_Function_256(x0, x1, 8); \
Inv_Round_Function_256(x1, x0, 7); \
Inv_Round_Function_256(x0, x1, 6); \
Inv_Round_Function_256(x1, x0, 5); \
Inv_Round_Function_256(x0, x1, 4); \
Inv_Round_Function_256(x1, x0, 3); \
Inv_Round_Function_256(x0, x1, 2); \
Inv_Round_Function_256(x1, x0, 1); \
Inv_Round_Function_256(x0, x1, 0); \

} while(0)

/* Round Function for the 512-bit permutation */
#define Round_Function_512(x0, x1, x2, x3, i) do { \

x1 = _mm_aesenc_si128(x0, x1); \
x3 = _mm_aesenc_si128(x2, x3); \
x0 = _mm_aesenclast_si128(x0, RC1(i)); \
x2 = _mm_aesenc_si128(_mm_aesenclast_si128(x2, RC0(i)), RC1(i)); \

} while (0)

/* 512-bit permutation */
#define perm512(x0, x1, x2, x3) do { \

Round_Function_512(x0, x1, x2, x3, 0); \
Round_Function_512(x1, x2, x3, x0, 1); \
Round_Function_512(x2, x3, x0, x1, 2); \
Round_Function_512(x3, x0, x1, x2, 3); \
Round_Function_512(x0, x1, x2, x3, 4); \
Round_Function_512(x1, x2, x3, x0, 5); \
Round_Function_512(x2, x3, x0, x1, 6); \
Round_Function_512(x3, x0, x1, x2, 7); \
Round_Function_512(x0, x1, x2, x3, 8); \
Round_Function_512(x1, x2, x3, x0, 9); \
Round_Function_512(x2, x3, x0, x1, 10); \
Round_Function_512(x3, x0, x1, x2, 11); \
Round_Function_512(x0, x1, x2, x3, 12); \
Round_Function_512(x1, x2, x3, x0, 13); \
Round_Function_512(x2, x3, x0, x1, 14); \

} while(0)

/* Inversed Round Function for the 512-bit permutation */
#define Inv_Round_Function_512(x0, x1, x2, x3, i) do { \

x0 = _mm_aesdeclast_si128(x0, RC1(i)); \
x2 = _mm_aesdeclast_si128(_mm_aesimc_si128(x2), RC0(i)); \
x2 = _mm_aesdeclast_si128(x2, RC1(i)); \
x1 = _mm_aesenc_si128(x0, x1); \
x3 = _mm_aesenc_si128(x2, x3); \

} while (0)

/* Inversed 512-bit permutation */
#define Inv_perm512(x0, x1, x2, x3) do { \

Inv_Round_Function_512(x2, x3, x0, x1, 14); \
Inv_Round_Function_512(x1, x2, x3, x0, 13); \
Inv_Round_Function_512(x0, x1, x2, x3, 12); \
Inv_Round_Function_512(x3, x0, x1, x2, 11); \
Inv_Round_Function_512(x2, x3, x0, x1, 10); \
Inv_Round_Function_512(x1, x2, x3, x0, 9); \
Inv_Round_Function_512(x0, x1, x2, x3, 8); \
Inv_Round_Function_512(x3, x0, x1, x2, 7); \
Inv_Round_Function_512(x2, x3, x0, x1, 6); \
Inv_Round_Function_512(x1, x2, x3, x0, 5); \
Inv_Round_Function_512(x0, x1, x2, x3, 4); \
Inv_Round_Function_512(x3, x0, x1, x2, 3); \
Inv_Round_Function_512(x2, x3, x0, x1, 2); \
Inv_Round_Function_512(x1, x2, x3, x0, 1); \
Inv_Round_Function_512(x0, x1, x2, x3, 0); \

} while(0)

T. Isobe, R. Ito, F. Liu, K. Minematsu, M. Nakahashi, K. Sakamoto, and R. Shiba 149

A.2 Simpira-256 and Simpira-512

#include <stdint.h>
#include <immintrin.h>

/* Round Constant */
#define RC0(i) _mm_setr_epi32(0x00^(i)^(2), 0x10^(i)^(2), 0x20^(i)^(2), 0x30^(i)^(2))
#define RC1(i) _mm_setr_epi32(0x00^(2*(i)+1)^(4), 0x10^(2*(i)+1)^(4), 0x20^(2*(i)+1)^(4), 0

x30^(2*(i)+1)^(4))
#define RC2(i) _mm_setr_epi32(0x00^(2*(i)+2)^(4), 0x10^(2*(i)+2)^(4), 0x20^(2*(i)+2)^(4), 0

x30^(2*(i)+2)^(4))

/* Round Function for the 256-bit permutation */
#define Round_Function_256(x0, x1, i) do { \

x1 = _mm_aesenc_si128(_mm_aesenc_si128(x0, RC0(i)), x1); \
} while(0)

/* 256-bit permutation */
#define perm256(x0, x1) do { \

Round_Function_256(x0, x1, 0); \
Round_Function_256(x1, x0, 1); \
Round_Function_256(x0, x1, 2); \
Round_Function_256(x1, x0, 3); \
Round_Function_256(x0, x1, 4); \
Round_Function_256(x1, x0, 5); \
Round_Function_256(x0, x1, 6); \
Round_Function_256(x1, x0, 7); \
Round_Function_256(x0, x1, 8); \
Round_Function_256(x1, x0, 9); \
Round_Function_256(x0, x1, 10); \
Round_Function_256(x1, x0, 11); \
Round_Function_256(x0, x1, 12); \
Round_Function_256(x1, x0, 13); \
Round_Function_256(x0, x1, 14); \

} while(0)

/* Inversed 256-bit permutation */
#define Inv_perm256(x0, x1) do { \

Round_Function_256(x0, x1, 14); \
Round_Function_256(x1, x0, 13); \
Round_Function_256(x0, x1, 12); \
Round_Function_256(x1, x0, 11); \
Round_Function_256(x0, x1, 10); \
Round_Function_256(x1, x0, 9); \
Round_Function_256(x0, x1, 8); \
Round_Function_256(x1, x0, 7); \
Round_Function_256(x0, x1, 6); \
Round_Function_256(x1, x0, 5); \
Round_Function_256(x0, x1, 4); \
Round_Function_256(x1, x0, 3); \
Round_Function_256(x0, x1, 2); \
Round_Function_256(x1, x0, 1); \
Round_Function_256(x0, x1, 0); \

} while(0)

/* Round Function for the 512-bit permutation */
#define Round_Function_512(x0, x1, x2, x3, i) do { \

x1 = _mm_aesenc_si128(_mm_aesenc_si128(x0, RC1(i)), x1); \
x3 = _mm_aesenc_si128(_mm_aesenc_si128(x2, RC2(i)), x3); \

} while (0)

/* 512-bit permutation */
#define perm512(x0, x1, x2, x3) do { \

Round_Function_512(x0, x1, x2, x3, 0); \
Round_Function_512(x1, x2, x3, x0, 1); \
Round_Function_512(x2, x3, x0, x1, 2); \

150 Areion: Highly-Efficient Permutations and Its Applications

Round_Function_512(x3, x0, x1, x2, 3); \
Round_Function_512(x0, x1, x2, x3, 4); \
Round_Function_512(x1, x2, x3, x0, 5); \
Round_Function_512(x2, x3, x0, x1, 6); \
Round_Function_512(x3, x0, x1, x2, 7); \
Round_Function_512(x0, x1, x2, x3, 8); \
Round_Function_512(x1, x2, x3, x0, 9); \
Round_Function_512(x2, x3, x0, x1, 10); \
Round_Function_512(x3, x0, x1, x2, 11); \
Round_Function_512(x0, x1, x2, x3, 12); \
Round_Function_512(x1, x2, x3, x0, 13); \
Round_Function_512(x2, x3, x0, x1, 14); \

} while(0)

/* Inversed 512-bit permutation */
#define Inv_perm512(x0, x1, x2, x3) do { \

Round_Function_512(x2, x3, x0, x1, 14); \
Round_Function_512(x1, x2, x3, x0, 13); \
Round_Function_512(x0, x1, x2, x3, 12); \
Round_Function_512(x3, x0, x1, x2, 11); \
Round_Function_512(x2, x3, x0, x1, 10); \
Round_Function_512(x1, x2, x3, x0, 9); \
Round_Function_512(x0, x1, x2, x3, 8); \
Round_Function_512(x3, x0, x1, x2, 7); \
Round_Function_512(x2, x3, x0, x1, 6); \
Round_Function_512(x1, x2, x3, x0, 5); \
Round_Function_512(x0, x1, x2, x3, 4); \
Round_Function_512(x3, x0, x1, x2, 3); \
Round_Function_512(x2, x3, x0, x1, 2); \
Round_Function_512(x1, x2, x3, x0, 1); \
Round_Function_512(x0, x1, x2, x3, 0); \

} while(0)

A.3 NEON Implementations of Areion-256 and Areion-512

#include<stdint.h>
#include<arm_neon.h>

/* Round Constant aligned for little endian */
const uint32_t RC[][4] = {

{0x03707344, 0x13198a2e, 0x85a308d3, 0x243f6a88},
{0xec4e6c89, 0x082efa98, 0x299f31d0, 0xa4093822},
{0x34e90c6c, 0xbe5466cf, 0x38d01377, 0x452821e6},
{0xb5470917, 0x3f84d5b5, 0xc97c50dd, 0xc0ac29b7},
{0x98dfb5ac, 0xd1310ba6, 0x8979fb1b, 0x9216d5d9},
{0x6a267e96, 0xb8e1afed, 0xd01adfb7, 0x2ffd72db},
{0xb3916cf7, 0x24a19947, 0xf12c7f99, 0xba7c9045},
{0x1574e690, 0x36920d87, 0x58efc166, 0x801f2e28},
{0x728eb658, 0x0d95748f, 0xf4933d7e, 0xa458fea3},
{0xc25a59b5, 0x7b54a41d, 0x82154aee, 0x718bcd58},
{0x286085f0, 0xc5d1b023, 0x2af26013, 0x9c30d539},
{0x603a180e, 0x8e79dcb0, 0xb8db38ef, 0xca417918},
{0xbd314b27, 0xd71577c1, 0xb01e8a3e, 0x6c9e0e8b},
{0xaa55ab94, 0xe65525f3, 0x55605c60, 0x78af2fda},
{0x2aab10b6, 0x55ca396a, 0x63e81440, 0x57489862},
{0x7c72e993, 0xa15486af, 0x1141e8ce, 0xb4cc5c34},
{0x741831f6, 0x2ba9c55d, 0x636fbc2a, 0xb3ee1411},
{0x6c24cf5c, 0xafd6ba33, 0x9b87931e, 0xce5c3e16},
{0x6b4bb9af, 0x3b8f4898, 0x28958677, 0x7a325381},
{0xfb21a991, 0x61d809cc, 0x66282193, 0xc4bfe81b},
{0xe98575b1, 0xef845d5d, 0x5dec8032, 0x487cac60},
{0xd396acc5, 0x23893e81, 0xeb651b88, 0xdc262302},
{0x48420040, 0xe0b4482a, 0x3f442392, 0xf6d6ff38},
{0xf6e96c9a, 0x21c66842, 0x9e1f9b5e, 0x69c8f04a}

};

T. Isobe, R. Ito, F. Liu, K. Minematsu, M. Nakahashi, K. Sakamoto, and R. Shiba 151

#define RC0 vmovq_n_u8(0)
#define RC1(i) vreinterpretq_u8_u32(vld1q_u32(RC[i]))

/* Operations for the round function */
#define A1(X, K) vaesmcq_u8((vaeseq_u8(X, K)))
#define A2(X, K) vaeseq_u8(X, K)
#define A3(X) vaesmcq_u8(X)
#define A4(X, K) vaesdq_u8(X, K)
#define XOR(X, Y) veorq_u8(X, Y)

/* Round Function for the 256-bit permutation */
#define R_FIRST(x0, x1, i) \

do { \
x1 = A2(A1(A1(x0, RC0), RC1(i)), x1); \
x0 = A2(x0, RC0); \

} while (0)

#define R_MIDDLE(x0, x1, i) \
do { \

x1 = A2(A1(A1(x0, RC0), RC1(i)), x1); \
} while (0)

#define R_LAST(x0, x1, i) \
do { \

x1 = XOR(A1(A1(x0, RC0), RC1(i)), x1); \
x0 = A2(x0, RC0); \

} while (0)

/* 256-bit permutation */
#define perm256(x0, x1) \

do { \
R_FIRST(x0, x1, 0); \
R_MIDDLE(x1, x0, 1); \
R_MIDDLE(x0, x1, 2); \
R_MIDDLE(x1, x0, 3); \
R_MIDDLE(x0, x1, 4); \
R_MIDDLE(x1, x0, 5); \
R_MIDDLE(x0, x1, 6); \
R_MIDDLE(x1, x0, 7); \
R_MIDDLE(x0, x1, 8); \
R_LAST(x1, x0, 9); \

} while (0)

/* Inversed Round Function for the 256-bit permutation */
#define Inv_R_FIRST(x0, x1, i) \

do { \
x0 = A4(x0, RC0); \
x1 = A4(A1(A1(x0, RC0), RC1(i)), x1); \

} while (0)

#define Inv_R_MIDDLE(x0, x1, i) \
do { \

x1 = A4(A1(A1(x0, RC0), RC1(i)), x1); \
} while (0)

#define Inv_R_LAST(x0, x1, i) \
do { \

x1 = XOR(A1(A1(x0, RC0), RC1(i)), x1); \
} while (0)

/* Inversed 256-bit permutation */
#define Inv_perm256(x0, x1) \

do { \
Inv_R_FIRST(x1, x0, 9); \
Inv_R_MIDDLE(x0, x1, 8); \

152 Areion: Highly-Efficient Permutations and Its Applications

Inv_R_MIDDLE(x1, x0, 7); \
Inv_R_MIDDLE(x0, x1, 6); \
Inv_R_MIDDLE(x1, x0, 5); \
Inv_R_MIDDLE(x0, x1, 4); \
Inv_R_MIDDLE(x1, x0, 3); \
Inv_R_MIDDLE(x0, x1, 2); \
Inv_R_MIDDLE(x1, x0, 1); \
Inv_R_LAST(x0, x1, 0); \

} while (0)

/* Round Function for the 512-bit permutation */
#define R_FIRST(x0, x1, x2, x3, i) \

do { \
x1 = A2(A1(x0, RC0), x1); \
x3 = A2(A1(x2, RC0), x3); \
x0 = A2(x0, RC0); \
x2 = A1(A2(x2, RC0), RC1(i)); \

} while (0)

#define R_MIDDLE(x0, x1, x2, x3, i) \
do { \

x1 = A2(A1((x0), x1); \
x3 = A2(A3(x2), x3); \
x2 = A1(x2, RC1(i)); \

} while (0)

#define R_LAST(x0, x1, x2, x3, i) \
do { \

x1 = XOR(A3(x0), x1); \
x3 = XOR(A3(x2), x3); \
x2 = A1(x2, RC1(i)); \

} while (0)

/* 512-bit permutation */
#define perm512(x0, x1, x2, x3) \

do { \
R_FIRST(x0, x1, x2, x3, 0); \
R_MIDDLE(x3, x0, x1, x2, 1); \
R_MIDDLE(x2, x3, x0, x1, 2); \
R_MIDDLE(x1, x2, x3, x0, 3); \
R_MIDDLE(x0, x1, x2, x3, 4); \
R_MIDDLE(x3, x0, x1, x2, 5); \
R_MIDDLE(x2, x3, x0, x1, 6); \
R_MIDDLE(x1, x2, x3, x0, 7); \
R_MIDDLE(x0, x1, x2, x3, 8); \
R_MIDDLE(x3, x0, x1, x2, 9); \
R_MIDDLE(x2, x3, x0, x1, 10); \
R_MIDDLE(x1, x2, x3, x0, 11); \
R_MIDDLE(x0, x1, x2, x3, 12); \
R_MIDDLE(x3, x0, x1, x2, 13); \
R_LAST(x2, x3, x0, x1, 14); \

} while (0)

T. Isobe, R. Ito, F. Liu, K. Minematsu, M. Nakahashi, K. Sakamoto, and R. Shiba 153

B Test Vectors
B.1 Areion-256

=== test vector #1 ===
Input =
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Output =
e5 a7 66 63 82 50 14 24 68 dc 9d 76 65 dd 36 9f
8f 79 99 8b 7a a0 92 90 6f e5 1b fd eb fa c9 c1

=== test vector #2 ===
Input =
00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f

Output =
73 53 ec 51 d4 9f ad 89 ee cb 5b ef 1e a0 e4 76
ed 6c dc dd af 34 62 0d 01 3d cc f2 a2 26 f4 57

B.2 Areion-512

=== test vector #1 ===
Input =
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Output =
5f ee f7 7c bb e8 4c 79 58 08 94 59 f4 54 e9 6f
bf 21 fa b8 35 65 cc af 91 6b cf 9c fb 63 d2 5b
a0 26 42 fc c1 75 12 36 40 d6 a2 18 3b a6 82 b2
0b 72 3a fc 66 68 ff f3 de c4 7c 17 61 27 b9 84

=== test vector #2 ===
Input =
00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f
20 21 22 23 24 25 26 27 28 29 2a 2b 2c 2d 2e 2f
30 31 32 33 34 35 36 37 38 39 3a 3b 3c 3d 3e 3f

Output =
a6 09 5f e0 57 d2 83 80 ba d2 5c 28 12 b2 30 f6
6f 07 b0 09 a3 04 98 5a f4 37 bb 60 8a 4c b8 31
39 2a 6f 2f 48 e4 25 ef 24 11 96 21 67 2e 37 c4
f1 9b 94 e0 e4 ea ed af b9 f4 eb 12 6a 6d 8a bb

B.3 Areion256-DM

=== test vector #1 ===
Input =
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Output =
e5 a7 66 63 82 50 14 24 68 dc 9d 76 65 dd 36 9f
8f 79 99 8b 7a a0 92 90 6f e5 1b fd eb fa c9 c1

=== test vector #2 ===
Input =
00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f

154 Areion: Highly-Efficient Permutations and Its Applications

Output =
73 52 ee 52 d0 9a ab 8e e6 c2 51 e4 12 ad ea 79
fd 7d ce ce bb 21 74 1a 19 24 d6 e9 be 3b ea 48

B.4 Areion512-DM

=== test vector #1 ===
Input =
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Output =
58 08 94 59 f4 54 e9 6f 91 6b cf 9c fb 63 d2 5b
a0 26 42 fc c1 75 12 36 0b 72 3a fc 66 68 ff f3

=== test vector #2 ===
Input =
00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f
20 21 22 23 24 25 26 27 28 29 2a 2b 2c 2d 2e 2f
30 31 32 33 34 35 36 37 38 39 3a 3b 3c 3d 3e 3f

Output =
b2 db 56 23 1e bf 3e f9 ec 2e a1 7b 96 51 a6 2e
19 0b 4d 0c 6c c1 03 c8 c1 aa a6 d3 d0 df db 98

B.5 Areion512-MD

=== test vector #1 ===
Input =
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Output =
47 dd 7f 2c 11 f3 05 e6 97 40 95 e3 c8 61 2f 6e
8d 09 bb ea 63 ef be 8d 84 55 8f cb f5 28 81 37

=== test vector #2 ===
Input =
00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f
20 21 22 23 24 25 26 27 28 29 2a 2b 2c 2d 2e 2f
30 31 32 33 34 35 36 37 38 39 3a 3b 3c 3d 3e 3f
40 41 42 43 44 45 46 47 48 49 4a 4b 4c 4d 4e 4f
50 51 52 53 54 55 56 57 58 59 5a 5b 5c 5d 5e 5f
60 61 62 63 64 65 66 67 68 69 6a 6b 6c 6d 6e 6f
70 71 72 73 74 75 76 77 78 79 7a 7b 7c 7d 7e 7f

Output =
61 17 b5 9f 30 25 cd 4e 66 8b dc b3 66 bd 89 b9
06 0e 8d cf 67 0c bf 43 08 a8 96 86 8e bc c6 fc

	Introduction
	Background
	Related Work
	Motivation
	Our Contribution
	Paper Organization

	Specification of Permutations
	The Design
	AES Instructions and SIMD
	General Construction
	Finding Optimal Constructions

	Applications
	SFIL Hash Function
	VIL Hash Function

	Security Evaluation
	Security for Underlying Permutations
	Security for Hash Functions

	Performance Evaluation
	Underlying Permutations
	Permutation-based Hash Functions

	Conclusion
	Reference Implementations
	Areion-256 and Areion-512
	Simpira-256 and Simpira-512
	NEON Implementations of Areion-256 and Areion-512

	Test Vectors
	Areion-256
	Areion-512
	Areion256-DM
	Areion512-DM
	Areion512-MD

